
7.  Optimization: What Is the Best…? 

Why? How? 

This final chapter is about achieving the best result, obtaining the maximum gain, finding the 

optimal outcome. Thus, this chapter is about optimization—an especially interesting subject 

because finding an optimum result may be difficult, and at times even impossible. Our 

experience with finding maxima and minima in calculus suggests that we can often find a point 

where the derivative of a function vanishes and an extreme value exists. But in engineering 

design and in life generally, we often have to “satisfice,” that is, in the word of Herbert A. 

Simon, be satisfied with an acceptable outcome, rather than an optimal one. Here, however, we 

will focus on modeling the ways we seek optimal solutions. In so doing, we will see that the 

formulation of an optimization problem depends strongly on how we express the objective 

function whose extreme values we want and the constraints that limit the values that our 

variables may assume. 

Much of the work on finding optimal results derives from an interest in making good decisions. 

Many of the ideas about formulating optimization problems emerged during and after World 

War II, when a compelling need to make the very best use of scarce military and economic 

resources translated in turn into a need to be able to formulate andmake the best decisions about 

using those resources. Thus, with improved decision making as the theme, we will also present 

(in Section 9.4) a method of choosing the best of an available set of alternatives that can be used 

in a variety of settings.  

We will close with a miscellany of interesting, “practical” optimization problems. 

7.1. Continuous Optimization Modeling 

Find? How? 

We start with a basic minimization problem whose solution is found using elementary calculus. 

Suppose that we want to find the minimum values of the objective function 

𝑈(𝑥) =
𝑥2

2
− 𝑥,                                             (7.1) 

which we have drawn in Figure 7.1. That picture of the objective function U(x)—so called 

because we set our objective as finding its extreme value— is a parabolic function of x, as the 

algebraic form of eq. (7.1) confirms. 

Thus, it has only a single minimum value, called the global minimum. The value of x at which 

this global minimum is found is determined by setting the first derivative of U(x) to zero: 

𝑑𝑈(𝑥)

𝑑𝑥
= 𝑥 − 1 = 0,                                             (7.2) 

from which it follows that the minimum value of U(x) occurs when xmin = 1 and is 



𝑈𝑚𝑖𝑛 = 𝑈(𝑥𝑚𝑖𝑛) = −
1

2
.                                   (7.3) 

 

Figure 7.1 The objective function U(x) = x2/2 − x plotted over the unrestricted range of – ∞≤ x 

≤+∞. The minimum value of the objective function, Umin =−1/2, occurs at xmin = 1. 

We also note from eq. (7.2) that the slope of U(x) increases monotonically as x goes 

from−∞to+∞, which means that U(x) itself can have only one flat spot.We can confirmthis by 

calculating the rate of change or derivative of the slope, 

𝑑2𝑈(𝑥)

𝑑𝑥2
= 1,                                           (7.4) 

which is always positive. Thus, there is only one minimum, and it is a global minimum. In fact, 

we can go a step further and identify the minimum value of eq. (7.3) as an unconstrained 

minimum because we did not constrain or limit the values that the variable x could assume. 

Assume? How? 

Suppose we did impose a constraint, say of the form x ≤ x0, which requires the independent 

variable, x, to always be less than or equal to a given constant, x0. This means that search for the 

minimum of U(x) is limited to the admissible values of x: x ≤ x0.We can visualize a procedure for 

implementing this constraint as putting a line on the same graph as the curve, U(x), and then 

“moving” this line to different values of x0, as shown in Figure 7.2. The constraint then shows as 

the set of lines, x01 <x02 <x03 so we can now briefly consider the three problems of determining 

the minimum values of U(x) with x ≤ x0i , i = 1, 2, 3. In the first case, i = 1, the admissible range 

of x is so restricted that the constrained minimum value  



 

Figure 7.2. The objective function U(x) = x2/2 − x plotted together with three constraints that 

restrict the range of admissible values: the set of lines, x01 < x02 < x03. These lines allow us to 

consider the three problems of determining the minimum values of U(x) with x ≤ x0i , i = 1, 2, 3. 

of U(x) is apparently significantly greater than the unconstrained minimum of eq. (7.3). For 

example, if x01 =−3, the corresponding constrained minimum is U(−3) = 7.5. As the constraint 

“moves” further to the right (i = 2, 3), we approach and then go through the unconstrained 

minimum. Thus, the range of feasible solutions for the minimum of U(x) may include the 

unconstrained minimum, Umin—or it may not—depending on just where the constraint 

boundaries happen to be. 

The constraints so far imposed are inequality constraints, x ≤ x0, that bound the range of feasible 

values at the upper end by the equality, x = x0, and include the interior region, x < x0.Wemight 

have posed only a simple equality constraint, x = x0, in which case we would have found a 

(highly) constrained minimum U(x0). 

If our objective function were only slightly more complicated, the search for extreme points 

would become significantly more complicated. Consider the objective function 

𝑈(𝑥) = sin 𝑥,                                             (7.5) 

This elementary function could have, depending on the limits placed on the range of admissible 

values of x, an infinite number of maxima and of minima, or a constrained extremum somewhere 

between the two. The point of this seemingly trivial example is simple. Characterizing and 

finding the extrema can be complicated even when the objective function is well known and its 

properties well understood. 

Why? 

The objective functions (7.1) and (7.5) have only a single variable. However, multi-dimensional 

optimization problems are almost always the norm in engineering practice because engineered 



devices and processes rarely, if ever, depend only on a single variable. One simple example can 

be found at the local post office, where postal regulations typically stipulate that the rectangular 

package shown in Figure 7.3 can be mailed only if the sum of its girth (2x +2y ) and length (z ) 

do not exceed 84 in (2.14 m). What is the largest volume that such a rectangular package can 

enclose? 

The objective function is the package’s volume, 

𝑉(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧,                                      (7.6) 

Assume? 

where x and y are the two smaller dimensions whose sum comprises the package’s girth, and the 

length, z, is its longest dimension. We assume that these three dimensions are positive real 

numbers (i.e., x > 0, y > 0, z > 0). 

The constraint on the package dimensions stemming from the postal regulations can be written 

as: 

2𝑥 + 2𝑦 +    𝑧   ≤ 84,                             (7.7) 

     girth        length 

Since we seek the largest possible volume, this inequality constraint on the package dimensions 

can be expressed as an equality constraint: 

2𝑥 + 2𝑦 + 𝑧 = 84.                          (7.8) 

How? 

Thus, the volume maximization problem is expressed as the objective function (7.6) to be 

maximized, subject to the equality constraint (7.8). Although the problem is formulated in three 

dimensions, we can use the equality constraint to eliminate one variable, say the length, z , so 

that the objective function becomes: 

𝑉(𝑥, 𝑦) = 𝑥𝑦(84 − 2𝑥 − 2𝑦) = 84𝑥𝑦 − 2𝑥2𝑦 − 2𝑥𝑦2.                             (7.9) 

Now we want to find the maximum value of V(x, y) as a function of x and y. As we recall from 

calculus, the necessary condition that V(x, y) takes on an extreme value is: 

𝜕𝑉(𝑥, 𝑦)

𝜕𝑥
= 84𝑦 − 4𝑥𝑦 − 2𝑦2 = 2𝑦(42 − 2𝑥 − 𝑦) = 0,             (7.10𝑎) 

𝜕𝑉(𝑥, 𝑦)

𝜕𝑦
= 84𝑥 − 2𝑥2 − 4𝑥𝑦 = 2𝑥(42 − 𝑥 − 2𝑦) = 0.             (7.10𝑏) 



Equations (7.10a–b) can be reduced to a pair of linear algebraic equations whose non-trivial 

solution can be found (x = y = 14 in) to determine the corresponding package volume, V = 5488 

in3. This volume can be confirmed to be a maximum. 

The package problem, albeit multi-dimensional, was still relatively simple because its inequality 

constraint could logically and appropriately be reduced to an equality constraint that could, in 

turn, be used to reduce the dimensionality of the problem. Then we found the maximum volume 

of the package by applying standard calculus tools and seemingly without any further reference 

to constraints. Consider for a moment the problem of finding the minimum of the following 

objective function: 

𝑈(𝑥, 𝑦) = 𝑥2 + 2(𝑥 − 𝑦)2 + 3𝑦2 − 11𝑦.                                  (7.11) 

Find? 

We show a three-dimensional rendering of this parabolic surface in Figure 7.3. It has an 

unconstrained minimum at the point (x =1, y =1.5), where Umin =−8.25. What happens if an 

equality constraint is imposed? That is, in the style and terminology of the field of operations 

research, suppose that we want to find the 

minimum of    𝑈(𝑥, 𝑦) = 𝑥2 + 2(𝑥 − 𝑦)2 + 3𝑦2 − 11𝑦,               (7.12) 

subject to         𝑥 + 𝑦 = 3. 

We could again use standard calculus techniques to show that the constrained minimum occurs 

at the point (x = 31/24, y = 41/24), where Umin =−385/48 . Note that the minimum is located on 

the boundary plane where the constraint intersects U(x, y), that is, at a point such that x + y = 

31/24 + 41/24 = 72/24 = 3. If the equality constraint of eq. (7.12) was replaced with the (strict) 

inequality constraint x +y < 3, we would find that the minimum sought lies inside the 

intersecting boundary plane. 

 



Figure 7.3 The objective function U(x,y) =x2 +2(x −y)2 +3y2 −11y “plotted” in three dimensions, 

along with the plane x +y =3 that could form the boundary of an equality constraint or of a 

corresponding inequality constraint. 

 

7.2. Optimization with Linear Programming 

The section just completed showed that the search for an optimum or extreme value of a function 

subject to an inequality constraint requires a search over the interior of the region defined by the 

constraint boundary. Thus, as shown in Figure 7.2, we must search for all values of x ≤ x0i . This 

is true more generally because an objective function may fluctuate in value, perhaps like the 

sinusoid of eq. (7.5). Consider, for example, the sketch of a generic objective function in Figure 

7.4. The good news is that the standard methods of calculus are usually adequate for searches 

where the objective functions are relatively tractable. The bad news is that, in such cases, we 

generally need to search the entire domain, x04 ≤x ≤x05 to find global optima. However, there is a 

very important class of problems where a search of the interior region is not required because the 

optimum point must occur on one of the constraint boundaries. This class of problems is made 

up of objective functions that are linear functions of the independent variables, and their 

optimization searches are known as linear programming (LP). 

 

Figure 7.4 A generic sketch of an objective function that shows some variation or fluctuation, 

with peaks and valleys in the domain of interest. The bad news is that here we do need to search 

the entire domain, x04 ≤x ≤x05, to find a global optimum. The good news is that the standard 

methods of calculus are usually adequate for searches if the objective functions are relatively 

straightforward. 

Suppose we want to find (see Figure 7.5) the 

minimum of    𝑈(𝑥, 𝑦) = 𝑚𝑥 + 𝑏,                                   (7.13) 

subject to         𝑥1 ≤ 𝑥 ≤ 𝑥2. 

Now, the minimum of U(x) must lie within the admissible range of values of x, defined by the 

two inequality constraints just given. Geometry, however, tells us that the optimal values of the 

linear objective function, 



 

Figure 7.5 A generic linear programming problem which is characterized by an objective 

function that is a linear function of the variable x. Note that the optimal values, both maxima and 

minima, for m > 0or m < 0, occur at points where the objective function intersects the constraint 

boundaries, that is, on the constraint boundaries themselves. 

U(x) = mx +b, occur at points where U(x) intersects one of the two constraint boundaries. For m 

> 0, Umin must occur at x = x1 and Umax must occur at x =x2. Thus, for this linear programming 

problem, we can find the optima of U(x) without searching the interior region defined by the 

constraint boundaries: We know a priori that the optima must occur on the constraint 

boundaries. In fact, it can be shown that the optimum solutions for LP problems are found by 

searching only at the boundary intersections or vertices. The search problem is thus “reduced” to 

solving for a set of intersection points defined by various linear equations. 

Is requiring an objective function to be linear too much of a simplification? Are LP problems 

useful, or a cute mathematical artifact? In fact, LP is extremely important and useful, and is one 

of the cornerstones of the field of operations research. The field of operations research (OR)—

pronounced “oh r”—developed first in Britain and then in the United States during World War II 

when there was a compelling interest in optimizing scarce military and economic resources. 

Since that time, OR has been applied to both military and civil problems, including in the latter a 

wide variety of commercial enterprises, allocating medical resources, managing traffic, and 

modeling the criminal justice system. The hallmark of LP is the determination of optimal results 

for single objectives: minimizing transportation costs, optimizing the product mix, maximizing 

hospital bed availability, minimizing the number of highway toll attendants when traffic is slack, 

or minimizing drivers’ waiting times when traffic is heavy. 

7.2.1. Maximizing Profitinthe Furniture Business 

Suppose that we are in the furniture business and making desks and tables that are made of oak 

and maple. Desks and tables consume different amounts of lumber: a desk requires 6 board-feet 

(bft) each of oak and maple, while a table requires 3 bft of oak and 9 bft of maple. The local 

lumber mill will supply up to 1200 bft of oak at $6.00/bft and up to 1800 bft of maple at 

$4.00/bft. The market for desks and tables is such that they can be sold for, respectively, $90.00 

and $84.00. How many desks and how many tables should we make to maximize our profit?  

We will soon find out (see eq. (7.16)) that under the conditions assigned here, the profits earned 

by selling a desk are the same as the profits earned by selling a table, namely, $30.00 each. 



Suppose that this was not the case and that the profit in selling a table was only $18.00. Then it 

might seem reasonable to first make only desks to maximize profit—except that we will run out 

of oak after only 200 desks are made and have an excess, unusable supply of maple left over. It 

will also turn out that the profit earned in this case, $6000, is not the maximum profit possible. 

This problem is interesting because the constraints supply limits on the available materials, 

which means in turn that we must make trade-offs between desks and tables to maximize our 

overall profit.  

We formulate this profit optimization problem as an LP problem, meaning that we build an 

objective function—the difference between sales income and cost of manufacture—and the 

relevant operating constraints. If x1 is the number of desks made, and x2 the number of tables, the 

income derived by selling desks and tables is: 

income =  ($/desk)𝑥1  +  ($/table)𝑥2 =  $(90𝑥1 +  84𝑥2).              (7.14) 

 

 

 

 

7.2.2 On Linear Programming and Extensions 

 

7.2.3 On Definingand Assessing Optima 

 

 

 

 

 


