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Matrix

Matlab Objects

Matlab provides users with a large variety of basic objects starting with numbers and
character strings up to more sophisticated objects such as booleans, polynomials, and structures.
A Matlab object is a basic object or a set of basic objects arranged in a vector, a matrix, a

hypermatrix, or a structure (list).

As already mentioned, Matlab is devoted to scientific computing, and the basic object is a
two-dimensional matrix with floating-point double-precision number entries. In fact, a real scalar
is nothing but a 1x 1 matrix. The next Matlab session illustrates this type of object. Note also that

a:b:c gives numbers starting from a to ¢ spaced b units apart.

,
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»>>» %a is now a scalar matrix (double)
> a=1:0.6:3

1.0000 1.6000 2.2000 2.8000

>» %b is the 1x2 row vector filled with predefined wvalues (=,
>» b=[exp(l), pi]

b =
2.7183 3.141¢

fx >> |

\

o)

New types have been added as Matlab has evolved, but the matrix aspect has always been
kept. String matrices, boolean matrices, sparse matrices, integer matrices (int8, int16, int32),
polynomial matrices, and rational matrices are now available in the standard Matlab environment.
Complex structures called lists (list, tlist, and mlist) are also available. Note also that functions in

Matlab are considered as objects as well.
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>> %a 1xl string matrix =
>» a='Matlab'

Matlab

>>» %2 matrix
»>» b=rand(2,2)

0.8147 0.1270
0.9058 0.9134

m

>> %a boolean matrix
>>»> b= b>= 0.5

>» %a structure implemented using mlist
>> A.x=3Z; A.y="tL'

Matrix Construction and Manipulation

As already pointed out, one of the goals of Matlab is to give access to matrix operations
for any kind of matrix types. In this section we highlight general functions and operators that are
common to all matrix types.

A matrix in Matlab refers to one- or two-dimensional arrays, which are internally stored as
aone-dimensional array (two-dimensional arrays are stored in column order). It is therefore always
possible to access matrix entries with one or two indices. Vectors and scalars are stored as matrices.

Multidimensional matrices can also be used in Matlab. They are called hypermatrices.

Elementary construction operators, which are verloaded for all matrix types, are the row
concatenation operator “;” and the column concatenation operator “,”. These two operators
perform the concatenation operation when used in a matrix context, that is, when they appear

between “[” and “]”. All the associated entries must be of the same



All the associated entries must be of the same type. Note that in the same matrix context a
white space means the same thing as “,” and a line feed means the same thing as ““;”. However,
this equivalence can lead to confusion when, for example, a space appears inside an entry, as

illustrated in the following:

i N
e

>> there A=[1,2,3,+5] with a unary + ®

> A=[1,2,3 +5]

A =

>» %here A=[1,2,3%5] with a binary *
>> A=[1,2,3 *5]

A =
1 b 15

»> R=[A,0; 1,2,3,4]

Table 2.1 describes frequently used matrix functions that can be used to create special
matrices.

Table 2.1. A set of functions for creating matrices.

accumarray Construct array with accumulation

blkdiag Construct block diagonal matrix from input arguments
diag Create diagonal matrix or get diagonal elements of matrix
eye Identity matrix
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Logical O (false)

fregspace Frequency spacing for frequency response
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linspace Generate linearly spaced vector
logspace Generate logarithmically spaced vector
meshgrid Rectangular grid in 2-D and 3-D space
ndgrid Rectangular grid in N-D space

ones Create array of all ones

rand Uniformly distributed random numbers
true Logical 1 (true)

zeros Create array of all zeros

These matrix functions are illustrated in the following examples:

»>>» A= [eye(2,1), 3*ones(2,3); linspace(3,9,4); zeros(1,4)]

»» %$main diagonal of A as a row matrix
>>» d=diag(n)'

>>» %$builds a diagonal matrix

>>» B=diag(d)

>> %reshape wvector d
>> C=reshape(d,Z,2)
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The majority of Matlab functions are implemented in such a way that they accept matrix
arguments. Most of the time this is implemented by applying mathematical functions elementwise.
For example, the exponential function exp applied to a matrix returns the elementwise exponential
and differs from the important matrix exponential function exp.
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>>» %3 random matrix (uniform law)
*» R=rand(2,2):
»>» B=exp (A)

B =
| 1.8820 1.3211 !
| 1.1025 1.72789
| >» %square matrix exponential

>» B=expm (&)

BE =

1.9070 0.5046
0.17&7 1.7321

Jx >> |

Extraction, Insertion, and Deletion

To specify a set of matrix entries for the matrix A we use the syntax A(B) or A(B,C), where
B and C are numeric or boolean matrices that are used as indices. The interpretation of A(B) and
A(B,C) depends on whether it is on the left- or right-hand side of an assignment = if an assignment
is present.

If we have A(B) or A(B,C) on the left, and the right-hand side evaluates to a nonnull matrix,
then an assignment operation is performed. In that case the left member expression stands for a
submatrix description whose entries are replaced by the ones of the right matrix entries. Of course,
the right and left submatrices must have compatible sizes, that is, they must have the same size, or
the right-hand-side matrix must be a scalar.

If the right-hand-side expression evaluates to an empty matrix, then the operation is a
deletion operation. Entries of the left-hand-side matrix expression are deleted. Assignment or
deletion can change dynamically the size of the left-hand-side matrix.
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»>>» %assigns 1 to (2,4) entry of A
»»> clear ("R'):
>> A(Z,4)=1

»>» %assignment for changing a submatrix of A
> B([1,2]1,[1,2])=round(5*rand(2,2)})

>> %submatrix deletion
> A(:,[1 3]1) = []

A:
0
1
>> %:"” stands for all indices, here all the rows of A

> R(:,1)= 8

A =

® -

m




s =

>> %deletion, ‘“‘end” stands for the last index
> RAf(:,end)=[]

>>» A(:,end+1)=[4:;5]

When an expression A(B) or A(B,C) is not the left member of an assignment, then it stands
for a submatrix extraction and its evaluation builds a new matrix.

S S

$round integer part

A = round (10*rand(3,7))

$extracts a submatrix using row 1 and 3
%and the two last columns of 2

When B and C are boolean vectors and A is a numerical matrix, A(B) and A(B,C) specify
a submatrix of matrix A where the indices of the submatrix are those for which B and C take the
boolean value T. We shall see more on that in the section on boolean matrices.

Elementary Matrix Operations (page 23)



Table 2.2 contains common operators for matrix types and in particular numerical matrices.

If an operator is not defined for a given type, it can be overloaded. The operators in the
table are listed in increasing order of precedence. In each row of the table, operators share the same
precedence with left associativity except for the power operators, which are right associative.

Operators whose name starts with the dot symbol “.” generally stand for term-byterm
(elementwise) operations. For example, C=A.*B is the term-by-term multiplication of matrix A
and matrix B, which is the matrix C with entries C(i,j)=A(i,j)*B(i,}).

Table 2.2. Operator precedence.

| logical or

& logical and

~ logical not

==>=,<=,> <, <> ~= comparison operators

+,- binary addition and subtraction
+,- unary addition and subtraction
FoN <N R L\ “multiplications” and “divisions”
/\, **, ./\, Kk power

§ ) transpose

Parentheses ()
Transpose (."), power (.\), complex conjugate transpose ('), matrix power (")
Unary plus (+), unary minus (-), logical negation (~)

Multiplication (.*), right division (./), left division (.\), matrix multiplication (*), matrix
right division (/), matrix left division (\)

Addition (+), subtraction (-)
Colon operator (3)

Less than (<), less than or equal to (<=), greater than (>), greater than or equal to (>=),
equal to (==), not equal to (~=)

Element-wise AND (&)
Element-wise OR ()
Short-circuit AND (&&)
Short-circuit OR (][)



>>» %transpose ' and usual matrix product *
>>» A=(1:3) "*ones (1,3)

3 3

>> $multiplication tables: using a term-by-term product
»» A.¥A!

3

$term-by-term exponentiation to build

%a Vandermonde matrixz A(i, Jj) = t_i"j-1
t=(1:3)"'; m=size(t,1l): n=3;

>>» A=(t*ones(l,n+l)) . " (ocnes(m,1)*[0:n])




> A=[1,2:3,41:ib=[5:¢€1;
»>»> % \ for solving a linear system Ax=bh.
»» x = A \ b ; normi(A*x -b)

>> % underdetermined system: a solution with minimum norm is returned
»» Al=[A,zeros(2)]; x = A1 \ b

>> %overdetermined system: a least squared

»>» %solution is returned
>> Al=[A;A]; = = A1\ [b;7:;8]

Symbolic matrices and operations on them

In Matlab, you can set a symbolic matrix, i.e. the matrix which-elements are string type.
Remember! The string elements must be enclosed in double or single quotes.
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>> P1=[1 2; 3 4]

The Symbolic matrix can be added (the result of addition - Addition of numeric character
codes) and transpose:




I computer l

>» ¥ = double(5)

83 111 109 112 117 116 101 114

>> ischar (8)

>> c{l,1}="My ';

»>>» c{l,2}="home ';

>» c{l,3}="computer ';
> C

"My ' 'home ! 'computer '




>» clear
>>» syms =2 b o d
>» M=[a b; c d]

1
M =

[ a, bl
[ ¢ d]

>» sSyms =
>» f(x)=x

fix) =

>> P=f£([1 2;3 41)

[ 1, 2]
[ 3, 4]

>> M+P

ans =

+

a+ 1, b + 2]
felc+3, d+ 4] i

In addition, the operations of addition and multiplication can be carried out on the
individual elements of the symbolic matrix by using functions addf (a, b) and mulf (a, b):

j% 4%z

Solving systems of linear algebraic equations

The System of linear algebraic equations (SLAE) is the system of m equations with n
unknowns and has the form:



X +FapX, +..+aX, =0,
Ay X + 8y X, +.+ 3y, X, =Dy,

2n"*n

a, X +a.,X% +..+a, X =0b,

where x; — unknowns, ajj - coefficients of the unknowns, b; - free coefficients, i=1...m,
j=1..n.

This system can be described by using the matrix: A-x=Db, A —the matrix of coefficients
of the unknown or the matrix of the system; x — vector of unknown; b — the vector of free members
or the vector of the right sides.

The Solution of the system or the set of solutions is the set of all solutions of the
system(X1,X2,...,Xn).

/ Task 2.1. (ctp 56) \

Solve the SLAE using Cramer's rule.

2X, + X, —5%X; +X, =8
X, —3X, —6%, =9
2X, — X3 +2X, =-5

\ X, +4X, —7X; +6x, =0 /

Cramer's rule. The system of n linear equations for n unknowns, represented in the matrix
multiplication form as follows: A-x=b

where the n x n matrix A has a nonzero determinant, and the vector X =(x,,...,X,)" Then

the theorem states that in this case the system has a unique solution, whose individual values for
the unknowns are given by:

X =—,
A

where A - determinant of the matrix A; A, - determinant of the matrix Ai, where A; is the
matrix formed by replacing the i-th column of A by the column vector b.

The text of the script file with the solution by Cramer's rule:
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1
2
3
4
5
6
7
8
5

10
11
12
13

o

Cramer.m

o+

fthe coefficient matrix
- A=[2 1 -51; 1 -3 0 —-&; 02 -1 2; 1 4 -7 6]
= b=[8; 9; -5; 0]; %Vector of free cosfficients
= 2i=a; Al1(:,1)=b; %The first auxiliary matrix
= R2=Rn; A2(:,2)=b; %The second auxiliary matrix
= A3=A; A3(:,3)=b; %The third auxiliary matrix
= R4=A; A4 (:,4)=b; %The fourth auxiliary matrix
= D=det (A} ; $Main determinant

fDeterminants auxiliary matrix:
- d{l)=det (Al); d(2)=det (RZ);
- d(3)=det (A3); d(4)=det (R4):
- x=d/D %The vector of unknowns

- P=R*x'-b %Checking
|

m

Command Window

»>>» Cramer

3.0000 -4 .0000 -1.0000 1.0000

1.0e-14 *

—-0.0888
0.2665

m




