Electrical Conduction Electrical Properties of Solids: Ohm's Law

Ohm's law V = IR $\begin{cases}
I - \text{current (C/s) or (A)} \\
(\text{time rate of charge}) \\
V - \text{applied voltage (V)} \\
R - \text{resistance (}\Omega\text{) or (V/A)}
\end{cases}$ current density

$$J = \sigma E \qquad J - \text{ current density (A/m2)} \\ J = I/A$$

resistivity

$$\rho = \frac{RA}{l} \begin{cases} \rho \text{ - resistivity } (\Omega \cdot \mathbf{m}) \\ l \text{ - distance } (\mathbf{m}) \\ A \text{ - cross-section area } (\mathbf{m}^2) \end{cases}$$

$$F = \frac{V}{E}$$

electric field intensity

E - electric field intensity (V/m)

electrical conductivity

 $\sigma = \frac{1}{\rho}$

 σ - conductivity ($\Omega \cdot$ m)⁻¹ or (S/m)

Materials and Devices in Electrical Engineering

source: [Cal 99 / 606]

Electrical Conduction Electrical Properties of Solids: Resistivity and Conductivity

Materials and Devices in Electrical Engineering

Institut für Werkstoffe der Elektrotechnik

source: [Schau 90 / 219]

M&D-electrical Conduction.PPT, slide: 2, 12.02.02

Electrical Conduction Electrical Properties of Solids: Electrical Conductivity vs. Temperature

Materials and Devices in Electrical Engineering

source: [Chi 97 / 190]

Institut für Werkstoffe der Elektrotechnik

M&D-electrical Conduction.PPT, slide: 3, 12.02.02

Electrical Conduction Energy Band Structure in Solids

source: [Cal 99 / 609]

M&D-electrical Conduction.PPT, slide: 4, 12.02.02

Electrical Conduction Energy Band Structure in Solids

Electrical Conduction Energy Band Structures in Solids at 0 K

The electric properties of a solid material are a consequence of it's electron band structure: the arrangement of the outermost electron bands and the way in which they are filled with electrons.

 Materials and Devices in Electrical Engineering
 Institut für Werkstoffe der Elektrotechnik

 source: [Schau 93 / 77]
 M&D-electrical Conduction.PPT, slide: 6, 12.02.02

Electrical Conduction Energy Band Structures in Solids: Energy States in Copper

Materials and Devices in

Electrical Engineering

source: [Wij 67 / 43]

M&D-electrical Conduction.PPT, slide: 7, 12.02.02

Werkstoffe der Elektrotech

Electrical Conduction Fermi-Distribution f(E) at different Temperatures

Fermi energy E_f : the energy corresponding to the highest filled state at 0K

Fermi-Distribution of electron energy states (Fermi-Dirac-Statistic)

$$f(E,T) = \frac{1}{1 + e^{\frac{E - E_F}{kT}}}$$

Boltzmann's constant $k = 1,38 \times 10^{-23}$ J/atom·K

For $E \ge (E_f + 3kT)$, Fermi-Distribution $f(E,T) \rightarrow$ Boltzmann-Distribution $f_B(E,T)$

$$f(E,T) \approx f_B(E,T) = e^{-\frac{E-E_F}{kT}}$$

Materials and Devices in

Electrical Engineering

source: [Heime / 3.32]

Werkstoffe der Elektrotechnik

M&D-electrical Conduction.PPT, slide: 8, 12.02.02

Institut für

Electrical Conduction Energy Band Structures in Solids

Electrical Engineering

Werkstoffe der Elektrotechnik

source: [Heime 3-34ff]

M&D-electrical Conduction.PPT, slide: 9, 12.02.02

Electrical Conduction Conduction in Terms of Band and Atomic Bonding Models

Materials and Devices in Electrical Engineering

Institut für Werkstoffe der Elektrotechnik

source: [Cal 99 / 609]

M&D-electrical Conduction.PPT, slide: 10, 12.02.02

Electrical Conduction Conduction in Terms of Band and Atomic Bonding Models

Materials and Devices in

Electrical Engineering

source: [Cal 99 / 609]

M&D-electrical Conduction.PPT, slide: 11, 12.02.02

Werkstoffe der Elektrotech

A current reaches a constant value while an electric field is applied

- $\rightarrow\,$ "frictional forces" counter the acceleration from the external field
- \rightarrow scattering of electrons by imperfections in the crystal lattice and the thermal vibrations of atoms
- $\rightarrow\,$ cause an electron to lose kinetic energy and to change its motion direction

To describe the extent of scattering:

1. The drift velocity of an electron v_d : $v_d = \mu_e E$

the average electron velocity in the direction of the force imposed by the applied field.

2. Electron mobility μ_e (m²/ V·s):

an indication of the frequency of scattering events.

conductivity $\sigma = n |e| \mu_e$ *n* - the number of free or conducting electrons per unit volume $|e|= 1,6 \times 10^{-19} \text{ C}$

Materials and Devices in Electrical Engineering

Institut für Werkstoffe der Elektrotechnik

M&D-electrical Conduction.PPT, slide: 12, 12.02.02

Electrical Conduction Electron Drift Velocity and Electron Mobility

Materials and Devices in Electrical Engineering

Institut für Werkstoffe der Elektrotechnik

source: IWE

M&D-electrical Conduction.PPT, slide: 13, 12.02.02

material	concentration of charge carriers	mobility of charge carriers
metalls	n = const	μ _n ~ T-a
semiconductors	$n \sim e^{\frac{-E_s^*}{2kT}}$	μ _n ~ T ^{-a}
ſ	$n \sim e^{\frac{-E_g}{2kT}}$	$\mu_n \sim T^{-a}$ or $\mu_n \sim e^{-\frac{A}{T}}$
Insulators {	N _{ion} = const	$\mu_{\text{ion}} \sim e^{-\frac{B}{T}}$

* band gap $E_g \le 100 \text{ kT}$ at 25 °C (kT = 0,025 eV at 25 °C)

 Materials and Devices in
 Institut für

 Electrical Engineering
 Werkstoffe der Elektrotechnik

 source: [Mü 93 / 158]
 M&D-electrical Conduction.PPT, slide: 14, 12,02,02

Electrical Conduction Electrical properties of Metals

	resistivity	charge carrier mobility	scattering time	Lorenz- number	
metal	ρ	μ*	τ*	L	values at
metai	10 ⁻⁶ Ωcm	cm ² V ⁻¹ s ⁻¹	10 ⁻¹⁴ s	10 ⁻⁸ V ² K ⁻²	room temperature
Ag	1,62	66	3,7	2,31	
Cu	1,68	44	2,5	2,28	
Au	2,22	48	2,7	2,38	
ΑΙ	2,73	13	0,7	2,22	
Na	4,74	50	2,8	2,23	
W	5,39	9,2	0,5	2,39	
Zn	6,12	7,8 (+)	0,4	2,37	
Cd	7,72	8,7 (+)	0,5	2,54	
Fe	9,71	3,8	0,2	2,39	
Pt	10,5	8,9	0,3	2,57	
Sn	12,2	3,5	0,4	2,62	
Pb	20,8	2,0 (+)	0,3	2,49	

(+) hole conduction

* calculated using σ-values, electron-concentrations according to the number of valence electrons s and effective mass m*=m

Materials and Devices in Electrical Engineering Institut für Werkstoffe der Elektrotechnik

Electrical Conduction Influence of different Impurity Elements (1 at%)

different impurity elements in Cu

Materials and Devices in Electrical Engineering Institut für Werkstoffe der Elektrotechnik

source: [Mü 87 / 79]

M&D-electrical Conduction.PPT, slide: 16, 12.02.02

Electrical Conduction

Materials and Devices in Electrical Engineering

source: [Schau 90 / 96, Tip 94 / 1355]

Institut für Werkstoffe der Elektrotechnik M&D-electrical Conduction.PPT, slide: 17, 12.02.02

Electrical Conduction Electrical Resistivity of Metals as a Function of Temperature $\rho_t = f(T)$

Materials and Devices in

Electrical Engineering

source: [Mü 93 / 78]]

M&D-electrical Conduction.PPT, slide: 18, 12.02.02

Werkstoffe der Elektrotec

Electrical Conduction Electrical Properties of Metals

		ρ [μΩcm]	d	ρ .d [μΩcm]	ΤΚ _ρ [% / K]	λ [W / cm K]
I a	Na K	4,2 6,2	0,97 0,86	4,1 5,3		1,4 0,9
Ib	Cu	1,7	8,9	15	0,43	4,0
	Ag	1,6	10,5	17	0,41	4,1
	Au	2,2	19,3	45	0,40	3,1
II a	Mg Ca	4,5 3,9	1,7 1,5	7,7 5,9	0,41 0,42	1,4
II b	Zn	5,9	7,2	43	0,42	1,1
	Cd	6,8	8,6	59	0,42	1,0
	Hg	97	13,5	1310	0,08	0,08
III a	AI	2,7	2,7	7,3	0,43	2,3
IV a	Sn	12	7,3	88	0,43	0,7
	Pb	21	11,3	237	0,35	0,4
VIII b	Fe	9,7	7,9	77	0,65	0,7
	Co	6,2	8,9	55	0,60	0,7
	Ni	6,8	8,9	61	0,69	0,9
V b / VI b	Ta	13	16,6	216	0,38	0,5
	Cr	14	7,2	100	0,30	0,7
	Mo	5,2	10,2	53	0,40	1,4
	W	5,5	19,3	106	0,40	1,6
VIII b	Rh	4,5	12,5	57	0,42	0,9
	Pd	9,8	12,0	118	0,38	0,7
	Pt	9,8	21,4	210	0,39	0,7

Materials and Devices in Electrical Engineering

source: [Mü 93 / 77]

Electrical Conduction Application of different Metals

Materials and Devices in

Electrical Engineering

source: [Mü 87 / 98]

Institut für Werkstoffe der Elektrotechnik IVE M&D-electrical Conduction.PPT, slide: 20, 12.02.02

Electrical Conduction Application of different Metals and Alloys

Materials and Devices in Electrical Engineering

source: [Mü 87 / 99]

Electrical Conduction Alloys for Precision-Resistors

maximum							
material	alloy		operation	ρ*	ΤΚ _ρ *	thermal voltage	
	elements / wt.%		temperature			vs. copper * **	
	Mn	Ni	AI	/ °C	/ μΩ cm	/ K ⁻¹	/ μV/K
CuMn12Ni2	12	2	-	140	43	± 1.10 ⁻⁵	- 0,4
CuNi20Mn10	10	20	-	300	49	± 2·10 ⁻⁵	- 10
CuNi44	1	44	-	600	49	+ 4.10-4	- 40
						- 8-10-4	
CuMn2AI	2	-	0,8	200	12	4 •10 ⁻⁴	+ 0,1
CuNi30Mn	3	30	-	500	40	1.10-4	- 25
CuMn12NiAI	12	5	1,2	500	40	~ 10 ⁻⁵	- 2
			•		•	* T = 20 °C	** Seebeck-coefficient

<u>choice criteria</u>: high resistivity ρ , long term stability, well defined and very low TK_{ρ}, small thermal voltage vs. copper \Rightarrow alloys

Materials and Devices in

Electrical Engineering

source: [Mü 87 / 102)

Institut für Werkstoffe der Elektrotechnik

M&D-electrical Conduction.PPT, slide: 22, 12.02.02

Electrical Conduction ρ and TK ρ of Alloys for Precision-Resistors

Institut für Werkstoffe der Elektrotechnik

source: [Mü 93 / 103]

M&D-electrical Conduction.PPT, slide: 23, 12.02.02

Alloys	alloy		structure	ρ	maximum operation	coating			
	elements / wt.%				temperature				
	Fe	Ni	Cr	ΑΙ		/μΩcm	/°C		
NiCr 80 20	-	80	20	-		112	1200		
NiCr 60 15	25	60	15	-	1/5-	113	1150	Cr 0	
NiCr 30 20	50	30	20	-	KIZ	104	1100	Cr_2O_3	
CrNi 25 20	55	20	25	-		95	1050		
CrAI 25 5	70	-	25	5	le um	144	1300		
CrAI 20 5	75	-	20	5	KſZ	137	1200	AI_2O_3	

choice criteria: high melting point, formation of protective coating

Materials and Devices in Electrical Engineering

source: [Mü 87 / 103]

Institut für Werkstoffe der Elektrotechnik

M&D-electrical Conduction.PPT, slide: 24, 12.02.02

Electrical Conduction Resitivity of Heating Elements as f(T)

Materials and Devices in Electrical Engineering

Institut für Werkstoffe der Elektrotechnik

source: [Mü 93 / 106]

M&D-electrical Conduction.PPT, slide: 25, 12.02.02

Electrical Conduction Metals and Alloys for Sensor Applications

Materials and Devices in

Electrical Engineering

source: [Mü 87 / 103]

M&D-electrical Conduction.PPT, slide: 26, 12.02.02

Werkstoffe der Elektrotechr

Electrical Conduction Resistive Temperature Sensors

Materials and Devices in

Electrical Engineering

source: [Schau 93 / 111]

Werkstoffe der Elektrotec

Electrical Conduction Thermocouples

thermocouple

temperature difference generates potential difference

 $\eta_{semiconductor} \approx 100...600 \; \mu\text{V/K}$

 $\eta_{metal} \approx 0...40 \; \mu\text{V/K}$

Materials and Devices in Electrical Engineering

source: IWE

Institut für Werkstoffe der Elektrotechnik IVE M&D-electrical Conduction.PPT, slide: 28, 12.02.02

negative site	positive site	U _{Th} /mV	max. temp. / °C	
constantan (55 Cu 44 Ni 1 Mn)	copper (Cu) iron (Fe)	4,25 5,37	400 700	
nickel (98 Ni 2 Al)	chromnickel	4,1	1000	
alumel (94,5 Ni 2,5 Mn 2Al 1 Si)	(90 Ni 80 Cr)		1000	
pallaplat 32 (52 Au 46 Pd 2 Pt)	pallaplat 40 (95 Pt 5 Rh)	2,65	1300	
platinum (Pt)	platinum-rhodium (90 Pt 10 Rh)	0,64	1500	

 U_{Th} for $\Delta T = 100 \text{ K}$

Materials and Devices in Electrical Engineering

Institut für Werkstoffe der Elektrotechnik

source: [Mü 93 / 109]

M&D-electrical Conduction.PPT, slide: 29, 12.02.02

Electrical Conduction Thermocouples

• U_{Th} = f(T)

- choice criteria
 - − high U_{Th}-values→ high η_{AB} = η_A - η_B

- high melting point
- chemical stability at high temperatures

Materials and Devices in Electrical Engineering

Institut für Werkstoffe der Elektrotechnik M&D-electrical Conduction.PPT, slide: 30, 12.02.02

Electrical Conduction Strain Gauges

DMS:

resitance change due to strain / compression

$$\frac{\Delta \mathbf{R}}{\mathbf{R}} = \mathbf{K} \cdot \frac{\Delta \mathbf{l}}{\mathbf{l}} = \mathbf{K} \cdot \boldsymbol{\varepsilon}_{\mathrm{M}}$$

application:

force sensor, manometer, balance

layout:

looped arrangement

- \rightarrow maximum length (I)
- \rightarrow high accuracy (K· ϵ_{M})

Materials and Devices in Electrical Engineering

source: [Tip 94 / 1353]

Electrical Conduction Metals and Alloys for Strain Gauges

material	composition	K-factor
constantan	55 Cu 44 Ni 1 Mn	2,0
Fe-Ni-wire	65 Ni 20 Fe 15 Cr	2,5
"Iso-Elastic"-wire	52 Fe 36 Ni 8,5 Cr 3,5 Mn	3,6
Fe-wire	100 Fe	4,0

relativ resistance change:

 dA_q using $\frac{dA_q}{A_c} = -2\upsilon \cdot \frac{dl}{l}$ and $\frac{d\rho}{\rho} = K_1 \cdot \frac{dl}{l} \Rightarrow$ dR dl dρ A_q R Aq poisson-ratio length resistivity $\frac{\Delta \mathbf{R}}{\mathbf{M}} = \mathbf{K} \cdot \mathbf{\varepsilon}_{\mathbf{M}}$ area resistance change due to strain: R $(K = 1 + 2v + K_1)$ Institut fü

Materials and Devices in

Electrical Engineering

source: [Mü 93 / 110]

M&D-electrical Conduction.PPT, slide: 32, 12.02.02

Werkstoffe der Elektrotecl