
5. Modeling Free Vibration 

 

We now turn to modeling vibration, the behavior of something moving back and forth, to and 

fro, usually in an evident rhythmic pattern. Vibration not only occurs all around us, but within us 

as well, as noted in 1965 by a well-known British mechanical engineer, R. E. D. Bishop: 

After all, our hearts beat, our lungs oscillate, we shiver when we are cold, we sometimes snore, 

we can hear and speak because our eardrums and our larynges vibrate. The light waves which 

permit us to see entail vibration. We move by oscillating our legs. We cannot even say 

‘vibration’ properly without the tip of the tongue oscillating. And the matter does not end there—

far from it. Even the atoms of which we are constituted vibrate. 

Why? 

Other vibratory phenomena that come to mind are pendulums, clocks, conveyor belts, machines 

and engines, buildings subjected to a broad array of moving forces (e.g., pedestrians, air 

conditioners, elevators, wind, earthquakes), as well as tides and seasons. Clearly, we could go 

on. But the more interesting questions for us are: Do these diverse instances of vibration have 

anything in common? If so, what? How do we model their common features? 

We devote most of this chapter to modeling a well-known “golden oldie,” the swinging or 

vibrating pendulum. It provides a familiar platform upon which we can lay out a number of 

modeling strategies. Then we will provide a few examples of freely vibrating phenomena. We 

will also illustrate how the mathematics of free vibration can be used to model stability 

phenomena. In Lecture 6 we will provide some more examples and then go on to model forced 

vibration. 

5.1. The Freely-Vibrating Pendulum–I: Formulating a Model 

Given? 

We will now model the free vibration of a pendulum, starting with some experimental results 

and using dimensional analysis, some basic physics, and some basic mathematics (e.g., linearity, 

second-order differential equations) to model that motion. 

5.1.2. Some Experimental Results 

How? 

We started by building some very simple pendulums in the laboratory, each consisting of a lead-

filled wooden ball suspended from a stand by an ordinary piece of string. A basic schematic of 

the laboratory set-up is shown in Figure 5.1. The balls were initially held at rest at some angle, 

θ0, and then they were let go to swing back and forth until they all stopped moving. As each 

pendulum swung, we measured its period of free vibration, the time T0 it takes to swing through 

two complete arcs (from θ = θ0 to θ =−θ0 and back again). The periods of vibration were 

measured with photoelectric cells that were placed at the lowest point on the pendulum arc (θ = 

0) and were in turn connected to digital counters operating with a gated pulse. The counters were 

turned on by the first passing of the pendulum and then off again at the second passing, thus 

providing a direct read of one-half of the period T0. 



 

Figure 5.1. The geometry of a planar pendulum. Note that the origin of the coordinate system is 

located at the pendulum’s perigee, the lowest point of its arc. 

Table 5.1 The dependence of the period, T0, of a freely-vibrating pendulum on its initial 

amplitude of vibration, θ0. The mass is 390 gm and the string length is 276 cm. 

θ0 (deg) θ0 (rad) T0 measured (sec) (T0 measured)/(3.372) 

8.34 

13.18 

18.17 

23.31 

28.71 

33.92 

39.99 

46.62 

0.1456 

0.2300 

0.3171 

0.4068 

0.5011 

0.5920 

0.6980 

0.8137 

3.368 

3.368 

3.372 

3.372 

3.390 

3.400 

3.434 

3.462 

1.00 

1.00 

1.00 

1.00 

1.01 

1.01 

1.02 

1.03 

The experiments were done with two different masses (237 gm and 390 gm), each of which was 

hung from strings of two different lengths (276 cm and 226 cm). The experimental data thus 

obtained are shown in Tables 5.1 and 5.2; note that each data point shown represents the average 

of five measured values. Thus, the data presented result from a consistent, repeatable experiment. 

The data in Table 5.1, for the larger mass (390 gm) and the shorter string (276 cm), show how 

the period, T0, varies with different starting values of θ0. We see that the period varies with the 

initial starting angle, θ0, but the dependence is very weak and exceeds 1% only when θ0 ≥ 40˚. 

Table 5.2. The dependence of the period, T0, of a freely-vibrating pendulum on its length and on 

its mass. The data show a marked change with length, but virtually no change with mass. 

 m=237 gm m=390 gm 

l=226 cm 

l=276 cm 

3.044 sec 

3.350 sec 

3.058 sec 

3.372 sec 

The data in Table 5.2 summarize the periods across the four possible combinations of mass and 

length that were available for the pendulums used in this experiment. This data suggest that the 

period varies very little, if at all, with mass: increasing the mass by some 65%from237 gmto 390 

gm changes the period by a fraction of 1%. On the other hand, increasing the length by 22% 

from 226 cm to 276 cm increases the period by approximately 10%. Thus, the data suggest that 

the free motion of a vibrating pendulum is periodic, and that the period of vibration does not 

depend on the pendulum’s mass, but that it does depend on the pendulum’s length. 



5.1.2. Dimensional Analysis 

We will now apply some dimensional analysis results to formalize the results we obtained in the 

laboratory. In Lecture 2 we used the Buckingham Pi theorem to determine that the period of 

vibration, T0, of a pendulum was related to its length, l , and the gravitational acceleration, g [see 

the first of eq. (2.30)]: 

𝑇0 = 𝛱1√
𝑙

𝑔
.                                   (5.1) 

Valid? 

Note that the pendulum’s period does not depend on mass, a result supported by the data in 

Table 5.2, and that the constant, Π1 is dimensionless. We can determine the value of Π1 from the 

data given in Table 5.2. For the pendulum of length l = 276 cm, one measured value of the 

period is T0 = 3.372 sec, so that with g = 980 cm/sec/sec, 

Π1 =
3.372

√276/980
≅ 6.35 .                     (5.2) 

Is the number “6.35” in eq. (5.2) some new universal constant? Actually, no. Rather, it is an 

approximation of another well-known constant: 2π ≅6.28. Thus, substituting this judgment call 

about the constant into eq. (5.2) yields the final result,  

𝑇0 = 2𝜋√
𝑙

𝑔
.                                   (5.3) 

Table 5.3 Calculated values of the period, T0,of a freely-vibrating pendulum that provide support 

for the experimental data presented in Table 5.2. 

l(cm) T0(sec) 

226 

276 

3.02 

3.33 

Predict? Verified? 

We can use eq. (5.3) to predict values of the period to match the remaining values displayed in 

Table 5.2, as shown in Table 5.3. The calculated pre dictions and the experimental data agree to 

within less than 1.5%. Thus it seems that we have a pretty good model—determined from 

dimensional analysis and use of some experimental data—that works quite well and predicts the 

remaining experimental data, including both the period’ dependence on length and its 

independence of mass. We will confirm the model (5.3) again before we’re done with the 

pendulum. 

5.1.3. Equations of Motion 

How? 



We formulate the problem by writing the mathematical expression of a balance or conservation 

principle (see Lecture 1) from physics. The principle is Newton’s second law: The time rate of 

change of momentum is equal to the net force producing it; that momentum change is in the 

same direction as the net force. Newton’s second law is both a balance principle and a 

conservation principle: it reflects a balance of the forces acting on a particle or system, and it 

also reflects the conservation of momentum. Written as a balance principle, Newton’s second 

law in a plane is: 

∑ 𝐹𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
,                         (5.4𝑎) 

∑ 𝐹𝑦 = 𝑚
𝑑2𝑦

𝑑𝑡2
,                         (5.4𝑏) 

where x(t ) and y(t ) are the time-dependent coordinates of amass, m, acted on by net forces ∑Fx 

and ∑Fy, respectively.  

We want to apply Newton’s second law, commonly referred to as equations of equilibrium, to 

the pendulum depicted in Figure 5.1. The pendulum is simply a mass, m, attached to the end of a 

string of length, l .Its wings in a plane from an attachment point with coordinates (0, l) so that the 

origin of the coordinates coincides with the perigee or low point of the pendulum’s arc. The 

coordinates (x, y) of the pendulum mass can be written in terms of the string length and the angle 

θ between the string and the y-axis: 

𝑥(𝑡) = 𝑙 sin 𝜃 (𝑡),                              (5.5𝑎) 

𝑦(𝑡) = 𝑙(1 − cos 𝜃 (𝑡)),                   (5.5𝑏) 

In Figure 5.2 we show a free-body diagram (FBD) of the two forces that act on the mass: the 

tension in the string, T, and the weight, mg , which acts due to the pull of gravity. Then we can 

identify the net forces along the coordinates from the FBD, so that eqs. (5.4) can then be written 

as equations of motion: 

𝑚
𝑑2𝑥

𝑑𝑡2
= ∑ 𝐹𝑥 = −𝑇 sin 𝜃,                  (5.6𝑎) 

𝑚
𝑑2𝑦

𝑑𝑡2
= ∑ 𝐹𝑦 = 𝑇 cos 𝜃 − 𝑚𝑔.          (5.6𝑏) 



 

Figure 5.2 A free-body diagram (FBD) of the oscillating planar pendulum. It shows the two 

forces acting on the pendulum’s mass, m, the string tension, T , and the weight, mg, and their 

components in the radial and tangential directions.  

Improve? 

In principle, all we need to do now is integrate eqs. (5.6a–b) to find how the pendulum’s 

coordinates vary with time, from which we can then find out whatever else we might want to 

know about the pendulum. However life’s not that easy, for a number of reasons. First, we don’t 

know the tension in the string, T, so that the right-hand sides of both of eqs. (5.6a–b) are 

unknown. Second, since we have two equations with three unknowns— x(t ), y(t ), T—we are 

prompted to wonder how Newton’s second law would look if rewritten in radial (along the 

string) and tangential (to the pendulum’s arc) coordinates. In fact, those equations are 

∑ 𝐹radial = 𝑚𝑙 (
𝑑𝜃

𝑑𝑡
)

2

,                             (5.7𝑎) 

∑ 𝐹tangential = 𝑚𝑙
𝑑2𝜃

𝑑𝑡2
.                            (5.7𝑏) 

Equation (5.7a) clearly displays the familiar centripetal acceleration. If we sum the forces in the 

FBD of Figure 5.2 in the radial and tangential directions, we would find that 

𝑇 = 𝑚𝑙 (
𝑑𝜃

𝑑𝑡
)

2

+ 𝑚𝑔 cos 𝜃 ,                      (5.8𝑎) 

𝑚𝑙
𝑑2𝜃

𝑑𝑡2
+ 𝑚𝑔 sin 𝜃 = 0.                            (5.8𝑏) 

Equations (5.8a–b) show two equations for two dependent variables, the tension, T, and the 

angle, θ. Equation (5.8b) is a single equation with a single unknown, θ, so it can in principle be 

solved on its own, which thus determines the location of the mass [see also eqs. (5.5a–b)]. Then 

the tension, T, can be obtained directly by substituting the newly-found θ into eq. (5.8a). We also 

note that eqs. (5.8a–b) are equivalent to eqs. (5.6a–b): both are representations of Newton’s 

second law, eqs. (5.8a–b) written in radial and tangential coordinates (l , θ), eqs. (5.6a–b) in 

rectangular coordinates (x, y). 



We further note that eqs. (5.8a–b) are decidedly nonlinear because the dependent variable θ(t) or 

its derivatives have an exponent different than 1. This is most obvious in eq. (5.8a) because of 

the centripetal acceleration, but it is equally true of eq. (5.8b) because  

sin 𝜃 = 𝜃 −
𝜃3

3!
+

𝜃5

5!
− ⋯.                                (5.9) 

As we noted in Section 1.3.4, the presence of such nonlinear terms means that superposition, one 

of the most powerful weapons in the arsenal of mathematics, is no longer available. We will 

return to this point in greater detail in Section 5.3. 

5.1.4. More Dimensional Analysis 

 

 

5.1.5. Conserving Energy as the Pendulum Moves 

 

 

5.1.6. Dissipating Energy as the Pendulum Moves 

 

 

5.2. The Freely-Vibrating Pendulum–II: The Linear Model 

 

5.2.1. Linearizing the Nonlinear Model 

 

 

5.2.2. The Differential Equation md2x/dt2 + kx = 0 

 

 

5.2.3. The Linear Model 

 

 

5.3. The Spring-Mass Oscillator–I: Physical Interpretations 



 

 

5.4. Stability of a Two-Mass Pendulum 

 

 

5.5. The Freely-Vibrating Pendulum–III: The Nonlinear Model 

 

Problems: 

5.1. Assume a hypothetical relationship, T0 = amb, for the dependence of the period of a 

pendulum on its mass. Determine the unknown parameters, a and b, using the data in Table 5.2. 

(Hint : Logarithms may be useful here.) 

5.2. Assume a hypothetical relationship, T0 = cld , for the dependence of the period of a 

pendulum on its length. Determine the unknown parameters c and d using the data in Table 5.2. 

(Hint : Logarithms may be useful here.) 

5.3. Why do eqs. (5.4a–b) represent Newton’s second law as a balance principle? 

5.4. How would eqs. (5.4a–b) be written as a conservation principle? 

5.5. Identify and explain all of the nonlinearities in eq. (5.8a). 

 


