
4.1. Validating the Model–I: How Do We Know the Model Is OK? 

There are two issues that arise when we speak of the validity or correctness of a model. The 

more obvious one is whether or not the model can predict the measured or observed behavior of 

whatever object or device is being modeled. Thus, if we are modeling the period of the 

oscillations of a pendulum, we could reasonably expect that changes in the pendulum length 

would produce oscillations at correspondingly different periods or frequencies. As we see from 

eq. (2.2), if we double the length l of a pendulum, we would expect its period to increase by 

about 41% . Similarly, were we doing pendulum experiments on the moon, we would expect to 

see an increase in the period of about 145%. These predictions of the pendulum’s behavior are 

confirmed by the available experimental data, and so the model is validated. Alternatively, given 

empirical data without an underlying theory, we could construct a model to explain the empirical 

data—although it is also quite likely that the (new) model or theory would be further tested by 

making predictions about experiments as yet undone or measurements as yet untaken.  

(We note parenthetically that the measurement [and containment] of experimental error is a 

complex subject that is closely linked to the field or discipline in which the experiment is 

intellectually housed. However, there are some fundamental ideas about error and about statistics 

that apply generally, and we will introduce them in Sections 4.2–4.3.)  

The less obvious question about model validity is concerned with the inherent consistency and 

validity of themodel. If we hark back to themodeling meta-principles outlined in Section 1.2, we 

see issues and questions that pertain directly to model validation. For example, have we 

identified the right governing principles? Have we used the right equations? And, is the model 

consistent with its principles and assumptions? The first two of these questions are about 

ensuring that we apply the proper principles and formulations when we try to find what we are 

seeking. Again, when modeling the pendulum, our basic principles are Newton’s law of motion, 

and our assumptions will depend on whether we are anticipating small angles of oscillation or 

large. As we will see in Lecture 5, a linear equation of motion suffices in the former case, while a 

complete nonlinear formulation is needed for the latter (large oscillations). 

 

4.1.1. Checking Dimensions and Units 

There are several checks or tests we can bring into play while we build models and approximate 

the mathematics. The first is the application of the principle of dimensional homogeneity (cf. 

Lecture 2), which requires that each term in an equation has the same net dimensions. For 

example, the stiffness or spring constant of a cantilever beam, k, can be written in terms of the 

beam’s length, L, second moment of its cross-sectional area (commonly but erroneously called 

the “moment of inertia”), I , and modulus, E, as: 

𝑘 =
3𝐸𝐼

𝐿3
.                                             (4.1) 

The physical dimensions of the parameters in eq. (4.1) are F/L for the spring constant, L for the 

beam length, L4 for I , and F/L2 for the modulus. Thus, we can apply the principle of 

dimensional homogeneity to ensure that eq. (4.1) has the correct dimensions and is 

dimensionally consistent:  

[𝑘] = (
F

L
) = [

3𝐸𝐼

𝐿3
] =

1 × (F/L2) × L4

L3
= (

F

L
).                         (4.2) 

If the dimensions of all the terms in an equation or model are not known, as is sometimes the 

case, then the principle of dimensional homogeneity can be applied to properly determine the 

dimensions of the unknown quantity. In the case of the cantilever beam, if we didn’t know the 



dimensions of I , we would solve eq. (4.1) for I and then apply the principle of dimensional 

homogeneity again: 

[𝐼] = [
𝑘𝐿3

3𝐸
] =

(F/L)L3

F/L2
= L4.                                   (4.3) 

We can also take the principle of dimensional homogeneity one step further and use it as a 

guiding principle for checking the specific units used in a numerical calculation. If we measured 

the properties of a particular cantilever beam, say a standard (12 in) steel ruler to be used in a 

classroom project, we would find 

𝐸 = 2.05 × 102GPa, 

𝐼 = 6.78 × 10−5cm4,                                                (4.4) 

𝐿 = 2.81 × 10−1m. 

If we substitute these values into eq. (4.1), we see immediately that we have a mismatch of units: 

𝑘 =
3(2.05 × 102GPa)(6.78 × 10−5cm4)

(2.81 × 10−1m)3
.                     (4.5) 

The units’ mismatch is easily rectified if we use proper unit conversions, that is, 

𝑘 =
3 [2.05 × 102 × 109 Pa (

N/m2

Pa )] [6.78 × 10−5cm4 (
m

102cm
)

4

]

(2.81 × 10−1m)3
.                     (4.6) 

or 

𝑘 =
3[2.05 × 1011 N/m2][6.78 × 10−13m4]

(2.81 × 10−1m)3
= 1.88 × 101 N/m.                     (4.7) 

Two final notes here. First, it is generally a better strategy towrite all of the data to be used in the 

same systemof units at the beginning of a calculation as this reduces the chance for error. Thus, 

here we could have converted the units immediately after the measurements were taken. Second, 

note that we have used scientific notation in both writing the measurements and performing the 

arithmetic. Thus, there can be no doubt about the number of significant figures in the answer 

(4.7). 

 

4.1.2. Checking Qualitative and Limit Behavior 

Model validation is integral to the modeling process. Models are validated by having their 

predictions confirmed experimentally, or statistically, or by some other quantitative means. In 

both our physical and mathematical reasoning we must make explicit our assumptions and their 

limits, and we must ensure that our mathematics does indeed reflect the physics we are modeling. 

In addition to looking at numbers, the mathematical behavior should “feel right” in qualitative 

terms. We did just such qualitative analysis at the beginning of this section when we described 

the expected behavior of the pendulum as a function of its length, l . Similarly, as also indicated 

by eq. (2.2), it feels intuitively right that pendulums will swing faster and have shorter periods in 

stronger gravitational fields. Thus, when we are constructing mathematical models, and 

especially when we are making mathematical approximations, we need to take care that we are 

admitting mathematical behaviors that are qualitatively appropriate.  

Still another example of such reasoning is available from our just completed dimensional check 

of the stiffness of a beam. Here we rewrite eq. (4.1) in a form that explicitly identifies the 

physical meaning of each parameter that appears in the equation: 

(𝑘 = beam stiffness) ∝
(𝐸 = material stiffness)(𝐼 = cross − sectional 2nd moment)

(𝐿 = beam length)3
.   (4.8) 



Equation (4.8) can be viewed through the eyes of a structural engineer talking about the meaning 

of its mathematical version, eq. (4.1). It supports the engineer’s intuitions as follows. It stands to 

reason that the beam’s stiffness is proportional to the material stiffness, that is, it increases or 

decreases as does E. The beam’s stiffness is also proportional to the second moment of the 

beam’s cross-section, I . It also is intuitively pleasing that the stiffness is inversely dependent on 

the length, so that the beam’s stiffness increases as L becomes very small and decreases as L 

becomes very large. Finally, if we look at the limiting cases of each parameter decreasing to zero 

or becoming indefinitely large, we would see that each of the trends exhibited by eq. (4.8) is 

consistent with the reasoning just outlined, as well as with our practical experience of beams in 

the real world. 

Reasoning about the way that variables appear in equations is of second nature in mathematical 

modeling, and we will have many opportunities to invoke such reasoning in the discussions of 

applications that follow. One simple example is afforded by the fundamental frequency of free 

vibration of a cantilever beam, ω, of mass density, ρ, and cross-sectional area, A, with a mass, m, 

at its tip. That frequency is, approximately, 

𝜔 ≅ √
3𝐸𝐼/𝐿3

𝜌𝐴𝐿(1 + 𝑚/𝜌𝐴𝐿)
.                           (4.9) 

Does eq. (4.9) exhibit the right qualitative and limit behavior? It does. It reduces to a well-known 

result for a cantilever beam when the tip mass, m, vanishes, and eq. (4.9) correctly describes the 

frequency of a mass-less beam with a tip at its end when that tip mass gets so large that it 

dominates the beam mass. 

It may seem that much of what has been said in this section is common sense. It is, as long as it is 

commonly applied! To invert a popular saying, “If we expect our model to be a duck, then it 

should look like a duck, walk like a duck, and quack like a duck.” 

 

4.2. Validating the Model–II: How Large Are the Errors? 

Building mathematical models means using numbers derived from experimental or empirical 

data, or from analytical or computer-based calculations. Errors are thus always present, whether 

due to data reading or data manipulation. Since error is always present, we turn now to a 

discussion of error and statistics—the way we deal with error. 

 

4.2.1. Error 

Error is defined as the difference between a measured (or calculated) value and its true or exact 

value. Error is always present. How much error is present depends on how skillfully the data is 

read or manipulated. Therefore, error analysis should be a part of every modeling process.  

There are two types of error. Systematic error occurs whenever an observed or calculated value 

deviates from the true value in a consistent way. Systematic error occurs in experimentswhen 

instruments are improperly calibrated because their output varies during use. Thus, instruments 

must be properly calibrated before an experiment is run and before data is measured and 

recorded. Improper calibration affects both analog and digital data recorders, although analog 

displays are also subject to other kinds of systematic error, such as a bent needle on ameter face 

such as that shown in Figure 3.3.(Lecture 3) Systematic error also affects calculations, although 

this is more controllable as it is likely due to using incorrect values of “known” variables or to 

improper control of the number of significant figures retained during the calculation process. 



Random errors are, not surprisingly, due to chance. They arise largely in experimental work 

because unpredictable things happen and because not everything in an experimental set-up is 

known with complete certainty: Connections can be loose or break altogether, dirt may get into a 

sensitive moving part, or the amount of friction present in a moving part may not be controllable. 

The resulting random error varies in both magnitude and sign. The laws of statistics help us to 

describe and account for the distribution of such random errors. Indeed, it has been said that 

randomness is a mathematical model for variability that cannot be explained in a deterministic 

way. 

The absolute error is defined as the difference between the true or expected value, Xe , and the 

measured value, Xm, that is, as Xe − Xm. The true value, Xe , may be known or it may have an 

expected value based on a calculation or some other data source. The relative error is the 

absolute error divided by the measured value, that is, (Xe − Xm)/Xm. 

The statistic found most useful is the percentage error, which is the percentage-based relative 

error: 

%error = (100)
(𝑋𝑒 – 𝑋𝑚)

𝑋𝑚
.                                            (4.10) 

For example, suppose that an ammeter has a systematic error of +2A (amperes) because of either 

a bent needle (analog) or improper calibration (digital or analog).When the display reads 100 A 

the percentage error is 

%error = (100)
(102 –  100)

100
= 2% 

while if the same ammeter reads 20 A the percentage error is 

%error = (100)
(22 –  20)

20
= 10% 

The percentage error is much larger in this instance, providing another example of how scale 

affects results! 

Similarly, errors are introduced when series expansions are truncated (cf. Lecture 3). For 

example, for θ = π/12(15˚), the percentage error incurred by replacing sin x with x is: 

%error = (100)
(sin 𝜋/12 –  𝜋/12)

𝜋/12
= −1.14% 

Note that errors and mistakes are not the same thing. Errors are defined as the difference 

between a true or expected value and a measured (or calculated) value. Further, as we discussed 

above, some error is unavoidable. On the other hand, mistakes are blunders made by the person 

doing the experiment (or analysis or calculation). Blunders are made by reading or recording 

erroneous data, using instruments inappropriately (e.g., improperly calibrated instruments, 

inadequately sensitive meters), using he wrong formulas, using inconsistent or wrong units, and 

so on. These kinds of mistakes can—and obviously should—be avoided. 

 

 

4.2.2. Accuracy and Precision 

Since we have to contend with systematic and random errors, as well as with the hopefully rare 

mistake, it is important that we be able to estimate the effects of these errors and mistakes. 

Accuracy is defined as a representation of how close a measured or calculated value is to an 

established or true value. In experimental work, accuracy is usually expressed as a percentage of 

the maximum scale value. Thus, voltages read on a 100V scale with an accuracy of 5% are 

accurate to within ±5V. 



Precision is defined in terms of the ability to reproduce a set of data with a specified accuracy. 

The more precise a set of readings or calculations, the closer the individual readings or 

calculations are to each other. Thus, suppose we measured an input voltage that is known to be 

50V with the voltmeter having an accuracy of 5%. Five individual readings are taken and 

recorded as, respectively, 54, 53, 55, 53, and 55V. These clearly fall within the meter’s accuracy 

bounds of ±5 V. Since the average or mean reading of the five readings is 54V, and since the 

maximum deviation from this mean of any one of the measurements is 1 V, the precision of the 

five measurements is determined to be ±1% (remember that the meter has a 100V scale). As we 

illustrate in Figure 4.1, our little virtual experiment has produced precise but relatively inaccurate 

readings. 

 
Figure 4.1. Some (made-up) experimental data that illustrates: accuracy, the closeness of the 

measured value to an established value, and precision the ability to reproduce a set of 

measurements within a specified accuracy. These data reflect measurements that are rather 

precise, yet relatively inaccurate. 

 

It is worth noting that the accuracy of a measuring device is controlled by its sensitivity because 

it is the sensitivity that identifies the minimum amount of change that the device can detect and 

indicate. Suppose we wanted to measure very small voltages, say less than 1 millivolt (mV). Our 

trusty voltmeter allows us to choose one of three measurement ranges: 0–50V, 0–2.5V, or 0–

5mV. With either of the first two ranges we will see no reading at all. However, with the third 

scale, 0–5mV, there will be a noticeable measurement that can be recorded. Thus, moving from 

either of the first two scales to the third produces a more sensitive voltmeter, and so our readings 

will be more accurate. Hence, we see how scale influences sensitivity and, therefore, accuracy. 

 

4.3. Fitting Curves to Data 

Graphical presentations of calculations and experimental results are the most convenient—and 

often the most informative—presentation of data available.We can spot trends, identify 

discontinuities, and generally get an intuitive “feel” for what the data “says” when we look at 

plots or curves. Given this very human proclivity, how do we draw curves for a given collection 

of points? That is, since plotted data points rarely align themselves perfectly on a known or 

identifiable curve, howdowe fit a curve through them? Still further, how do we generate the “best 

fit” of a curve through the data? 



The short answer to these questions is in a familiar spirit: It depends on what you want. If the 

accuracy of the curve is not too important, and if we’re only looking for a rough, qualitative idea 

of how one variable depends on another, then we can draw the curve “by eye.” That is, we draw 

a smooth curve that seems to go through the plotted data points with an eye to perhaps 

“distributing” the data in roughly equal amounts above and below the curve drawn, as we have 

done in Figure 4.2. 

Often, greater accuracy is desirable, as when we want to interpolate to obtain values between 

measured values, or even more so when we want to extrapolate to estimate values beyond the 

range of the measured values. Extrapolation can easily magnify errors in the estimated values, so 

that greater accuracy is quite important. Further, extrapolation ismost accurate when the curve 

drawn is a straight line. 

The method of least squares is the most commonly used approach to obtaining a best straight 

line through a series of points. It assumes that all of the scatter, the variation of the data from the 

drawn curve, derives from error in measuring one of the variables. That variable is chosen as the 

ordinate for the axes on which the straight line will be plotted. Then the best-fit straight line is 

the one that has the minimum errors in the ordinate.  

 
Figure 4.2. A best-fit curve that is drawn by hand using visual estimation (i.e., “drawn by eye”). 

 

We are thus looking for an equation of the usual form 

𝑦 = 𝑚𝑥 + 𝑏,                                               (4.11) 

where b is the y-intercept with [b]=[y], and m is the slope with [m]= [y/x]. We first define the 

error in each reading as the difference in the ordinate between the measured value, yi , and the 

straight line’s ordinate, (mxi + b), for all values of the abscissa, xi : 

𝐸𝑦𝑖
= 𝑦𝑖 − (𝑚𝑥 + 𝑏).                                   (4.12) 

We define a measure S of the total error as the sum of the square of the errors at every point on 

the abscissa, xi , where values of the ordinate, yi , are given, that is, as 

𝑆 = ∑(𝐸𝑦𝑖
)

2
𝑛

𝑖=1

= ∑[𝑦𝑖 − (𝑚𝑥 + 𝑏)]2

𝑛

𝑖=1

.                             (4.13) 

The minimum of the measure of the total error is then found by differentiating S with respect to 

m and b and so determining the values of m and b needed to plot eq. (4.11): 

𝜕𝑆

𝜕𝑚
= 2 ∑[(𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏)(−𝑥𝑖)]

𝑛

𝑖=1

= −2 ∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

+ 2𝑚 ∑ 𝑥𝑖
2

𝑛

𝑖=1

+ 2𝑏 ∑ 𝑥𝑖

𝑛

𝑖=1

= 0,          (4.14) 



𝜕𝑆

𝜕𝑏
= 2 ∑[(𝑦𝑖 − 𝑚𝑥𝑖 − 𝑏)(−1)]

𝑛

𝑖=1

= −2 ∑ 𝑦𝑖

𝑛

𝑖=1

+ 2𝑚 ∑ 𝑥𝑖

𝑛

𝑖=1

+ 2𝑏𝑛 = 0.              (4.15) 

Equations (4.14) and (4.15) are a pair of linear algebraic equation that can be solved to yield the 

following values of m and b: 

𝑚 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1 )(∑ 𝑦𝑖

𝑛
𝑖=1 )

𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )2

.                         (4.16) 

and 

𝑏 =
(∑ 𝑥𝑖

2𝑛
𝑖=1 )(∑ 𝑦𝑖

𝑛
𝑖=1 ) − (∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 )(∑ 𝑥𝑖

𝑛
𝑖=1 )

𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )2

.           (4.17) 

Note that eqs. (4.16) and (4.17) have different physical dimensions that depend on the particular 

physical problem being modeled. 

Consider now the data displayed in the first two columns of Table 4.1, which are the result of 

another, virtual experiment. We will now determine the best straight line that can be drawn 

through the data. First, we calculate the products shown in the third and fourth columns of Table 

4.3. Then we sum all four columns to find the data in the last row of the table, which are then 

substituted into eqs. (4.16) and (4.17) to find m = 0.85 and b = 1.26. The best straight-line fit 

through the data of Table 4.1 is, then, 

𝑦 = 0.85𝑥 + 1.26,                                               (4.18) 

Equation (4.18) is plotted in Figure 4.3, together with the data from Table 4.3, and we see that 

the straight line seems to fit the data pretty well. Can we characterize the quality of that fit, that 

is, just how well does eq. (4.18) fit the given data? The quality of fit is expressed in terms of R2, 

called “R squared,” which describes how well a curve regresses toward the 

 

Table 4.1. A table of data from a virtual experiment used to calculate the best-fit strainght line 

approximation shown in Figure 4.3. 

i xi yi xiyi 𝑥𝑖
2 

1 0 1.0 0 0 

2 1.0 2.1 2.1 1.0 

3 2.0 2.8 5.6 4.0 

4 3.0 3.6 10.8 9.0 

5 4.0 5.0 20.0 16.0 

6 5.0 5.5 27.5 25.0 

7 6.0 8. 48.0 36.0 

8 7.0 6.4 44.8 49.0 

9 8.0 7.4 59.2 64.0 

 

∑ 𝑥𝑖 = 36.0

9

𝑖=1

 ∑ 𝑦𝑖

9

𝑖=1

= 41.8 ∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

= 218.0 ∑ 𝑥𝑖
2

𝑛

𝑖=1

= 204.0 

 

data from which it was derived. R2 is a number between 0, which indicates no fit at all, and 1, 

which describes a perfect fit. (There are many mathematical and statistical computational 

packages that include the formulas needed to calculate R2.) 



 
Figure 4.3. A best-fit straight line for the data in Table 4.1 produced by least squares. It is 

analytically represented as y=0.85x+1.26. 

 

 


