
6. Applying Vibration Models 

 

As we noted in Lecture 5, vibration is omnipresent in our lives, both in people-made and living 

objects and devices. Vibration is also complex. For example, sound is modeled as a sum of 

harmonics, of vibrations with different periods or natural frequencies. Certainly buildings and 

cars and airplanes and dentists’ drills vibrate in complex, multi-modal ways as well, with a lot of 

modes having different frequencies and different amplitudes. Given that life seems so complex, 

is it worth doing elementary vibration modeling? Yes, it is, as so eloquently said by one of the 

great pioneers of the field of vibration, Sir John William Strutt, third Baron Rayleigh, known 

quite widely as Lord Rayleigh: 

The material systems, with whose vibrations Acoustics is concerned, are usually of considerable 

complication, and are susceptible of very various modes of vibration, any or all of which may 

coexist at any particular moment. Indeed in some of the most important musical instruments, as 

strings and organ-pipes, the number of independent modes is theoretically infinite, and the 

consideration of several of them is essential to the most practical questions relating to the nature 

of the consonant chords. Cases, however, often present themselves, in which one mode is of 

paramount importance; and even if this were not so, it would still be proper to commence the 

consideration of the general problem with the simplest case—that of one degree of freedom. It 

need not be supposed that the mode treated of is the only one possible, because so long as 

vibrations of other modes do not occur their possibility under other circumstances is of no 

moment. 

Why? 

Guided by Lord Rayleigh’s insight, we will continue to limit our discussion of models of 

vibratory behavior to those having but a single degree of freedom. We will focus on two 

important elements. First, we develop the mechanical-electrical analogy, wherein we make more 

explicit the several commonalities of vibration behavior that we had identified in Lecture 5. In 

our second focus, we note a dividing line that is extraordinarily powerful for modeling vibration: 

some phenomena seem to go on indefinitely, quite on their own, while others appear as responses 

to repetitive stimulation. Thus far, our models have been in the first category, called free or 

unforced vibration, referring to phenomena that continue after some initial jolt gets themgoing. It 

includes the vibration of struck piano strings and the tides of the seas. The second category that 

we take up in this chapter, forced vibration, occurs when there is a persistent, repetitive input, 

such as the kind an air conditioning system imparts to the building it cools or an engine imparts 

to the vehicle it powers. 

 

6.1. The Spring–Mass Oscillator–II: Extensions and Analogies 

How? 



In Lecture 5.3 we noted that the pendulum could be modeled as a spring-mass oscillator, a 

model we now develop by applying once again the force balance embodied in Newton’s second 

law. We show such a spring-mass system in Figure 6.1. Newton’s law states that (see Lecture 5) 

the motion of the oscillator’s mass, m, is governed by 

net force = 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
.                               (6.1) 

Given? 

Two forces are shown acting on the mass: a specified applied force, F(t ), and a force exerted by 

the spring. The spring is an ideal elastic spring that has no mass and dissipates no energy. Its 

attachment points at each end are called nodes. 

 

Figure 6.1 An elementary spring-mass system the shows an ideal spring 

exerting a restoring force on a mass, m, as does a specified applied force, F(t). The 

spring’s stiffness is k, and the displacement or movement of the mass to which the 

spring’s right end is attached is x(t). 

The left node of the spring in Figure 6.1 is attached to a fixed point, say on a wall, while the right 

node is attached to a mass whose movement, x(t ), is the system’s single degree of freedom. 

Moreover, the spring always exerts a restoring force on the node or mass that returns the spring 

to its original, unextended position. Thus, if moved a positive distance to the right, x(t ), the 

spring pulls the node back to the left; if the spring is compressed a distance to the left, −x(t ), it 

pushes the node back to the right. The magnitude of the spring force is given by 

𝐹spring = 𝑘𝑥(𝑡).                                        (6.2) 

The net force on the mass is the difference between the applied and the spring forces, 

net force = 𝐹(𝑡) − 𝐹spring.                     (6.3) 

so that the equation of motion is found by combining eqs. (6.1), (6.2), and (6.3): 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+  𝑘𝑥(𝑡) = 𝐹(𝑡).                       (6.4) 



Equation (6.4) was already introduced as an analog of the pendulum in Lecture 5, where we 

made the argument that the gravitational pull on the pendulum mass exerted a spring-like force 

on the pendulum. For free, unforced vibration, there is no applied force, and the governing 

equation is 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+  𝑘𝑥(𝑡) = 0.                          (6.5) 

If we introduce a scaling factor, ω0, to make the time dimensionless, as we did in eq. (5.10), the 

oscillator equation (6.5) becomes 

𝑚𝜔0
2

𝑑2𝑥(𝜏)

𝑑𝜏2
+  𝑘𝑥(𝜏) = 0.                          (6.6) 

which suggests that the scaling factor for the spring-mass system is 

𝜔0 = √
𝑘

𝑚
.                                          (6.7) 

Equation (6.7) can be confirmed to be dimensionally correct and, as for the pendulum, ω0 can be 

identified as the circular frequency of the spring-mass oscillator. The circular frequency can be 

related to the frequency and the period: 

𝑓0 =
1

𝑇0
=

𝜔0

2𝜋
=

1

2𝜋
√

𝑘

𝑚
.                               (6.8) 

Again, both f0 and ω0 have the physical dimensions of (time)−1, but the units of f0 are number of 

cycles per unit time, while those of ω0 are radians per unit time. 

Use? Predict? 

Equation (6.7) is actually far more important than its simple appearance suggests. It provides a 

fundamental paradigm for thinking about the vibration of systems: The natural frequency of the 

oscillator is proportional to the square root of the stiffness-to-mass ratio. Thus, natural 

frequencies increase (and periods decrease) with increasing stiffness, k, while natural frequencies 

decrease (and periods increase) with increasing mass, m. We will refer back to this paradigm 

often, and we will also see that it captures a very useful design objective. 

Why? How? 

We now extend the spring-mass model to incorporate non-ideal, dissipative behavior. We do this 

by attaching to the mass a damping or dissipative element, sometimes called a dashpot or 

damper, which exerts a restoring force proportional to the speed at which the element is 

extended or compressed: 



𝐹damper = 𝑐𝑥̇(𝑡).                               (6.9) 

The damper acts in parallel with the spring, as shown in Figure 6.2, so that the net force exerted 

on the mass is 

net force = 𝐹(𝑡) − 𝐹spring − 𝐹damper,             (6.10) 

and the corresponding equation of motion for a spring-mass-damp system is 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑐𝑥̇(𝑡) +  𝑘𝑥(𝑡) = 𝐹(𝑡).                       (6.11) 

 

Figure 6.2 An elementary spring-mass-damper system that shows the ideal spring (of stiffness, k) 

exerting a force on a mass, m, the specified applied force, F (t ), and a viscous damping element 

that exerts a restoring force that is proportional to the speed, 𝑥̇(𝑡), at which the mass moves. 

This result is very similar to the corresponding result for the damped pendulum, eq. (5.27), save 

for the facts that the present result includes a forcing function, F(t ), and its spring term is 

(already) linear. 

 

6.1.1. Restoring and Dissipative Forces and Elements 

Equation (6.11) offers the prospect of generalizing the energy ideas of Lecture 5 in rather broad 

terms. The spring-mass-damper system is itself a paradigm for a very broad range of vibration 

models— physical, biological, chemical, and so on. Thus, we will not only be able to identify a 

system’s mass, but we will also be able to identify a spring-like element with a stiffness, such as 

the gravitational pull of the pendulum, and a dissipative element with a damping constant, much 

like the shock absorber of an auto suspension (see Section 6.3). There is one salient feature 

common to each of these elements that will be true no matter what physical, biological, chemical 

or other model we are analyzing: Each element either stores energy or dissipates energy. Two 

elements store energy in the spring-mass-damper: the mass, which stores kinetic energy, 



𝐾𝐸 =
1

2
𝑚(𝑥̇(𝑡))2,                                  (6.12) 

and the spring, which stores potential energy, 

𝑃𝐸 =
1

2
𝑘(𝑥(𝑡))2.                                   (6.13) 

In an ideal system, where there is no damping, the spring and the mass exchange energy from 

potential to kinetic to potential, and so on indefinitely. Thus, the two storage elements exchange 

their forms of energy repetitively as the ideal spring-mass system vibrates. 

The damping element dissipates energy according to (see eq. (5.29)) 

𝑑𝐸(𝑡)

𝑑𝑡
= −

1

2
𝑐(𝑥̇(𝑡))2.                                   (6.14) 

As a spring-mass-damper vibrates or oscillates, energy is no longer simply passed back and forth 

between the spring and the mass. Rather, the damping element draws energy out of the system 

and dissipates it as wasted power or energy, typically through the heat transfer we associate with 

frictional devices. 

Again, these characterizations turn out to be useful for helping us analyze systems or phenomena 

as we try to build models of their behavior. 

6.1.2. Electric Circuits and the Electrical-Mechanical Analogy 

Electric circuits and their elements offer a parallel paradigm for analyzing oscillatory behavior. 

Consider the elementary, parallel RLCcircuit shown in Figure 6.3. It has three ideal elements 

connected in parallel that are driven by a current source that produces a current isource(t ). The 

three elements are idealized in the same way that themass of a spring-mass systemis perfectly 

rigid and that its spring is mass-less. The first element we introduce is the ideal capacitor that, 

when discharged, transmits a voltage drop, V(t), that is proportional to the electric charge, q(t), 

stored on two plates separated 

 

Figure 6.3 A parallel RLC circuit that has a current source as its driver. The elements are the 

capacitor of capacitance, C, the inductor with inductance, L, and the resistor with resistance, R. 

The current source provides a current of magnitude, isource(t). 



by an insulator: 

𝑉(𝑡) =
𝑞(𝑡)

𝐶
.                                         (6.15) 

The constant, C, is the capacitance of the capacitor and its units are farads, named after the 

British chemist and physicist Michael Faraday (1791–1867). The capacitor stores energy in an 

amount proportional to the square of the voltage across it: 

𝐸𝐶 =
1

2
𝐶(𝑉(𝑡))2.                                    (6.16) 

Notwithstanding the elegant simplicity of eqs. (6.15) and (6.16), electrical circuit models are 

generally cast in terms of the time rate of change of charge, called the current, because it is hard 

to measure charge: 

𝑖(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
.                                             (6.17) 

This form of the capacitor model is an element that carries a current, iC(t), that is directly 

proportional to the time rate of change of the voltage drop, V(t), across the capacitor: 

𝑖𝐶 = 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
.                                             (6.18) 

The second element we introduce is the inductor, which is a coil that builds up a magnetic field 

rate when a current flows through it. The magnetic field causes a voltage drop across the inductor 

that is proportional to the time rate of change of the current flowing through it: 

𝑑𝑖𝐿

𝑑𝑡
=

𝑉(𝑡)

𝐿
.                                                 (6.19) 

The constant, L, is the inductance, which is measured in henrys, named after the American 

physicist Joseph Henry (1797–1878). Now we integrate eq. (6.19) with respect to time, 

𝑖𝐿 =
1

𝐿
∫ 𝑉(𝑡′)𝑑𝑡′

𝑡

−∞

,                                   (6.20) 

where t′ is a dummy variable of integration in the integral in eq. (6.20). The inductor stores 

energy in an amount proportional to the square of the current flowing through it: 

𝐸𝐿 =
1

2
𝐿(𝑖𝐿(𝑡))2 =

1

2𝐿
(∫ 𝑉(𝑡′)𝑑𝑡′

𝑡

−∞

)

2

.             (6.21) 

The third element is the resistor. It impedes (or resists) the flow of charge in proportion to the 

time rate of change of charge, or the current. The resulting voltage drop across the resistor is 

directly proportional to the current flowing through it: 



𝑖𝑅 =
𝑉(𝑡)

𝑅
,                               (6.22) 

where the constant, R, is the resistance, which ismeasured in ohms, named after the German 

physicist Georg Simon Ohm (1787–1854). The resistor, like itsmechanical counterpart, the 

dashpot, dissipates energy by throwing it off as waste heat or power. Thus, in the context of 

Section 8.1.1, we can regard the resistor and the dashpot as similar dissipative elements, and the 

capacitor (like themass) and the inductor (like the spring) as elements that store energy. 

Can we draw an analogy between the electrical elements just introduced and the spring-mass-

damper system described earlier in this section? Yes. In fact, there are two well-known 

electrical-mechanical analogies. The choice of analogy is to some extent a matter of taste, and 

we describe here the one we prefer; this book’s first edition presented the other. 

We first invoke Gustav Robert Kirchhoff ’s (1824–1887) current law (KCL) to derive the 

governing equations for the parallel RLC circuit in Figure 6.3. The KCL states that the time rate 

of change of the electrical charge flowing into or out of a node or connection in a circuit must be 

zero. In other words, a node cannot accumulate charge. Expressed mathematically, the KCL 

states that  

𝑑𝑞node(𝑡)

𝑑𝑡
= ∑ 𝑖𝑛(𝑡)

𝑁

𝑛=1

= 0,                                (6.23) 

where the in(t) are the currents taken as positive flowing into the node through the N elements 

connected at that node. Thus, looking at the indicated currents going into and out of either of the 

two nodes in Figure 6.3, we see that 

∑ 𝑖𝑛(𝑡)

𝑁

𝑛=1

= 𝑖source(𝑡) − 𝑖𝐶 − 𝑖𝐿 − 𝑖𝑅 = 0,      (6.24) 

where, again, isource(t) is the current provided by the current source in the circuit, and the 

remaining terms are the currents flowing through the capacitor, the inductor, and the resistor, 

respectively. Note that eq. (6.24) looks remarkably like a force balance equation [e.g., eqs. (6.3) 

and (6.10)]! We now replace the currents in the elements by their respective constitutive 

equations (6.18), (6.20), and (6.22), that describe how the current flows through each relates to 

the voltage across each. Then eq. (6.24) becomes: 

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+

𝑉(𝑡)

𝑅
+

1

𝐿
∫ 𝑉(𝑡′)𝑑𝑡′

𝑡

−∞

= 𝑖source(𝑡).           (6.25) 

If we differentiate eq. (6.25) once with respect to time, we find: 

𝐶
𝑑2𝑉(𝑡)

𝑑𝑡2
+

1

𝑅
 
𝑑𝑉(𝑡)

𝑑𝑡
 +

1

𝐿
𝑉(𝑡) =

𝑑𝑖source(𝑡)

𝑑𝑡
.         (6.26) 



Use? Predict? 

Equation (6.26) is a second-order, linear differential equationwith constant coefficients. Its 

dimensions can be shown to be consistent and correct (see Problem 8.4). When solved, it yields 

the common voltage across the three parallel elements, from which both the currents through 

each and the energy stored by the capacitor and inductor can be calculated [using eqs. (6.18), 

(6.20), and (6.22)].  

What is most noteworthy about eq. (6.26) is its uncanny resemblance to eq. (6.11), the 

equilibrium equation for the spring-mass-damper. It is most tempting to conclude that voltage is 

analogous to displacement, and that 

𝐶~𝑚,   
1

𝑅
~𝑐,   

1

𝐿
~𝑘.                               (6.27) 

Some further expressions of this electrical-mechanical analogy are shown in Table 6.1. The 

analogy is interesting and useful. Consider, for example, the fact that we described the RLC 

circuit in Figure 6.3 as a parallel circuit. In the spring-mass-damper of Figure 6.2, we specifically 

inserted the dashpot as an element in parallel with the spring. The mass can also be said to be in 

parallel with the spring and the dashpot since it shares their common endpoint displacement. 

Further, the analogy extends into the context of system characterization: A system can be said to 

be very stiff if k is large or its inductance, L, is small, or as having a large effective mass or 

inertia if either its mass, m, or its capacitance, C, is large. 

Now, to complete this introduction to the electrical-mechanical analogy, we repeat the thought 

that the choice of analogies is a matter of taste. The analogy presented here allows us to draw 

distinctions between behaviors that go through elements (force and current), and those measured 

across elements (displacement and voltage). The analogy also enables us to identify Newton’s 

second law and Kirchhoff ’s current law as similar expressions of balance (force or current) or 

conservation (momentum or charge). The other analogy identifies force with voltage and 

displacement with charge. It, therefore, does offer some more immediately recognizable appeal 

because the resemblance of basic equations is even more obvious. 

 

Table 6.1 Elements of one electrical-mechanical analogy. 

Mechanical Electrical 

Momentum (∼ Speed): mv(t) 

Force (∼ d(Momentum)/dt ): 

𝐹 = 𝑚
𝑑𝑣(𝑡)

𝑑𝑡
 

Displacement: x(t) 

Charge: q(t ) 

Current(∼ d: (Charge)/dt ): 

𝑖(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
 

Voltage: V(t) 

Kirchhoff ’s Current Law: 



Newton’s 2nd @Massless Node: 

∑ 𝐹𝑛(𝑡)

𝑁

𝑛=1

=
𝑑(𝑚𝑣node(𝑡))

𝑑𝑡
= 0 

𝐹spring = 𝑘 ∫ 𝑣(𝑡′)𝑑𝑡′
𝑡

−∞

= 𝑘𝑥(𝑡) 

𝐹damper = 𝑐𝑣(𝑡) = 𝑐𝑥̇(𝑡) 

𝐹net = 𝑚𝑣̇(𝑡) = 𝑚𝑥̈(𝑡) 

𝑃𝐸 =
1

2
𝑘(𝑥(𝑡))

2
 

𝐾𝐸 =
1

2
𝑚(𝑥̇(𝑡))2 

𝑑𝑞node(𝑡)

𝑑𝑡
= ∑ 𝑖𝑛(𝑡)

𝑁

𝑛=1

= 0 

𝑖𝐿 =
1

𝐿
∫ 𝑉(𝑡′)𝑑𝑡′

𝑡

−∞

 

𝑖𝑅 =
1

𝑅
𝑉(𝑡) 

𝑖𝐶 = 𝐶𝑉̇(𝑡) 

𝐸𝐶 =
1

2
𝐶(𝑉(𝑡))2 

𝐸𝐿 =
1

2
𝐿(𝑖𝐿(𝑡))2 =

1

2𝐿
(𝑞̇(𝑡))2 

However, the preferred analogy described above is more consistent with physical principles and 

conforms better to our intuition of how such systems behave. 

 

6.2. The Fundamental Period of a Tall, Slender Building 

 

 

 

 

 

Problems 

6.1. We experience the pull of gravity as constant and not dependent on position. How does it 

come to be interpreted as exerting a spring force that is linearly proportional to position? (Hint: 

Think about the equation of motion in which the relevant term appears.) 

6.2. Identify the fundamental physical dimensions of the spring stiffness, k, and the mass, m, and 

use them to determine the physical dimensions of ω0 for a spring-mass oscillator. 

6.3. Taking as fundamental the dimensions of current, I, as charge per unit time and voltage (or 

electromotive force), V, as (force × distance) per unit charge, determine the fundamental 

physical dimensions of the capacitance, C, the inductance, L and the resistance, R. 



6.4. Using the fundamental dimensions identified in Problem 6.3, confirm that eq. (6.26) is 

dimensionally consistent and correct. 

6.5. Using the fundamental dimensions identified in Problem 6.3, determine whether the energy 

expressions for EC and EL given inTable 6.1 are dimensionally correct. 

6.6. Determine the governing equation for the free oscillation of the voltage in a parallel LC 

circuit with ideal elements. 

6.7. Determine the natural frequency of free vibration and the period of the ideal parallel LC 

circuit of Problem 6.6. 

 


