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Dimensional Analysis 

 

We begin this chapter, the first of three dealing with the tools or techniques forma the 

matical modeling, with H. L. Langhaar’s definition of dimensional analysis: 

Dimensional analysis (n): a method by which we deduce information about a phenomenon from 

the single premise that the phenomenon can be described by a dimensionally correct equation 

among certain variables. 

 

This quote expresses the simple, yet powerful idea that we introduced in Section 1.3.1: all 

of the terms in our equations must be dimensionally consistent, that is, each separate term in 

those equations must have the same net physical dimensions. For example, when summing 

forces to ensure equilibrium, every term in the equation must have the physical dimension of 

force. (Equations that are dimensionally consistent are sometimes called rational.) This idea is 

particularly useful for validating newly developed mathematical models or for confirming 

formulas and equations before doing calculations with them. However, it is also a weak 

statement because the available tools of dimensional analysis are rather limited, and applying 

them does not always produce desirable results. 

2.1 Dimensions and Units 

The physical quantities we use to model objects or systems represent concepts, such as 

time, length, and mass, to which we also attach numerical values or measurements. Thus, we 

could describe the width of a soccer field by saying that it is 60 meters wide. The concept or 

abstraction invoked is length or distance, and the numerical measure is 60meters. The numerical 

measure implies a comparison with a standard that enables both communication about and 

comparison of objects or phenomena without their being in the same place. In other words, 

common measures provide a frame of reference for making comparisons. Thus, soccer fields are 

wider than American football fields since the latter are only 49 meters wide.  

The physical quantities used to describe or model a problem come in two varieties. They 

are either fundamental or primary quantities, or they are derived quantities. Taking a quantity as 

fundamental means only that we can assign it a standard ofmeasurement independent of that 

chosen for the other fundamental quantities. In mechanical problems, for example, mass, length, 

and time are generally taken as the fundamental mechanical variables, while force is derived 

from Newton’s law of motion. It is equally correct to take force, length, and time as 

fundamental, and to derive mass from Newton’s law. For any given problem, of course, we need 

enough fundamental quantities to express each derived quantity in terms of these primary 

quantities. 

While we relate primary quantities to standards, we also note that they are chosen 

arbitrarily, while derived quantities are chosen to satisfy physical laws or relevant definitions. 

For example, length and time are fundamental quantities inmechanics problems, and speed is a 

derived quantity expressed as length per unit time. If we chose time and speed as primary 

quantities, the derived quantity of length would be (speed × time), and the derived quantity of 

area would be (speed × time)2. 

The word dimension is used to relate a derived quantity to the fundamental quantities 

selected for a particular model. If mass, length, and time are chosen as primary quantities, then 

the dimensions of area are (length)2, of mass density are mass/(length)3, and of force are (mass × 



length)/(time)2. We also introduce the notation of brackets [] to read as “the dimensions of.” If 

M, L, and T stand for mass, length, and time, respectively, then: 

[A = area]= (L)2,      (2.1a) 

[ρ = density]= M/(L)3,     (2.1b) 

[F = force]= (M × L)/(T)2.     (2.1c) 

The units of a quantity are the numerical aspects of a quantity’s dimensions expressed in 

terms of a given physical standard. By definition, then, a unit is an arbitrary multiple or fraction 

of that standard. The most widely accepted international standard formeasuring length is 

themeter (m), but it can also be measured in units of centimeters (1 cm = 0.01m) or of feet 

(0.3048m). The magnitude or size of the attached number obviously depends on the unit chosen, 

and this dependence often suggests a choice of units to facilitate calculation or communication. 

The soccer field width can be said to be 60m, 6000 cm, or (approximately) 197 feet. 

Dimensions and units are related by the fact that identifying a quantity’s dimensions 

allows us to compute its numericalmeasures in different sets of units, aswe just did for the soccer 

fieldwidth. Since the physical dimensions of a quantity are the same, theremust exist numerical 

relationships between the different systems of units used tomeasure the amounts of that quantity. 

For example, 

1 foot (ft) ≅30.48 centimeters (cm), 

1 centimeter (cm) ≅ 0.000006214 miles (mi), 

1 hour (hr) = 60 minutes (min) = 3600 seconds (sec or s). 

This equality of units for a given dimension allows us to change or convert units with a 

straightforward calculation. For a speed of 65 miles per hour (mph), for example, we can 

calculate the following equivalent: 

65
𝑚𝑖

ℎ𝑟
= 65

𝑚𝑖

ℎ𝑟
× 5280

𝑓𝑡

𝑚𝑖
× 0.3048

𝑚

𝑓𝑡
× 0.001

𝑘𝑚

𝑚
≅ 104.6

𝑘𝑚

ℎ𝑟
 

Each of the multipliers in this conversion equation has an effective value of unity because 

of the equivalencies of the various units, that is, 1mi= 5280 ft, and so on. This, in turn, follows 

from the fact that the numerator and denominator of each of the above multipliers have the same 

physical dimensions. We will discuss systems of units and provide some conversion data in 

Section 2.4. 

 

2.2 Dimensional Homogeneity 

We had previously defined a rational equation as an equation in which each independent 

term has the same net dimensions. Then, taken in its entirety, the equation is dimensionally 

homogeneous. Simply put, we cannot add length to area in the same equation, or mass to time, or 

charge to stiffness—although we can add (and with great care) quantities having the same 

dimensions but expressed in different units, e.g., length in meters and length in feet. The fact that 

equations must be rational in terms of their dimensions is central to modeling because it is one of 

the best—and easiest—checks to make to determine whether a model makes sense, has been 

correctly derived, or even correctly copied! 

We should remember that a dimensionally homogeneous equation is independent of the 

units of measurement being used. However, we can create unit-dependent versions of such 

equations because they may be more convenient for doing repeated calculations or as a memory 

aid. In an example familiar from mechanics, the period (or cycle time), T0,ofa pendulum 



undergoing small-angle oscillations can be written in terms of the pendulum’s length, l , and the 

acceleration of gravity, g : 

𝑇0 = 2𝜋√𝑙/𝑔        (2.2) 

This dimensionally homogeneous equation is independent of the system of units chosen 

to measure length and time. On the other hand, we may find it convenient to work in the metric 

system, in which case g = 9.8m/s2, from which it follows that 

𝑇0(𝑠) = 2𝜋√𝑙/9.8 ≅ 2√𝑙      (2.3) 

Equation (2.3) is valid only when the pendulum’s length is measured in meters. In the so-

called British system 1, where g = 32.17 ft/sec2, 

𝑇0(𝑠𝑒𝑐) = 2𝜋√𝑙/32.17 ≅ 1.1√𝑙     (2.4) 

Why not? 

Equations (2.3) and (2.4) are not dimensionally homogeneous. So, while  these formulas 

may be appealing or elegant, we have to remember their limited ranges of validity, as we should 

whenever we use or create similar formulas for whatever modeling we are doing.  

____________ 

1 One of my Harvey Mudd colleagues puckishly suggests that we should call this the American system of 

units as we are, apparently, the only country still so attached to feet and pounds. 

 

2.3 Why Do We Do Dimensional Analysis? 

We presented a definition of dimensional analysis at the beginning of this chapter, where 

we also noted that the “method” so defined has both powerful implications—rational equations 

and dimensional consistency—and severe limitations—the limited nature of the available tools. 

Given this limitation, why has this method or technique developed, and why has it persisted? 



 

Dimensional analysis developed as an attempt to perform extended, costly experiments in 

amore organized, more efficient fashion. The underlying idea was to see whether the number of 

variables could be grouped together so that fewer trial runs or fewer measurements would be 

needed. Dimensional analysis produces a more compact set of outputs or data, with perhaps 

fewer charts and graphs, which in turn might better clarify what is being observed. 

Imagine for a moment that we want to design a machine to make large quantities of 

peanut butter (and this author prefers creamy to crunchy!). We can imagine a mixer that takes all 

of the ingredients (i.e., roasted peanuts, sugar, and “less than 2%” of molasses and partially 

hydrogenated vegetable oil) and mixes them into a smooth, creamy spread. Moving a knife 

through a jar of peanut butter requires a noticeably larger force than stirring a glass of water. 

Similarly, the forces in a vat-like mixer would be considerable, aswould the power needed to run 

thatmixer in an automated food assembly line, as illustrated in Figure 2.1. Thus, the electro-

mechanical design of an industrial-strength peanut butter mixer depends on estimates of the 

forces required to mix the peanut butter. How can we get some idea of what those forces are? 

It turns out, as you might expect, that the forces depend in large part on properties of the 

peanut butter, but on which properties, and how? We can answer those questions by performing 

a series of experiments in which we push a blade through a tub of peanut butter and measure the 

amount of force required to move the blade at different speeds. We will call the force needed to 

move the blade through the peanut butter the drag force, FD, because it is equal to the force 

exerted by the moving (relatively speaking) peanut butter to retard the movement of the knife. 

We postulate that the force depends on the speed V with which the blade moves, on a 

characteristic dimension of the blade, say the width d, and on two characteristics of the peanut 

butter. One of these characteristics is the mass density, ρ, and the second is a parameter called 

the viscosity, µ, which is a measure of its “stickiness.” If we think about our experiences with 

various fluids, including water, honey, motor oil, and peanut butter, these two characteristics 



seem intuitively reasonable because we do associate a difficulty in stirring (and cleaning up) with 

fluids that feel heavier and stickier. 

Thus, the five quantities that we will take as derived quantities for this initial 

investigation into the mixing properties of peanut butter are the drag force, FD, the speed with 

which the blade moves, V, the knife blade width, d, the peanut butter’s mass density, ρ, and its 

viscosity, µ. The fundamental physical quantities we would apply here are mass, length, and 

time, which we denote as M, L, and T, respectively. The derived variables are expressed in terms 

of the fundamental quantities in Table 2.1. 

Table 2.1 The five derived quantities chosen to model the peanut butte stirring 

experiments. 

Derived quantities Dimensions 

Speed (V) 

Blade width (d) 

Density (ρ) 

Viscosity (µ) 

Drag force (FD) 

L/T 

L 

M/(L)3 

M/(L × T) 

(M × L)/(T)2 

 

How did we get the fundamental dimensions of the viscosity? By a straightforward 

application of the principle of dimensional homogeneity to the assumptions used in modeling the 

mechanics of fluids: The drag force (or force required to pull the blade through the butter) is 

directly proportional both to the speed with which it moves and the area of the blade, and 

inversely proportional to a length that characterizes the spatial rate of change of the speed. Thus, 

𝐹𝐷 ∝
𝑉𝐴

𝐿
       (2.5a) 

𝐹𝐷 = 𝜇
𝑉𝐴

𝐿
       (2.5b) 

If we apply the principle of dimensional homogeneity to eq. (2.5b), it follows that 

[𝜇] = [
𝐹𝐷

𝐴
×

𝐿

𝑉
]      (2.6) 

It is easy to show that eq. (2.6) leads to the corresponding entry in Table 2.1. Now we 

consider the fact that we want to know how FD and V are related, and yet they are also functions 

of the other variables, d, ρ, and µ, that is, 

𝐹𝐷 = 𝐹𝐷(𝑉; 𝑑, 𝜌, 𝜇).     (2.7) 

Equation (2.7) suggests that we would have to do a lot of experiments and plot a lot of 

curves to find out how drag force and speed relate to each other while we are also varying the 

blade width and the butter density and viscosity. If we wanted to look at only three different 

values of each of d, ρ, and µ, we would have nine (9) different graphs, each containing three (3) 

curves. This is a significant accumulation of data (and work!) for a relatively simple problem, 

and it provides a very graphic illustration of the need for dimensional analysis.We will soon 

show that this problem can be “reduced” to considering two dimensionless groups that are 

related by a single curve! Dimensional analysis is thus very useful for both designing and 

conducting experiments. 

Problem 2.1. Justify the assertion made just above that “nine (9) different graphs, 

each containing three (3) curves” are needed to relate force and speed. 



Problem 2.2. Find and compare the mass density and viscosity of peanut butter, 

honey, and water. 

 

2.4 How Do We Do Dimensional Analysis? 

Dimensional analysis is the process by which we ensure dimensional consistency. It 

ensures that we are using the proper dimensions to describe the problem being modeled, whether 

expressed in terms of the correct number of properly dimensioned variables and parameters or 

whether written in terms of appropriate dimensional groups. Remember, too, that we need 

consistent dimensions for logical consistency, and we need consistent units for arithmetic 

consistency. 

How do we ensure dimensional consistency? First, we check the dimensions of all 

derived quantities to see that they are properly represented in terms of the chosen primary 

quantities and their dimensions. Then we identify the proper dimensionless groups of variables, 

that is, ratios and products of problem variables and parameters that are themselves 

dimensionless. We will explain two different techniques for identifying such dimensionless 

groups, the basic method and the Buckingham Pi theorem. 

2.4.1 The Basic Method of Dimensional Analysis 

The basic method of dimensional analysis is a rather informal, unstructured approach for 

determining dimensional groups. It depends on being able to construct a functional equation that 

contains all of the relevant variables, for which we know the dimensions. The proper 

dimensionless groups are then identified by the thoughtful elimination of dimensions. 

For example, consider one of the classic problems of elementary mechanics, the free fall 

of a body in a vacuum.We recall that the speed, V, of sucha falling body is related to the 

gravitational acceleration, g , and the height, h, from which the body was released. Thus, the 

functional expression of this knowledge is: 

V=V(g,h)      (2.8) 

Note that the precise form of this functional equation is, at this point, entirely unknown—

and we don’t need to know that form for what we’re doing now. The physical dimensions of the 

three variables are: 

 

 

 

(2.9) 

 

The time dimension, T, appears only in the speed and gravitational acceleration, so that 

dividing the speed by the square root of g eliminates time and yields a quantity whose remaining 

dimension can be expressed entirely in terms of length, that is: 

[
𝑉

√𝑔
] = √𝐿.      (2.10) 

If we repeat this thought process with regard to eliminating the length dimension, we 

would divide eq. (2.10) by √h, which means that 

[
𝑉

√𝑔ℎ
] = 1.      (2.11) 

Since we have but a single dimensionless group here, it follows that: 

[𝑉] =
𝐿

𝑇
, 

[𝑔] =
𝐿

𝑇2
, 

[ℎ] = 𝐿 



𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × (√𝑔ℎ).     (2.12) 

Thus, the speed of a falling body is proportional to √𝑔ℎ, a result we should recall from 

physics—yet we have found it with dimensional analysis alone, without invoking Newton’s law 

or any other principle of mechanics. This elementary application of dimensional consistency tells 

us some thing about the power of dimensional analysis. On the other hand, we do need some 

physics, either theory or experiment, to define the constant in eq. (2.12). 

Someone seeing the result (2.12) might well wonder why the speed of a falling object is 

independent of mass (unless that person knew of Galileo Galilei’s famous experiment). In fact, 

we can use the basic method to build on eq. (2.12) and show why this is so. Simply put, we start 

with a functional equation that included mass, that is, 

𝑉 = 𝑉(𝑔, ℎ, 𝑚).      (2.13) 

A straightforward inspection of the dimensions of the four variables in eq. (2.13), such as 

the list in eq. (2.9), would suggest that mass is not a variable in this problem because it only 

occurs once as a dimension, so it cannot be used to make eq. (2.13) dimensionless. 

As a further illustration of the basic method, consider the mutual revolution of two bodies 

in space that is caused by their mutual gravitational attraction. We would like to find a 

dimensionless function that relates the period of oscillation, TR, to the two masses and the 

distance r between them: 

𝑇𝑅 = 𝑇𝑅(𝑚1, 𝑚2, 𝑟).     (2.14) 

If we list the dimensions for the four variables in eq. (2.14) we find: 

 

 

(2.15) 

 

We now have the converse of the problem we had with the falling body. Here none of the 

dimensions are repeated, save for the two masses. So, while we can expect that the masses will 

appear in a dimensionless ratio, how do we keep the period and distance in the problem? The 

answer is that we need to add a variable containing the dimensions heretofore missing to the 

functional equation (2.14). Newton’s gravitational constant, G, is such a variable, so we restate 

our functional equation (2.14) as 

𝑇𝑅 = 𝑇𝑅(𝑚1, 𝑚2, 𝑟, 𝐺),    (2.16) 

where the dimensions of G are 

[𝐺] = 𝐿3/𝑀𝑇2.     (2.17) 

The complete list of variables for this problem, consisting of eqs. (2.15) and (2.17), 

includes enough variables to account for all of the dimensions.  

Regarding eq. (2.16) as the correct functional equation for the two revolving bodies, we 

apply the basic method first to eliminate the dimension of time, which appears directly in the 

period TR and as a reciprocal squared in the gravitational constant G. It follows dimensionally 

that 

[𝑇𝑅√𝐺] = √
𝐿3

𝑀
,     (2.18a) 

where the right-hand side of eq. (2.18a) is independent of time. Thus, the corresponding 

revised functional equation for the period would be: 

[𝑚1], [𝑚2] = 𝑀, 

[𝑇𝑅] = 𝑇, 

[𝑟] = 𝐿 



𝑇𝑅√𝐺 = 𝑇𝑅1(𝑚1, 𝑚2, 𝑟).     (2.18b) 

We can eliminate the length dimension simply by noting that 

[
𝑇𝑅√𝐺

√𝑟3
] = √

1

𝑀
,       (2.19a) 

which leads to a further revised functional equation, 

𝑇𝑅√𝐺

√𝑟3
= 𝑇𝑅2(𝑚1, 𝑚2).      (2.19b) 

We see from eq. (2.19a) that we can eliminate the mass dimension from eq. (2.19b) by 

multiplying eq. (2.19b) by the square root of one of the two masses. We choose the square root 

of the second mass (do Problem 2.6 to find out what happens if the first mass is chosen), √m2, 

and we find from eq. (2.19a) that 

[
𝑇𝑅√𝐺𝑚2

√𝑟3
] = 1.      (2.20a) 

This means that eq. (2.19b) becomes 

𝑇𝑅√𝐺𝑚2

√𝑟3
= √𝑚2𝑇𝑅2(𝑚1, 𝑚2) = 𝑇𝑅3 (

𝑚1

𝑚2
),   (2.20b) 

where a dimensionless mass ratio has been introduced in eq. (2.20b) to recognize that this 

is the only way that the function TR3 can be both dimensionless and a function of the two 

masses. Thus, we can conclude from eq. (2.20b) that  

𝑇𝑅 = √
𝑟3

𝐺𝑚2
𝑇𝑅3 (

𝑚1

𝑚2
) 

This example shows that difficulties arise if we start a problem with an incomplete set of 

variables. Recall that we did not include the gravitational constant G until it became clear that we 

were headed down a wrong path. We then included G to rectify an incomplete analysis. With the 

benefit of hindsight, we might have argued that the attractive gravitational force must somehow 

be accounted for, and including G could have been a way to do that. This argument, however, 

demands insight and judgment whose origins may have little to do with the particular problem at 

hand. 

While our applications of the basic method of dimensional analysis show that it does not 

have a formal algorithmic structure, it can be described as a series of steps to take: 

a. List all of the variables and parameters of the problem and their dimensions. 

b. Anticipate how each variable qualitatively affects quantities of interest, that is, does an 

increase in a variable cause an increase or a decrease? 

c. Identify one variable as depending on the remaining variables and parameters. 

d. Express that dependence in a functional equation (i.e., analogs of eqs. (2.8) and (2.14)). 

e. Choose and then eliminate one of the primary dimensions to obtain a revised functional 

equation. 

f. Repeat steps (e) until a revised, dimensionless functional equation is found. 

g. Review the final dimensionless functional equation to see whether the apparent 

behavior accords with the behavior anticipated in step “b”. 

Problem 2.3 What is the constant in eq. (2.12)? How do you know that? 

 

 

(2.21) 



Problem 2.4 Apply the basic method to eq. (2.2) for the period of the pendulum. 

Problem 2.5 Carry out the basic method for eq. (2.13) and show that the mass of a 

falling body does not affect its speed of descent. 

Problem 2.6. Carry out the last step of the basic method for eqs. (2.20) using the first 

mass and show it produces a form that is equivalent to eq. (2.21). 

 

2.4.2 The Buckingham Pi Theorem for Dimensional Analysis 

Buckingham’s Pi theorem, fundamental to dimensional analysis, can be stated as follows: 

A dimensionally homogeneous equation involving n variables in m primary or 

fundamental dimensions can be reduced to a single relationship among n−m independent 

dimensionless products.  

A dimensionally homogeneous (or rational) equation is one in which every independent, 

additive term in the equation has the same dimensions. This means that we can solve for any one 

term as a function of all the others. If we introduce Buckingham’s Π notation to represent a 

dimensionless term, his famous Pi theorem can be written as: 

Π1 = Ф(Π2, Π3 … Πn−m).    (2.22a) 

or, equivalently, 

Ф(Π1, Π2, Π3 … Πn−m) = 0.    (2.22b) 

Equations (2.22) state that a problem with n derived variables and m primary dimensions 

or variables requires n − m dimensionless groups to correlate all of its variables. 

We apply the Pi theorem by first identifying the n derived variables in a problem: A1, A2, 

... An. We choose m of these derived variables such that they contain all of the m primary 

dimensions, say, A1, A2, A3 for m = 3. Dimensionless groups are then formed by permuting each 

of the remaining n − m variables (A4, A5, ... An for m = 3) in turn with those m’s already chosen: 

 

 

(2.23) 

 

 

The ai, bi, and ci are chosen to make each of the permuted groups Πi dimensionless. 

For example, for the peanut butter mixer, there should be two dimensionless groups 

correlating the five variables of the problem (listed in Table 2.1). To apply the Pi theorem to this 

mixer we choose the blade speed V, its width d, and the butter density ρ as the fundamental 

variables (m = 3), which we then permute with the two remaining variables—the viscosity µ and 

the drag force FD—to get two dimensionless groups: 

Π1 = 𝑉𝑎1𝑑𝑏1𝜌𝑐1𝜇, 

Π2 = 𝑉𝑎2𝑑𝑏2𝜌𝑐2𝐹𝐷.     (2.24) 

Expressed in terms of primary dimensions, these groups are: 

 

(2.25) 

Π1 = 𝐴1
𝑎1𝐴2

𝑏1𝐴3
𝑐1𝐴4, 

Π2 = 𝐴1
𝑎2𝐴2

𝑏2𝐴3
𝑐2𝐴5, 

… 

Π𝑛−𝑚 = 𝐴1
𝑎𝑛−𝑚𝐴2

𝑏𝑛−𝑚𝐴3
𝑐𝑛−𝑚𝐴𝑛, 

Π1 = (
𝐿

𝑇
)

𝑎1

𝐿𝑏1 (
𝑀

𝐿3
)

𝑐1

(
𝑀

𝐿𝑇
), 

Π2 = (
𝐿

𝑇
)

𝑎2

𝐿𝑏2 (
𝑀

𝐿3
)

𝑐2

(
𝑀𝐿

𝑇2
). 

 



Now, in order for Π1 and Π2 to be dimensionless, the net exponents for each of the three 

primary dimensions must vanish. Thus, for Π1, 

 

(2.26a) 

 

and for Π2, 

 

(2.26b) 

 

Solving eqs. (2.26) for the two pairs of subscripts yields: 

 

(2.27) 

 

Then the two dimensionless groups for the peanut butter mixer are: 

 

 

(2.28) 

 

Thus, there are two dimensionless groups that should guide experiments with prototype 

peanut butter mixers. One clearly involves the viscosity of the peanut butter, while the other 

relates the drag force on the blade to the blade’s dimensions and speed, as well as to the density 

of the peanut butter. 

 

In Lecture 5 (Modeling Free Vibration) we will explore one of the “golden oldies” of 

physics, modeling the small angle, free vibration of an ideal pendulum (viz. Figure 2.2). There 

are six variables to consider in this problem, and they are listed along with their fundamental 

dimensions in Table 2.2. In this case we have m = 6 and n = 3, so that we can expect three 

dimensionless groups. We will choose l, g, and m as the variables around which we will permute 

the remaining three variables (T0, θ, T) to obtain the three groups. Thus, 

 

𝐿:   𝑎1 + 𝑏1 − 3𝑐1 − 1 = 0, 

𝑇:  − 𝑎1 − 1 = 0, 

𝑀:   𝑐1 + 1 = 0 

𝐿:   𝑎2 + 𝑏2 − 3𝑐2 + 1 = 0, 

𝑇:  − 𝑎2 − 2 = 0, 

𝑀:   𝑐2 + 1 = 0 

𝑎1 = 𝑏1 = 𝑐1 = −1, 

𝑎2 = 𝑏2 = −2,   𝑐2 = −1, 

 

Π1 = (
𝜇

𝜌𝑉𝑑
), 

Π2 = (
𝐹𝐷

𝜌𝑉2𝑑2
), 

 



 

 

(2.29) 

Table 2.2 The six derived quantities chosen to model the oscillating pendulum 

Derived quantities Dimensions 

Length (l) 

Gravitational acceleration (g ) 

Mass (m) 

Period (T0) 

Angle (θ) 

String tension (T) 

L 

L/T2 

M 

T 

1 

(M × L)/T2 

The Pi theorem applied here then yields three dimensionless groups (see Problem 2.9): 

 

 

 

(2.30) 

 

These groups show how the period depends on the pendulum length l and the 

gravitational constant g (recall eq. (2.2)), and the string tension T on the mass m and g . The 

second group also shows that the (dimensionless) angle of rotation stands alone, that is, it is 

apparently not related to any of the other variables. This follows from the assumption of small 

angles, which makes the problem linear, and makes the magnitude of the angle of free vibration 

a quantity that cannot be determined.  

One of the “rules” of applying the Pi theorem is that the m chosen variables include all n 

of the fundamental dimensions, but no other restrictions are given. So, it is natural to ask how 

this analysis would change if we start with three different variables. For example, suppose we 

choose T0, g , and m as the variables around which to permute the remaining three variables (l , 

θ, T) to obtain the three groups. In this case we would write: 

 

 

(2.31) 

 

Applying the Pi theorem to eq. (2.31) yields the following three “new” dimensionless 

groups (see Problem 2.10): 

 

 

 

(2.32) 

𝛱1 = 𝑙𝑎1𝑔𝑏1𝑚𝑐1𝑇0, 

𝛱2 = 𝑙𝑎2𝑔𝑏2𝑚𝑐2𝛩, 

𝛱3 = 𝑙𝑎3𝑔𝑏3𝑚𝑐3𝑇. 

𝛱1
′ = 𝑇0

𝑎1𝑔𝑏1𝑚𝑐1𝑙, 

𝛱2
′ = 𝑇0

𝑎2𝑔𝑏2𝑚𝑐2𝛩, 

𝛱3
′ = 𝑇0

𝑎3𝑔𝑏3𝑚𝑐3𝑇. 

𝛱1 =
𝑇0

√𝑙/𝑔
, 

𝛱2 = 𝛩, 

𝛱3 =
𝑇

𝑚𝑔
. 

𝛱1
′ =

𝑙/𝑔

𝑇0
2 =

1

𝛱1
2, 

𝛱2
′ = 𝛩 = 𝛱2, 

𝛱3
′ =

𝑇

𝑚𝑔
= 𝛱3. 



We see that eq. (2.32) produce the same information as eq. (2.30), albeit in a slightly 

different form. In particular, it is clear that Π1 and 𝛱1
′  contain the same dimensionless group, 

which suggests that the number of dimensionless groups is unique, but that the precise forms that 

these groups may take are not. This last calculation demonstrates that the dimensionless groups 

determined in any one calculation are unique in one sense, but they may take on different, yet 

related forms when done in a slightly different calculation. 

Note that our applications of the basic method and the Buckingham Pi theoremof 

dimensional analysis can be cast in similar, step-like structures. However, experience and insight 

are key to applying both methods, even for elementary problems. Perhaps this is a context where, 

as was said by noted British economist John Maynard Keynes in his famous book, The General 

Theory of Employment, Interest, and Money, “Nothing is required and nothing will avail, except 

a little, a very little, clear thinking.” 

Problem 2.7. Write out the Buckingham Pi theorem as a 

series of steps, analogous to the steps described 

in the basic method on p. 23. 

Problem 2.8. Confirm eq. (2.28) by applying the basic 

method to the mixer problem. 

Problem 2.9. Confirm eq. (2.30) by applying the rest of the 

Buckingham Pi theorem to the pendulum 

problem. 

Problem 2.10. Confirm eq. (2.32) by applying the rest of the 

Buckingham Pi theorem to the revised 

formulation of the pendulum problem. 

Problem 2.11. Apply the Buckingham Pi theorem to the 

revolution of two bodies in space, beginning 

with the functiona equation (2.16). 

Problem 2.12. What happens when the Pi theorem is applied 

to the two-body problem, but beginning now 

with the functional equation (2.14)? 

 

2.5 Systems of Units 

We have already noted that units are numerical measures derived from standards. Thus, units are 

fractions or multiples of those standards. The British system has long been the most commonly 

used system of units in the United States. In the British system, length is typically referenced in 

feet, force in pounds, time in seconds, and mass in slugs. The unit of pound force is defined as 

that force that imparts an acceleration of 32.1740 ft/sec2 to a mass of 1/2.2046 of that piece of 

platinum known as the standard kilogram. While keeping in mind the distinction between 

dimensions and units, it is worth noting that the fundamental reference quantities in the British 

system of units (foot, pound, second) are based on the primary dimensions of length (L), force 

(F), and time (T). 

 

Table 2.3 The British and SI systems of units, including abbreviations and (approximate) 

conversion factors. 



Reference Units British System SI System 

length  

time  

mass  

force 

foot (ft)  

 second (sec)  

 slug (slug), pound mass (lbm) 

 pound force (lb) 

meter (m) 

second (s) 

kilogram (kg) 

newton (N) 

Multiply number of by to get 

feet (ft)  

inches (in)  

miles (mi)  

miles per hour (mph)  

pounds force (lb)  

slugs (slug)  

pounds mass (lbm) 

0.3048  

 2.540  

 1.609  

 0.447  

 4.448  

 14.59  

 0.454 

meters (m) 

 centimeters (cm) 

 kilometers (km) 

 meters per second (m/s) 

 newtons (N) 

 kilograms (kg) 

 kilograms (kg) 

In a belated acknowledgment that the rest of the world (including Britain!) uses metric 

units, a newer system of units is increasingly being adopted in the United States. The Système 

International, commonly identified by its initials, SI, is based on the mks system used in physics 

and it references length in meters, mass in kilograms, and time in seconds. The primary 

dimensions of the SI system are length (L), mass (M), and time (T). Force is a derived variable in 

the SI system and it is measured in newtons. In Table 2.3 we summarize some of the salient 

features of the SI and British systems, including the abbreviations used for each unit and the 

(approximate) conversion factors needed to navigate between the two systems. 

Finally, we show in Table 2.4 some of the standard prefixes used to denote the various 

multiplying factors that are commonly used to denote fractions or multiples of ten (10). To cite a 

familiar example, in the metric system distances are measured in millimeters (mm), centimeters 

(cm),meters (m), and kilometers (km). 

Table 2.4 Some standard numerical factors that are commonly used in the SI system 

Numerical factors (SI) Prefix (symbol) 

10−9 

10−6 

10−3 

10−2 

103 

106 

109 

1012 

nano (n) 

micro (µ) 

milli (m) 

centi (c) 

kilo (k) 

mega (M) 

giga (G) 

tera (T) 

It is worth noting that some caution is necessary in using the prefixes listed in Table 2.4 

because this usage is not universally uniform. For example, the measures used for computer 

memory are kilobytes (KB), megabytes (MB) and increasingly often these days, gigabytes (GB) 



and terabytes (TB). The B’s stand for bytes. However, the prefixes kilo, mega, giga, and tera, 

respectively stand for 210,220,230, and 240, which is rather different than what we are using! 

To finish off our discussion of numbers we add one final set of approximate equalities, 

for their interest and possible usefulness: 

210 ≅ 𝑒7 ≅ 103.     (2.33) 

 

2.6 Summary 

In this chapter we have described an important aspect of problem formulation and 

modeling, namely, dimensional analysis. Reasoning about the dimensions of a problem requires 

that we (1) identify all of the physical variables and parameters needed to fully describe a 

problem, (2) select a set of primary dimensions and variables, and (3) develop the appropriate set 

of dimensionless groups for that problem. The last step is achieved by applying either the basic 

method or the more structured Buckingham Pi theorem. The dimensionless groups thus found, 

along with their numerical values as determined from experiments or further analysis, help us to 

assess the importance of various effects, to buttress our physical insight and understanding, and 

to organize our numerical computation, our data gathering, and our design of experiments. 

We close by noting that while our use of the formal methods of dimensional analysis will 

be limited, we will use the concepts of dimensional consistency and dimensional groups 

extensively. We will see these concepts when we discuss scaling, when we formulate models, 

and when we solve particular problems. In so doing, we will also keep in mind the distinction 

between dimensions and units, and we will also ensure the consistency of units. 

 

 

 

Problems 

2.13. Consider a string of length l that connects a rock of mass m to a fixed point while 

the rock whirls in a circle at speed v. Use the basic method of dimensional analysis 

to show that the tension T in the string is determined by the dimensionless group 

𝑇𝐿

𝑚𝑣2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2.14. Apply the Buckingham Pi theorem to confirm the analysis of Problem 2.13. 

2.15. The speed of sound in a gas, c, depends on the gas pressure p and on the gas mass 

density ρ. Use dimensional analysis to determine how c, p, and are related. 

2.16. A dimensionless grouping called the Weber number, We , is used in fluid mechanics 

to relate a flowing fluid’s surface tension, σ, which has dimensions of force/length, 

to the fluid’s speed, v, density, ρ, and a characteristic length, l . Use dimensional 

analysis to find that number. 

2.17. A pendulumswings in a viscous fluid. Howmany groups are needed to relate the 

usual pendulum variables to the fluid viscosity, µ, the fluid mass density, ρ, and the 

diameter d of the pendulum? Find those groups. 

2.18. The volume flow rate Q of fluid through a pipe is thought to depend on the pressure 

drop per unit length, Δp/l , the pipe diameter, d, and the fluid viscosity, µ. Use the 



basic method of dimensional analysis to determine the relation: 

𝑄 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (
𝑑4

𝜇
) (

∆𝑝

𝑙
) 

2.19. Apply the Buckingham Pi theorem to confirm the analysis of Problem 2.18. 

2.20. When flow in a pipe with a rough inner wall (perhaps due to a buildup of mineral 

deposits) is considered, several variables must be considered, including the fluid 

speed v, its density ρ and viscosity µ, and the pipe length l and diameter d. The 

average variation e of the pipe radius can be taken as a measure of the roughness of 

the pipe’s inner surface. Determine the dimensionless groups needed to determine 

how the pressure drop Δp depends on these variables. 

2.21. Use dimensional analysis to determine how the speed of sound in steel depends on 

themodulus of elasticity, E, and themass density, ρ. (The modulus of elasticity of 

steel is, approximately and in British units, 30 × 106 psi.) 

2.22. The flexibility (the deflection per unit load) or compliance C of a beam having a 

square cross-section d × d depends on the beam’s length l , its height and width, and 

its material’s modulus of elasticity E. Use the basic method of dimensional analysis 

to show that: 

𝐶𝐸𝑑 = 𝐹𝐶𝐸𝑑 (
𝑙

𝑑
) 

2.23. Experiments were conducted to determine the specific form of the function FCEd(l/d) 

found in Problem 2.22. In these experiments it was found that a plot of log10(CEd) 

against log10(l/d) has a slope of 3 and an intercept on the log10(CEd) scale of −0.60. 

Show that the deflection under a load P can be given in terms of the second moment 

of area I of the cross section (I = d4/12) as 

𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑎𝑑 × 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 = 𝑃 × 𝐶 =
𝑃𝐿3

48𝐸𝐼
 

 


