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Operator perturbation theory and the symmetry properties of the axially symmetric XYZ3 (C3v) type molecules are used for
the determination of the spectroscopic parameters in the form of functions of structural parameters and parameters of the
intramolecular potential function. Several relations between sets of spectroscopic parameters of these molecules are obtained.
The ‘expanded local mode’ model and the general isotopic substitution theory are used to estimate the relations between
spectroscopic parameters of CH3D and CHD3, on one hand, and with the Td symmetric isotopic species, CH4, on the other
hand. Test calculations with the isotopic relations show that even without including prior information about the CH3D and
CHD3 species, numerical results of calculations are in a good agreement both with experimental data and with results of ab
initio calculations.

Keywords: methane; isotope effects; effective Hamiltonians; energy levels; infrared spectra

1. Introduction

For many years high-resolution rotational–vibrational (ro-
vibrational) spectroscopy has been and still continues to
be the source of the most precise and accurate information
about the structure and dynamics of molecules [1]. Informa-
tion that may be extracted from highly accurate experiments
in the microwave, infrared, and visible regions can then be
used in numerous ways to solve problems of pure and ap-
plied science in the areas of physical chemistry, astrophysics
and planetology, in the study of the Earth’s atmosphere, and
in dealing with environmental problems. Extracting phys-
ical information from high-resolution spectra is based on
the treatment of two closely connected problems: the mathe-
matical modelling of intramolecular interactions, first of all
in terms of the intramolecular potential energy hypersurface
(PES), and second, the methods of assignments of spectral
lines in experimentally recorded spectra. The assignment
of spectral lines often is a very complicated problem, espe-
cially for highly excited vibrational states with the presence
of numerous interactions.

As an illustration we may mention the methane
molecule and its different deuterated isotopomers. The
spectra of methane have been the subject of spectroscopic
study for about 150 years with an early mentioning of the
methane spectrum in 1862 [2]. High-resolution spectra of
methane and its isotopomers have also been analysed over
a period of more than 70 years, the recent publications

∗
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[3–8] being a guide to the extensive literature. It should be
mentioned here that, in spite of an extensive effort under-
taken during this time, only the region below 6000 cm−1

has been analysed in detail so far. Until recently, only some
restricted small wavenumber regions above 6000 cm−1

have been analysed with high resolution in [5,9,10] for the
CH4 molecule, and the CH-infrared-chromophore bands
of the CHD3 and CH3D isotopomers were partially anal-
ysed in [11–18], particularly also in view of the strong
CH stretching–bending Fermi resonance in CHD3 [19].
More recently some systematic investigations of the high-
resolution spectra in the region above 6000 cm−1 of both
methane, CH4, and its three deuterated isotopomers have
begun [4,6,20–28] (see also earlier papers [29,30]). The
most important difficulty in the study of methane spectra in
the shorter wavelength region resides in the assignment of
the numerous observable transitions and the further theoret-
ical analysis of the very complicated ro-vibrational struc-
ture of all of the methane isotopomers. In order to solve
this problem, one needs a prediction of line positions in the
short-wavelength region on the basis of spectroscopic pa-
rameters: rotational parameters, vibrational frequencies and
anharmonic coefficients, and different kinds of Coriolis-
and Fermi-type interaction coefficients.

It would be very helpful in such analyses to be able to
derive spectroscopic parameters for different isotopomers
of a molecule (say, CH3D and CHD3), if the parameters of

C© 2014 Taylor & Francis
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one isotopomer are known (say, CH4 or of either CH3D or
CHD3). This is in principle possible in the framework of the
adiabatic or Born–Oppenheimer approximation. The usual
approach consists of deriving a potential hypersurface for
the molecule on the basis of spectroscopic parameters of
one isotopomer. This implies solving the ‘inverse spectro-
scopic problem’ which is possible, even if some additional
constraints or approximations are necessary. One such con-
straint might be a predicted analytical structure of the po-
tential hypersurface with a sufficiently small number of pa-
rameters [31,32]. These are derived from the spectroscopy
of the main species (say, CH4), and then with the aid of
that potential hypersurface, the spectra of other species
(say, CH3D) can be calculated, best by variational meth-
ods. However, such a procedure is very difficult and costly
as well and at present hardly feasible for five-atom species
such as methane. Therefore, an alternative approach would
be to derive directly spectroscopic or effective Hamilto-
nian parameters of an isotopomer, given the spectroscopic
parameters of another isotopomer. This can be achieved
by ‘isotopic substitution theory’. The basic hypotheses and
assumptions of this approach are as follows:

(1) An intramolecular potential hupersurface being
written in terms of the ‘natural’, �ri/�αij, or sym-
metrised, Sm, vibrational coordinates has exactly the
same form for every isotopomer of a molecule in
the framework of the Born–Oppenheimer approxi-
mation.

(2) To express the spectroscopic parameters of a
molecule in analytical form as functions of force
field parameters, it is necessary, first of all, to
make a transformation from vibrational coordinates
�ri/�αij, or Sm to normal-mode coordinates, Qλ

(in other words, to make a transformation from the
Fi. . .j, or fl. . .m parameters to a set of kλ. . .μ). In this
case, both the normal-mode coordinates and sets
of parameters kλ. . .μ will be different for different
isotopomers. The problem is how to connect the pa-
rameters kλ. . .μ of different isotopomers with each
other.

(3) This problem was solved in [33,34] where it was
shown that a solution strongly depends on the
relations between so-called transformation coeffi-
cients, lNαλ (the index N enumerates the nuclei of a
molecule, α = x, y, z, and the index λ enumerates
the vibrational modes), of the pairs of isotopomers
considered.

In the recent publications [35,36], we proposed the use of
the ‘expanded local mode’ approach [37–39] and isotopic
substitution theory (see, e.g. [34]) for the determination of
isotopic relations that allow one to predict with satisfactory
accuracy values of different spectroscopic parameters of
CH2D2 on the basis of information about values of spec-

troscopic parameters of CH4 only. In the present work, we
present analogous isotopic substitution results for the C3v-
symmetric deuterated methane species, CH3D and CHD3.
In this case, because of the C3v symmetry of CH3D and
CHD3, we use for analysis theorems and statements of the
theory of irreducible tensorial sets [40–42] (see also [43]).

The present paper is organised as follows. Section 2
presents briefly the necessary information about sym-
metrised wavefunctions and operators which is essential
for further analysis. The effective rotational operator ma-
trix that can be used for the analysis of different polyads of
interacting vibrational states in the XYZ3 (C3v) molecules
is derived in Section 3. Section 4 presents general formulae
of operator perturbation theory which are used in Section 5.
In Section 5, we present general formulae that allow one
to calculate the most important spectroscopic parameters
of the effective rotational Hamiltonian in the form of an-
alytical functions of the structural parameters and param-
eters of the intramolecular potential energy surface of the
XYZ3 molecule. It should be mentioned that the equations
derived here give us the possibility to determine numer-
ous relations between different spectroscopic parameters
of the XYZ3 molecule. Sections 6 and 7 present the ‘ex-
panded local mode’ information about the CH4 molecule
and some extraction from the isotopic substitution theory,
respectively, which are then used in Section 8 for the de-
termination of isotopic relations in the substitutions CH3D
←CH4 and CHD3 ←CH4. Figure 1 shows the structure of
CH4, CH3D, and CHD3, and the axis definitions used in the
present work.

2. Symmetrised operators and wavefunctions of the
XYZ3 (C3v) molecule using irreducible tensorial
sets

The XYZ3 (C3v) molecule is a symmetric top, and its nine
vibrational modes have the symmetries A1 or E. In this
case, we have three non-degenerate modes qj (j = 1, 2, 3)
∈ A1 and three doubly degenerate modes qλ1 and qλ2 (λ =
4, 5, 6) ∈ E. The presence of degenerate modes in a sym-
metric top molecule leads to a complicated picture of their
ro-vibrational spectra, especially in excited overtone and
combination bands. Therefore, the most suitable approach
to study such molecules uses their symmetry properties on
the basis of theorems and results of the theory of irreducible
tensorial sets.

2.1. Rotational irreducible operators

(1) Irreducible rotational operators of the SO(3) group. In
accordance with general statements of the theory of irre-
ducible tensorial sets (see [40–42,44]), the basic first-rank
irreducible rotational operators R

�(K)
m (m = 0, ±1, . . . , ±K)
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Molecular Physics 2531

Figure 1. Equilibrium structures of the CH4 (II), CH3D (I), and CHD3 (III) molecules and axis definitions used in the present work. The
symbols x, y, and z refer to the axis definitions for the Td (II) and C3v (I and III) symmetry groups used in the classification of the states.
The symbols in parentheses refer to the Cartesian axis definitions of the prolate and oblate symmetric top molecules. The figures are to
scale.

can be chosen to be of the following form:

R
1(1)
1 = − 1√

2
(Jx − iJy) ≡ −J+,

R
1(1)
−1 = 1√

2
(Jx + iJy) ≡ J−,

R
1(1)
0 = Jz ≡ J0. (1)

In the operators R
�(K)
m , the following notations are used:

� is the total degree of rotational operators Jα , α = x, y, z
(for example, for � = 1, R1(...)

... ∼ Jα; for � = 2, R2(...)
... ∼

JαJβ ; etc.); the indices K and m indicate the irreducible
representation D(K) of the SO(3) symmetry group and its
mth line. Irreducible rotational operators R

�+1(K+1)
m̃ can be

constructed from the corresponding irreducible rotational
operators R

�(K)
m (m = 0, ±1, . . . , ±K) and R

1(1)
l (l = 0, ±1)

of lower degree and rank in accordance with the general
rule [44],

R
�+1(K+1)
m̃ =

∑
l=−1,0,1

CK+1 m̃
K m̃−l,1 lR

�(K)
m̃−l R

1(1)
l , (2)

where the CK+1 m̃
K m̃−l,1 l are Clebsch–Gordan coefficients [42].

Irreducible rotational operators R
�(K)
m with K < � (in this

case, the parity of � and K must be the same; as was shown
in [44], operators R

�(K)
m with different parities of the values

of � and K are reduced to operators R
�̃(K)
m = R

�−1(K)
m ,

where the parities of the numbers �̃ and K are the same)
are constructed as

R�(K)
m = RK(K)

m (R2(0))(�−K)/2, (3)

where

R2(0) = − 1√
3

{
J 2

0 + 1

2
(J+J− + J−J+)

}
= − 1√

3

(
J 2

x + J 2
y + J 2

z

)
. (4)

(2) Irreducible rotational operators of the C3v group. Differ-
ent rotational operators, R

�(K,n�)
σ , which are symmetries in

accordance with the irreducible representations, �, of the
C3v symmetry group, can be easily constructed from the
operators R

�(K)
m by using the following general relations

[44,45]:

R�(K,n�)
σ =

∑
m

(K)Gm
n�σ R�(K)

m . (5)

The so-called reduction matrix elements, (K)Gm
n�σ , which

are presented in Equation (5), are determined by the point
group considered. In particular, for the C3v group, these ele-
ments, taken from [44], are presented in the Appendix A. If
one takes into account Equations (1)–(5) and the data from
the Appendix, then one can easily construct all possible ir-
reducible rotational operators of the C3v symmetry group.
For illustration, the first of them (for both the SO(3) and
the C3v symmetry groups) are presented in Appendix B.
The qualitative level structure and the nomenclature of
the rotational states are summarised in Figure 2 (see also
Appendix A).

D
ow

nl
oa

de
d 

by
 [

T
om

sk
 S

ta
te

 U
ni

ve
rs

ity
] 

at
 0

2:
59

 1
7 

O
ct

ob
er

 2
01

4 



2532 O.N. Ulenikov et al.

Figure 2. Nomenclature of states of different species for a given value of quantum number J: (a) J is divisible by 3; (b) J − 1 is divisible
by 3; (c) J + 1 is divisible by 3. It should be noted that the indices n� determine uniquely the index K and vice versa; for nA the indices

are K = 3n at 0 ≤ n ≤ { J
3

}
; for nE the indices are K = 3n + 1 at 0 ≤ n ≤

{
(J−1)

3

}
, or K = 3(n − (J−1)

3 ) − 1 at n ≥ 1 +
{

(J−1)
3

}
. The

symbol {B} denotes the integer part of the number B.
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2.2. Symmetrised vibrational operators

Because both the coordinates, qj, and conjugate momentum
operators, pj = −i�∂/∂qj (j = 1, 2, 3), are non-degenerate
and thus belong to the totally symmetric irreducible rep-
resentation A1, we discuss here only doubly degenerate vi-
brations qλs

(λ = 4, 5, 6 and s = 1, 2) and their conjugate
momenta pλs

. In this case, taking into account the proper-
ties of these operators (see, e.g. [44,46]), it is possible to
construct pairs of coordinates, qλ,E1 = qλ1 = 1

2 (q−
λ + q+

λ )
and qλ,E2 = −qλ2 = i

2 (q+
λ − q−

λ ) (λ = 4, 5, 6), that are
transformed in accordance with the first and second lines
of the irreducible representation E of the C3v group, re-
spectively. Similarly, pairs of momentum operators, pλ,E1 =
pλ1 = 1

2 (p−
λ + p+

λ ) and pλ,E2 = −pλ2 = i
2 (p+

λ − p−
λ ), also

belong to the irreducible representation E. Here the oper-
ators q+

λ /p+
λ and q−

λ /p−
λ are the creation and annihilation

operators that increase, or decrease, the value of the quan-
tum number l in the vibrational functions, where the |v l〉 are
eigenfunctions of a doubly degenerate harmonic oscillator:

〈v + 1 l ± 1|q±|v l〉 = ∓
(

v ± l + 2

2

)1/2

, (6)

〈v − 1 l ± 1|q±|v l〉 = ±
(

v ∓ l

2

)1/2

, (7)

and

〈v + 1 l ± 1|p±|v l〉 = ∓i�

(
v ± l + 2

2

)1/2

, (8)

〈v − 1 l ± 1|p±|v l〉 = ∓i�

(
v ∓ l

2

)1/2

. (9)

The symmetry properties of the elementary (first-degree)
vibrational operators allow one to construct the sym-
metrised second degree, third degree, etc., of vibrational
operators. For the construction of such operators, one can
use the general relation from Refs. [40,41,44]:

(A� ⊗ B�′
)γσ =

√
[γ ]
∑
ss ′

(
γ � �′

σ s s ′

)
A�

s B�′
s ′ . (10)

Here [γ ] is the dimension of the irreducible representation
γ (for the C3v group, [A1] = [A2] = 1, and [E] = 2). The

values
(

γ � �′
σ s s ′

)
are the so-called 3� symbols of a point

symmetry group (see, for more details, Refs. [40,44]) which
satisfy the conditions

(
γ � �′

σ s s ′

)
=
(

� �′ γ

s s ′ σ

)
=
(

�′ γ �

s ′ σ s

)
= (−1)γ+�+�′

(
� γ �′

s σ s ′

)

= (−1)γ+�+�′
(

γ �′ �

σ s ′ s

)
= (−1)γ+�+�′

(
�′ � γ

s ′ s σ

)
. (11)

Here the indices s, s′, and σ denote lines of the correspond-
ing irreducible representations (the indication of lines is
omitted for the one-dimensional irreducible representations
A1 and A2); (−1)A1 = ( − 1)E = − (−1)A2 = 1; the symbol
⊗ denotes the tensorial product. In this case, for the C3v

group, the non-zero 3� symbols are

(
A1 A1 A1

) = (A1 A2 A2
) = 1, (12)(

A1 E E

1 1

)
=
(

A1 E E

2 2

)
=
(

A2 E E

1 2

)
= −
(

A2 E E

2 1

)
= 1√

2
, (13)(

E E E

1 2 2

)
= −
(

E E E

1 1 1

)
= 1

2
. (14)

This allows one to construct any vibrational operator be-
longing to one of the irreducible representations of the C3v

symmetry group.

2.3. Vibration–rotation Hamiltonian
in a symmetrised form

The information from the previous subsections allows us
to derive the vibration–rotation Hamiltonian of a molecule
in a form that will be adapted to the symmetry proper-
ties of a molecule. Before presenting the Hamiltonian in
this form, we point out that in agreement with general ro-
vibrational theory (see, e.g. Refs. [46–48]), the Hamilto-
nian of a molecule can be presented in the following form,
Equations (15)–(22), being valid for nonlinear polyatomic
molecules without large amplitude motions:

H vib–rot/hc = 1

2

∑
a

ωb

(
p2

a + q2
a

)
+ 1

2

∑
αβ

μαβ(Jα − Gα)(Jβ − Gβ)

+
∑
abc

kabcqaqbqc+
∑
abcd

kabcdqaqbqcqd+ · · · .

(15)

The operators Gα and μαβ in Equation (15) have the fol-
lowing form:

Gα =
∑

a,b>a

ζ α
ab

[(
ωb

ωa

)1/2

qapb −
(

ωa

ωb

)1/2

qbpa

]
(16)
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2534 O.N. Ulenikov et al.

and

1

2
μαβ = 1

2

(
μe

αβ +
∑

a

μa
αβqa +

∑
ab

μab
αβqaqb + · · ·

)

= Be
αδαβ −

√
2
∑

a

(
Be

αBe
β

ω
1/2
a

)
ãαβ

a qa

+ 3

2

∑
γ ab

(
Be

αBe
βBe

γ

ω
1/2
a ω

1/2
b

)
ãαγ

a ã
γβ
b qaqb + · · · , (17)

where

ζ α
ab =

∑
N

∑
βγ

εαβγ lNβalNγ b (18)

(εαβγ being a completely antisymmetric tensor, εxyz =
εyzx = εzxy = εyxz = −εxzy = −εzyx = 1 and zero other-
wise):

ã
αβ
b = a

αβ
b

(
4πc

�

)1/2

, (19)

and

aαα
b = 2

∑
βγ

(
δβγ − δαβδαγ

)∑
N

m
1/2
N re

NβlNγ b, (20)

a
αβ
b = −2

∑
N

m
1/2
N lNαbr

e
Nβ, α �= β, (21)

Be
α = �

4πcI e
αα

= �

4πc

{∑
N

mN

[(
re
Nβ

2
)+ (re

Nγ
2
)]}−1

.

(22)

In Equation (22) the indices α, β, and γ are all different. The
transformation coefficients, lNβb, in Equations (18), (20),
and (21) are defined in vibration–rotation theory (see, e.g.
Refs. [46–48]) as coefficients which connect the Cartesian
coordinates of a nucleus in a molecule with mass-dependent
normal vibrational coordinates, Qb, as

rNβ = re
Nβ +

∑
b

m
−1/2
N lNβbQb.

In this case, the values re
Nα are equilibrium Cartesian coor-

dinates of a nucleus. One can show that the Hamiltonian,
Equation (15), being transformed to the symmetrised form
in agreement with the discussion above, will have the fol-
lowing form:

H vib–rot/(hc) =
√

[�a]

2

∑
a

ωa

{
(pa ⊗ pa)A1 + (qa ⊗ qa)A1

}
+ 1

2

∑
nm

∑
γ γ ′ γ̃

{μn,γ (q) ⊗ [(J γ ′−Gγ ′
) ⊗ (J γ̃ −Gγ̃ )]m,γ }A1 +Vanh.

(23)

The anharmonic part of the intramolecular potential en-
ergy surface, Vanh, for the XYZ3 molecule is presented in
Appendix C.

2.4. Symmetrised vibrational functions

Following the principles of the theory of irreducible ten-
sorial sets, a general vibrational wavefunction, |vγ vσ 〉, for
the ZXY3(C3v) molecule can be constructed as

|vγvσ 〉 = |v1 v2 v3〉{[|v4 l4 γ4〉
⊗|v5 l5 γ5〉]γ45 ⊗ |v6 l6 γ6〉}γσ . (24)

Here |v1 v2 v3〉 represents a wavefunction of the non-
degenerate vibrational modes q1, q2, and q3. Wavefunctions
that depend on the doubly degenerate vibrational modes
q4σ , q5σ , or q6σ (σ = 1, 2) are the tensorial products of
symmetrised elementary vibrational functions of the sepa-
rate degenerate modes, |v4 l4γ 4〉, |v5 l5γ 5〉, or |v6 l6γ 6〉 (the
elementary symmetrised vibrational functions, |vλ lλ γ λ〉,
λ = 4, 5, 6, are presented in Appendix D). Using the gen-
eral formula, Equation (10), it is possible to show that the
symmetrised functions, Equation (24), can be presented in
the form of one of the following four combinations:

|v, I±〉 = (−iφ)√
2

|v1 v2 v3〉(|vλlλ〉|vμlμ〉|vνlν〉
± |vλ − lλ〉|vμ − lμ〉|vν − lν〉), (25)

|v, II±〉 = (−iϕ)√
2

|v1 v2 v3〉(|vλ − lλ〉|vμlμ〉|vνlν〉
± |vλlλ〉|vμ − lμ〉|vν − lν〉), (26)

|v, III±〉 = (−iχ )√
2

|v1 v2 v3〉(|vλlλ〉|vμ − lμ〉|vνlν〉
± |vλ − lλ〉|vμlμ〉|vν − lν〉), (27)

|v, IV±〉 = (−iψ )√
2

|v1 v2 v3〉(|vλlλ〉|vμlμ〉|vν − lν〉
± |vλ − lλ〉|vμ − lμ〉|vνlν〉). (28)

Here the phases can be equal to ±i, or ±1; pairs of functions
(. . . ± . . .) where the signs ± inside the parentheses are
related to the functions as transforming in accordance with
the E irreducible representation of the C3v group, or belong
to the A1/A2 irreducible representations, the relations being
not simply one to one.

3. Effective rotational Hamiltonian matrix:
symmetry properties

Following general vibration–rotation theory [44,46,47], the
Hamiltonian of a molecule can be reduced to a set of so-
called effective Hamiltonians, or, more generally, to a set
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of effective operator matrices of the form

H vib–rot =
∑
a,b

|a〉〈b|Ha,b. (29)

Here |a〉 and 〈b| are the vibrational basis functions; the oper-
ators Ha, b depend on rotational operators, Jα , only, and the
summation is carried out over all degenerate and interacting
vibrational states. In our case, because an XYZ3 molecule
has C3v symmetry, both the rotational operators, Ha, b, and
the vibrational functions, |a〉 and 〈b|, in Equation (29) have
to possess properties of irreducible tensorial sets belong-
ing to the C3v group. Thus, they have to be wavefunctions
and operators as discussed in the previous section, and the
effective operator, Equation (29), has to be rewritten in the
form that takes into account the symmetry properties of
rotational operators and vibrational functions:

H vib–rot =
∑

vlγ,v′l′γ ′

∑
n�

[(|v l γ 〉 ⊗ 〈v′l′ γ ′|)n� ⊗ Hn�
vlγ,v′l′γ ′ ]A1 ,

(30)

where, in agreement with the presence of three different ir-
reducible representations of the C3v group, the indices γ , γ ′,
and � can take the values A1,A2, or E. In this case, different
combinations of the indices γ , γ ′, and � in Equation (30)
lead to different forms of rotational operators Hn�

vlγ,v′l′γ ′ .

3.1. Diagonal blocks of A1 and/or A2 symmetry

General symmetry properties of the ZXY3 (C3v) molecule
allow one to obtain operators of diagonal blocks of A1 or
A2 symmetry in the following form:

HvAλ,vAλ
= |vAλ〉〈vAλ|

{
EvAλ + AvAλ

(
J 2

x + J 2
y

)
+BvAλJ 2

z − D
vAλ

J J 4 − D
vAλ

JK J 2J 2
z − D

vAλ

K J 4
z

+H
vAλ

J J 6 + H
vAλ

JK J 4J 2
z + H

vAλ

KJ J 2J 4
z

+H
vAλ

K J 6
z + L

vAλ

J J 8 + · · ·
+
{[(

1

2
εvAλ+1

2
ε

vAλ

J J 2+ε
vAλ

K J 2
z + · · ·

)
,

(J 3
+−J 3

−)

]
+

+ [(ε′vAλJz + ε
′vAλ

J JzJ
2

+ ε
′vAλ

K J 3
z + · · · ), (J 3

+ + J 3
−
)]

+

+h′vAλ
(
J 6

+ + J 6
−
)+ · · ·

}
. (31)

Here BvAλ, CvAλ,D
vAλ

J ,D
vAλ

JK ,D
vAλ

K ,H
vAλ

J ,H
vAλ

JK ,H
vAλ

KJ ,

H
vAλ

K , L
vAλ

J , . . . are the rotational and centrifugal distortion
parameters. The operators (J 3

+ + J 3
−) connect the rotational

states |Jk〉 and |Jk′〉 (−J ≤ k, k′ ≤ J) with different val-
ues of the quantum numbers k, namely �k = k − k′ = ±

3 (the corresponding operators J+ , J−, and J0 are given
in Equation (1)). They account, in particular, for the a1/a2

splittings of K = 3 (K = |k|) levels. The parameters ε
Aλ

J /ε
′Aλ

J ,
ε

Aλ

K /ε
′Aλ

K , . . .describe the J and K dependencies of the main
εAλ/ε′Aλ parameter. The expression [. . . , . . .]+ denotes an
anticommutator.

3.2. Diagonal blocks of E symmetry

For doubly degenerate vibrational states, the HvE,vE opera-
tor is

HvE,vE = H
(1)
vE,vE + H

(2)
vE,vE + H

(3)
vE,vE, (32)

where

H
(1)
vE,vE = (|vE1〉〈vE1| + |vE2〉〈vE2|)

{
EvE

+AvE
(
J 2

x + J 2
y

)+ BvEJ 2
z − DvE

J J 4

−DvE
JKJ 2J 2

z − DvE
K J 4

z + HvE
J J 6 + HvE

JKJ 4J 2
z

+HvE
KJ J 2J 4

z + HvE
K J 6

z +LvE
J J 8+ · · ·

+
{[(

1

2
εvE + 1

2
εvE
J J 2 + εvE

K J 2
z + · · ·

)
,

(J 3
+ − J 3

−)

]
+

+ [(ε′vEJz + ε′vE
J JzJ

2

+ ε′vE
K J 3

z + · · · ), (J 3
+ + J 3

−
)]

+

}
, (33)

H
(2)
vE,vE = (|vE1〉〈vE2| − |vE2〉〈vE1|)

{
ηvEJz + ηvE

J JzJ
2

+ ηvE
K J 3

z + ηvE
JJ JzJ

4 + ηvE
JKJ 3

z J 2 + ηvE
KKJ 5

z

+ ηvE
JJJ JzJ

6 + ηvE
JJKJ 3

z J 4 + ηvE
JKKJ 5

z J 2

+ ηvE
KKKJ 7

z + · · ·
}
, (34)

and
H

(3)
vE,vE = (|vE2〉〈vE2| − |vE1〉〈vE1|)

{[
iAvE, (J+− J−)

]
+

+ [BvE, (J+ + J−)
]
+ + [CvE,

(
J 2

+ + J 2
−
)]

+
+ [iDvE,

(
J 2

− − J 2
+
)]

+ + [FvE,
(
J 4

+ + J 4
−
)]

+
+ [iGvE,

(
J 4

− − J 4
+
)]

+
}+ (|vE1〉〈vE2|

+ |vE2〉〈vE1|)
{[

AvE,
(
J+ + J−

)]
+

+ [iBvE,
(
J− − J+

)]
+ + [iCvE,

(
J 2

+ − J 2
−
)]

+
+ [DvE,

(
J 2

+ + J 2
−
)]

+ + [iF vE,
(
J 4

+ − J 4
−
)]

+
+ [GvE,

(
J 4

+ + J 4
−
)]

+
}
, (35)

AvE = 1

2
αv + 1

2
αv

J J 2 + αv
KJ 2

z + 1

2
αv

JJ J 4 + αv
JKJ 2J 2

z

+αv
KKJ 4

z + · · · + αv
JJKJ 4J 2

z

+ · · · + αv
JKKJ 2J 4

z + · · · ,
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BvE = βvJz + βv
J JzJ

2 + βv
KJ 3

z + βv
JJ J 4Jz

+βv
JKJ 2J 3

z + · · · ,
CvE = 1

2
γ v + 1

2
γ v

J J 2 + γ v
KJ 2

z + 1

2
γ v

JJ J 4

+ γ v
JKJ 2J 2

z + · · · + γ v
JJKJ 4J 2

z + · · · ,
DvE = δvJz + δv

J JzJ
2 + δv

KJ 3
z + δv

JJ JzJ
4

+ δv
JKJ 2J 3

z + · · · ,
F vE = 1

2
κv + 1

2
κv

J J 2
z + κv

KJ 2
z + 1

2
κv

JJ J 4

+ κv
JKJ 2J 2

z + · · · ,
GvE = θvJz + θv

J JzJ
2 + θv

KJ 3
z + θv

JJ JzJ
4

+ θv
JKJ 2J 3

z + · · · . (36)

In Equation (33), the EvE,AvE, . . . , ε′vE
.. parameters have

the same meaning as the corresponding ones in Equation
(31) with one exception: although the operators (J 3

+ + J 3
−)

connect the rotational states |Jk〉 and |Jk′〉 with �k = k −
k′ = ± 3, they do not split a1/a2 levels. The operator
H

(2)
vE,vE describes the k–l splittings. Different operators,

(J n
+ ± J n

−), in H
(3)
vE,vE connect the rotational states |Jk〉 and

|Jk′〉 where �k = k − k′ = ± n. Here, the operators with
n = 2m provide the a1/a2 splittings of energy levels with
K = m.

3.3. Coriolis interaction blocks of the A1–E,
or A2–E, type

Coriolis interaction operators which connect vibrational
states of the A1/A2 symmetry, on one hand, and of the E
symmetry, on the other hand, have the following form:

HvA1,v′E = |vA1〉〈v′E1|
{
[iAvA1,v

′E, (J+ − J−)]+

+ [BvA1,v
′E, (J+ + J−)

]
+ + [CvA1,v

′E,
(
J 2

+ + J 2
−
)]

+
+ [iDvA1,v

′E,
(
J 2

− − J 2
+
)]

+ + [FvA1,v
′E,
(
J 4

+ + J 4
−
)]

+
+ [iGvA1,v

′E,
(
J 4

− − J 4
+
)]

+
}+ |vA1〉〈v′E2|

{
[AvA1,v

′E,

(J+ + J−)]+ + [iBvA1,v
′E, (J− − J+)

]
+ + [iCvA1,v

′E,(
J 2

+ − J 2
−
)]

+ + [DvA1,v
′E,
(
J 2

+ + J 2
−
)]

+ + [iF vA1,v
′E,(

J 4
+ − J 4

−
)]

+ + [GvA1,v
′E,
(
J 4

+ + J 4
−
)]

+
}

(37)

and

HvA2,v′E = −|vA2〉〈v′E2|
{
[iAvA2,v

′E, (J+ − J−)]+

+ [BvA2,v
′E, (J+ + J−)

]
+ + [CvA2,v

′E,
(
J 2

+ + J 2
−
)]

+
+ [iDvA2,v

′E,
(
J 2

− − J 2
+
)]

+ + [FvA2,v
′E,
(
J 4

+ + J 4
−
)]

+
+ [iGvA2,v

′E,
(
J 4

− − J 4
+
)]

+
}+ |vA2〉〈v′E1|

{[
AvA2,v

′E,

(J+ + J−)
]
+ + [iBvA2,v

′E, (J− − J+)
]
+ + [iCvA2,v

′E,

(
J 2

+ − J 2
−
)]

+ + [DvA2,v
′E,
(
J 2

+ + J 2
−
)]

+
+ [iF vA2,v

′E,
(
J 4

+ − J 4
−
)]

+ + [GvA2,v
′E,
(
J 4

+ + J 4
−
)]

+
}
.

(38)

The operators AvAiv
′E , BvAiv

′E , . . . , etc., can be derived
from Equation (36) by replacement of parameters αv , βv ,
. . .with αvai ,v

′e, βvai ,v
′e, . . . , etc. (i = 1, 2).

3.4. Coriolis interaction blocks of the A1–A2 type

The operator of the A1–A2 Coriolis type interactions has the
following form:

HvA1,v′A2 = |vA1〉〈v′A2|{ηvA1,v
′A2Jz + η

vA1,v
′A2

J JzJ
2

+ η
vA1,v

′A2
K J 3

z + η
vA1,v

′A2
JJ JzJ

4 + η
vA1,v

′A2
JK J 3

z J 2

+ η
vA1,v

′A2
KK J 5

z + η
vA1,v

′A2
JJJ JzJ

6 + η
vA1,v

′A2
JJK J 3

z J 4

+ η
vA1,v

′A2
JKK J 5

z J 2 + η
vA1,v

′A2
KKK J 7

z + · · ·}. (39)

3.5. Fermi interactions of the A1–A1, A2–A2,
or E–E type

In agreement with the general symmetry properties, oper-
ators of the Fermi-type interactions have exactly the same
form, as the diagonal operators, Equations (31)– (36), from
Sections 3.1 and 3.2. Of course, all the spectroscopic param-
eters, such as Evγ , Avγ , . . . , ηvE , . . . , αv ,. . . , etc. should be
replaced by the corresponding interaction parameters, such
as Fvγ,v′γ , . . . , ηvE,v′E , . . . , αv,v′

,. . . , etc.:

HvAλ,v′Aλ
= |vAλ〉〈v′Aλ|

{
FvAλ,v

′Aλ

+F
vAλ,v

′Aλ

A

(
J 2

x + J 2
y

)+ F
vAλ,v

′Aλ

B J 2
z − F

vAλ,v
′Aλ

DJ
J 4

−F
vAλ,v

′Aλ

DJK
J 2J 2

z − F
vAλ,v

′Aλ

DK
J 4

z + F
vAλ,v

′Aλ

HJ
J 6

+F
vAλ,v

′Aλ

HJK
J 4J 2

z + F
vAλ,v

′Aλ

HKJ
J 2J 4

z

+F
vAλ,v

′Aλ

HK
J 6

z + F
vAλ,v

′Aλ

LJ
J 8 + · · · + [(FvAλ,v

′Aλ

ε′ Jz

+F
vAλ,v

′Aλ

ε′
j

JzJ
2 + F

vAλ,v
′Aλ

ε′
k

J 3
z + · · ·), (J 3

+ + J 3
−
)]

+

+F
vAλ,v

′Aλ

h′
(
J 6

+ + J 6
−
)+ · · · }, (40)

where λ = 1 or 2 and

HvE,v′E = H
(1)
vE,v′E + H

(2)
vE,v′E + H

(3)
vE,v′E, (41)

where

H
(1)
vE,v′E = (|vE1〉〈v′E1| + |vE2〉〈v′E2|){FvE,v′E + F

vE,v′E
J(

J 2
x + J 2

y

)+ F
vE,v′E
K J 2

z − F
vE,v′E
JJ J 4 − F

vE,v′E
JK J 2J 2

z

−F
vE,v′E
KK J 4

z + F
vE,v′E
JJJ J 6 + F

vE,v′E
JJK J 4J 2

z

+F
vE,v′E
JKK J 2J 4

z + F
vE,v′E
KKK J 6

z + · · · + [(Fε′vE,v′EJz

+Fε′
J

vE,v′EJzJ
2 + Fε′

K

vE,v′EJ 3
z + · · ·), (J 3

+ + J 3
−)]+ · · ·},

(42)
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H
(2)
vE,v′E = (|vE1〉〈v′E2| − |vE2〉〈v′E1|)

{
ηvE,v′EJz

+ η
vE,v′E
J JzJ

2 + η
vE,v′E
K J 3

z + η
vE,v′E
JJ JzJ

4

+ η
vE,v′E
JK J 3

z J 2 + η
vE,v′E
KK J 5

z + η
vE,v′E
JJJ JzJ

6

+ η
vE,v′E
JJK J 3

z J 4 + η
vE,v′E
JKK J 5

z J 2

+ η
vE,v′E
KKK J 7

z + · · · }, (43)

and

H
(3)
vE,v′E = (|vE2〉〈v′E2| − |vE1〉〈v′E1|){[iAvE,v′E,

(J+ − J−)]+ + [BvE,v′E, (J+ + J−)]+ + [CvE,v′E,

(J 2
+ + J 2

−)]+ + [iDvE,v′E, (J 2
− − J 2

+)]+ + [FvE,v′E,

(J 4
+ + J 4

−)]+ + [iGvE,v′E, (J 4
− − J 4

+)]+}
+ (|vE1〉〈v′E2| + |vE2〉〈v′E1|){[AvE,v′E, (J+ + J−)]+
+ [iBvE,v′E, (J− − J+)]+ + [iCvE,v′E, (J 2

+ − J 2
−)]+

+ [DvE,v′E, (J 2
+ + J 2

−)]+ + [iF vE,v′E, (J 4
+ − J 4

−)]+
+ [GvE,v′E, (J 4

+ + J 4
−)]+}, (44)

AvE,v′E = 1

2
αvv′ + 1

2
αvv′

J J 2 + αvv′
K J 2

z + 1

2
αvv′

JJ J 4

+αvv′
JKJ 2J 2

z + αvv′
KKJ 4

z + · · · + αvv′
JJKJ 4J 2

z +
+αvv′

JKKJ 2J 4
z + · · · ,

BvE,v′E = βvv′
Jz + βvv′

J JzJ
2 + βvv′

K J 3
z + βvv′

JJ J 4Jz

+βvv′
JKJ 2J 3

z + · · · ,
CvE,v′E = 1

2
γ vv′ + 1

2
γ vv′

J J 2 + γ vv′
K J 2

z + 1

2
γ vv′

JJ J 4

+ γ vv′
JKJ 2J 2

z + · · · + γ vv′
JJKJ 4J 2

z + · · · ,
DvE,v′E = δvv′

Jz + δvv′
J JzJ

2 + δvv′
K J 3

z + δvv′
JJ JzJ

4

+ δvv′
JKJ 2J 3

z + · · · ,
F vE,v′E = 1

2
κvv′ + 1

2
κvv′

J J 2
z + κvv′

K J 2
z + 1

2
κvv′

JJ J 4

+ κvv′
JKJ 2J 2

z + · · · ,
GvE,v′E = θvv′

Jz + θvv′
J JzJ

2 + θvv′
K J 3

z + θvv′
JJ JzJ

4

+ θvv′
JKJ 2J 3

z + · · · . (45)

4. Effective rotational Hamiltonian matrix:
perturbation theory

In this section, we present general formulae of the so-called
projection modification of operator perturbation theory (see
also [49]) that can be used then for the calculation of differ-
ent spectroscopic parameters of the effective Hamiltonian,
Equations (29)–(45). In that modification, the effective op-
erator matrix has the form of Equation (29) (or Equation
(30)), and the rotational operators Hi, j on the right-hand
side of Equation (29) can be obtained in accordance with

the general equation

Hi,j = E0
i δij + 〈i|h|j〉 + 1

2

∑
k �∈�ij

〈i|h|k〉〈k|h|j〉

×
{

1

E0
i − E0

k

+ 1

E0
j − E0

k

}
+
∑

k,l �∈�ij

〈i|h|k〉〈k|h|l〉〈l|h|j〉

×
{

1

(E0
i − E0

k )(E0
i − E0

l )
+ 1

(E0
j − E0

k )(E0
j − E0

l )

}

−1

2

∑
k �∈�ij ;
m∈�ij

〈i|h|m〉〈m|h|k〉〈k|h|j〉
(E0

i − E0
k )(E0

m − E0
k )

−1

2

∑
k �∈�ij ;
m∈�ij

〈i|h|k〉〈k|h|m〉〈m|h|j〉
(E0

j − E0
k )(E0

m − E0
k )

+ · · · O(κ4). (46)

Here E0
i and |i〉 are eigenvalues and eigenfunctions of the

Hamiltonian H0:

H0|i〉 = E0
i |i〉; (47)

H0 is the zero-order part (operator of a sum of harmonic
oscillators) of the vibration-rotation Hamiltonian, Equation
(15) (or Equation (23)),

H vib–rot ≡ H0 + h. (48)

�ij is the space of states, |i〉 and |j〉, which are degenerate
or interact with each other.

Using the symmetry adapted operators and wavefunc-
tions of Section 2 in the general equation (46) is complicated
even to second order, not to speak about third and higher
orders of operator perturbation theory. Therefore, for our
calculations, we used special codes realised on the basis
of the computer languages MAPLE and MATHEMATICA.
The results of our calculations for some of the most im-
portant spectroscopic parameters of XYZ3 molecules are
presented in the next section.

5. Some spectroscopic parameters of the XYZ3 (C3v)
molecule as functions of structural and PES
parameters

In this section, we use all the above information for de-
riving general equations which determine the most im-
portant spectroscopic parameters of the Hvv Hamiltonian
of the XYZ3 (C3v) molecule as functions of its struc-
tural parameters (re

XY , re
YZ , αe

XYZ , and αe
ZiYZj

) and param-
eters ka of the intramolecular potential energy surface (see
Appendix C).
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5.1. Anharmonic coefficients, xab/xlλ lμ

It is well known (see, e.g. Refs. [46,47]) that the vibrational
energy (EvAλ , or EvE , in Equations (31) and (33)) of a
symmetric top molecule can be represented by the following
equation:

Ev... =
∑

a

ωa

(
va + da

2

)
+
∑
a≤b

xab

(
va + da

2

)

×
(

vb + db

2

)
+
∑
λ≤μ

xlλlμ lλlμ + · · · , (49)

where d = 1 for non-degenerate vibrations (denoted by the
indices i, j, l, m) and d = 2 for doubly degenerate vibrations
(λ, μ, ν), a = i, j, l, m, . . . , λ, μ, ν, ..

With the representation of the anharmonic potential
as a Taylor expansion up to quartic terms, as given in
Appendix C, the use of the operator perturbation theory
from Section 4 with the operator, Equation (23) (see also
Equations (C.1)–(C.3)), and symmetrised wave functions,
Equations (24)–(28) (taking into account also the phase
coefficients of functions from Appendix D), allows one to
obtain the following relations for anharmonic coefficients:

xii = 3

2
kiiii − 15

4

k2
iii

ωi

− 1

2

∑
j �=i

k2
iij

ωj

−
∑
j �=i

k2
iij

8(ωj + 2ωi)

−
∑
j �=i

k2
iij

8(ωj − 2ωi)
, (50)

xij = kiijj − 3kiiikijj

ωi

− 3kjjj kiij

ωj

−
∑
l �=i,j

kiilkjj l

ωl

−
{

k2
ijj

2(ωi + 2ωj )
+ k2

iij

2(ωj + 2ωi)

}

+
{

k2
ijj

2(ωi − 2ωj )
+ k2

iij

2(ωj − 2ωi)

}

−
∑
l �=i,j

k2
ij l

8

{
1

ωi + ωj + ωl

− 1

ωi + ωj − ωl

− 1

ωi − ωj − ωl

+ 1

ωi − ωj + ωl

}
, (51)

xiλ = kiiλλ − 3kiiikiλλ

ωi

−
∑
j �=i

kiij kjλλ

ωj

− k2
iλλ

2(ωi + 2ωλ)

+ k2
iλλ

2(ωi − 2ωλ)
−
∑
μ �=λ

k2
iλμ

8

{
1

ωi + ωλ + ωμ

− 1

ωi + ωλ − ωμ

+ 1

ωi − ωλ + ωμ

− 1

ωi − ωλ − ωμ

}
+ ω2

i + ω2
λ

ωiωλ

Be
x

(
ζ x
iλ2

)2
, (52)

xλλ = 3

2
kλλλλ −

∑
i

k2
iλλ

2ωi

− 15k2
λλλ

4ωλ

−
∑
μ �=λ

k2
λλμ

2ωμ

−
∑

i

k2
iλλ

8(ωi + 2ωλ)
−
∑
μ �=λ

k2
λλμ

8(ωμ + 2ωλ)

−
∑

i

k2
iλλ

8(ωi − 2ωλ)
−
∑
μ �=λ

k2
λλμ

8(ωμ − 2ωλ)
, (53)

xλμ = k
(1)
λλμμ + 1

2
k

(2)
λλμμ −

∑
i

kiλλkiμμ

ωi

− k2
λλμ

2(ωμ + 2ωλ)
+ k2

λλμ

2(ωμ − 2ωλ)

− k2
λμμ

2(ωλ + 2ωμ)
+ k2

λμμ

2(ωλ − 2ωμ)

−
∑

i

k2
iλμ

16

{
1

ωi + ωλ + ωμ

+ 1

ωi + ωλ − ωμ

+ 1

ωi − ωλ + ωμ

+ 1

ωi − ωλ − ωμ

}
−
∑

ν �=λ,μ

k2
λμν

8

{
1

ωλ + ωμ + ων

− 1

ωλ + ωμ − ων

+ 1

ωλ − ωμ + ων

− 1

ωλ − ωμ − ων

}
+ω2

λ + ω2
μ

ωλωμ

{
Be

x(ζ x
λ1μ2

)2 + Be
z

2
(ζ z

λ1μ2
)2

}
, (54)

xlλlλ = −1

2
kλλλλ + 21

4

k2
λλλ

ωλ

+
∑
μ �=λ

k2
λλμ

2ωμ

+
∑

i

k2
iλλ

8(ωi + 2ωλ)
−
∑
μ �=λ

k2
λλμ

8(ωμ + 2ωλ)

+
∑

i

k2
iλλ

8(ωi − 2ωλ)
−
∑
μ �=λ

k2
λλμ

8(ωμ − 2ωλ)

+Be
z (ζ z

λ1λ2
)2, (55)

and

xlλlμ =
∑

i

k2
iλμ

16

{
1

ωi + ωλ + ωμ

− 1

ωi + ωλ − ωμ

− 1

ωi − ωλ + ωμ

+ 1

ωi − ωλ − ωμ

}
+ k2

λλμ

2

{
2

ωμ

− 1

ωμ + 2ωλ

− 1

ωμ − 2ωλ

}
+ k2

λμμ

2

{
2

ωλ

− 1

ωλ + 2ωμ

− 1

ωλ − 2ωμ

}
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−
∑

ν �=λ,μ

k2
λμν

8

{
1

ωλ + ωμ + ων

− 1

ωλ + ωμ − ων

− 1

ωλ − ωμ + ων

+ 1

ωλ − ωμ − ων

}
+Be

z (ζ z
λ1μ2

)2 − 2Be
x(ζ x

λ1μ2
)2 + 2Be

z ζ
z
λ1λ2

ζ z
μ1μ2

. (56)

It should be mentioned that Equations (50)–(54) agree with
the analogous general equations from Ref. [46]. However,
there are differences in the expressions for the xl..l.. param-
eters. In particular, these parameters in [46] have the fol-
lowing form (in Equations (57)–(58), we kept the notations
from [46]):

xlt lt = −1

4

{
2ktttt +

∑
s ′

k2
t ts ′

ωs ′(
4ω2

t − ω2
s ′
)

− 4
∑

α

(
ζ

(α)
t,1;t,2

)2
Bαα

e

}
(57)

and

xlt lt ′ =
∑

α

(
ζ

(α)
t,1;t,2ζ

(α)
t ′,1;t ′,2

)
Bαα

e , (58)

which is different from the corresponding equations (55)
and (56). Thus, we think that the corresponding equations
in [46] are not correct.

5.2. Ro-vibrational coefficients, α
β

b

The ro-vibrational coefficients α
β
a are the parameters that

describe the main part of the vibrational dependence of the
rotational parameters, Bv

β :

Bv
β = Be

β −
∑

b

α
β
b

(
vb + db

2

)
+ · · · (59)

To calculate the parameters α
β
b , one should take into ac-

count that for the XYZ3 (C3v) molecule only the following
a

αβ
b coefficients (see Equations (20) and (21)) are different

from zero: axx
i = a

yy
i , azz

i (i = 1, 2, or 3); axz
λ1

= azx
λ1

=
a

yz
λ2

= a
zy
λ2

, and axx
λ1

= −a
yy
λ1

= −a
xy
λ2

= −a
yx
λ2

(λ = 4, 5, or
6); and, additionally, Be

x = Be
y . Taking into account these

relations and the general equations (16)–(22), the use of
operator perturbation theory from Section 4 allows one to
obtain the following relations for the a

αβ
b coefficients:

α
β
i = −3

2

(Be
β)3

ωi

(̃
a

ββ
i

)2
− 3

√
2

ω
3/2
i

(
Be

β

)2
ã

ββ
i kiii

−
∑
j �=i

√
2

ω
3/2
j

(
Be

β

)2
ã

ββ
j kiij −

∑
λ

(Be
xζ

x
iλ2

)2

ωiωλ

×
{

(ωi + ωλ)2

ωi − ωλ

− (ωi − ωλ)2

ωi + ωλ

}
(1 − δβz), (60)

αx
λ = α

y
λ = −3

4

(Be
x)2

ωλ

{2Be
x (̃axx

λ1
)2 + Be

z (̃axz
λ1

)2}

−
∑

i

√
2

ω
3/2
i

(Be
x)2ãxx

i kiλλ

−
∑
μ �=λ

(Be
xζ

x
λ1μ2

)2

ωλωμ

{
(ωλ + ωμ)2

ωλ − ωμ

− (ωλ − ωμ)2

ωλ + ωμ

}

−
∑

i

(Be
xζ

x
iλ2

)2

2ωiωλ

{
(ωλ + ωi)2

ωλ − ωi

− (ωλ − ωi)2

ωλ + ωi

}
, (61)

and

αz
λ = −3

2

Be
x(Be

z )2

ωλ

(̃axz
λ1

)2 −
∑

i

√
2

ω
3/2
i

(Be
z )2ãxx

i kiλλ

−
∑
μ �=λ

(Be
z ζ

z
λ1μ2

)2

ωλωμ

{
(ωλ + ωμ)2

ωλ − ωμ

− (ωλ − ωμ)2

ωλ + ωμ

}
.

(62)

Equilibrium rotational parameters, Be
β , and coefficients,

a
αβ
b , are determined by Equations (19)–(22).

5.3. Centrifugal distortion coefficients DJ, DJK,
DK, and parameter ε′

Centrifugal distortion coefficients DJ, DJK, DK, and the
parameter ε′, which is responsible for the a1/a2 splittings
in (K = 3) rotational states in vibrational states of A1 or
A2 symmetry, being calculated using the equations of Sec-
tion 4, have the following form:

D
Aλ

J = DE
J =
∑

i

{
(Be

x)2ãxx
i

ωi

}2

+
∑

λ

{
(Be

x)2ãxx
λ1

ωλ

}2

,

(63)

D
Aλ

JK = DE
JK =

∑
i

2(Be
x)2ãxx

i

ω2
i

{(Be
z )2ãzz

i − (Be
x)2ãxx

i }

+
∑

λ

2(Be
x)2

ω2
λ

{2(Be
z )2(̃axz

λ1
)2 − (Be

x)2(̃axx
λ1

)2}, (64)

D
Aλ

K = DE
K =
∑

i

{
(Be

x)2ãxx
i − (Be

z )2ãzz
i

ωi

}2

+
∑

λ

{
Be

x

ωλ

}2 {(
Be

xã
xx
λ1

)2 − (2Be
z ã

xz
λ1

)2}
, (65)

and

ε′Aλ = ε′E =
∑

λ

1

ω2
λ

(
Be

x

)3
Be

z ã
xx
λ1

ãxz
λ1

. (66)
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5.4. Parameters of Coriolis splittings, ηvE ,
Coriolis interaction parameters, ηv A1,v A2 ,
and Fermi interaction parameters, ηvnE,vmE

Using the (−2Be
zGzJz) part of the Hamiltonian H vib–rot in

Equation (15) in the first-order term of operator perturba-
tion theory (Section 4), one can easily obtain the main parts
of three different types of spectroscopic parameters: param-
eters of Coriolis splittings ηvE , Equation (34), parameters
ηvA1,vA2 , Equation (39), and parameters ηvnE,vmE (n, m =
1, 2, . . . and n �= m), Equation (43), which describe Corio-
lis and Fermi interaction, respectively, between vibrational
states having the same set of quantum numbers va, but dif-
ferent sets of quantum numbers lλ. In this case, the result
can be written as

ηv�,v�′ = −2iBe
z

(
cλζ

z
λ1λ2

lλ + cμζ z
μ1μ2

lμ + cνζ
z
ν1ν2

lν
)
.

(67)

Here ηv�,v�′ = ηvE,vE ≡ ηvE is a parameter of the k–l
splitting in Equation (34), ηv�,v�′ = ηvA1,vA2 is a param-
eter of Coriolis resonance interaction in Equation (39),
ηv�,v�′ = ηvnE,vmE is a parameter of Fermi resonance inter-
action in Equation (43), λ, μ, ν are different combinations
of values 4, 5, and/or 6, lλ, lμ, and lν are vibrational quan-
tum numbers in wavefunctions (v1, v2, v3, v4, l4, v5, l5, v6,
l6), and coefficients cλ for the most common situations are
presented in Table 1. The following can be inferred from
Table 1:

(1) The dependence of parameters η. . . on the values of
quantum numbers lλ/lμ/lν is not trivial.

(2) The general equation (67) allows to connect with
each other (and to make a prediction as a conse-
quence) not only parameters of the k–l splitting
in the E vibrational states, but also some Coriolis
and Fermi resonance interaction parameters. The
relations (67) do not depend on the values of the
quantum numbers vλ/vμ/vν .

As an illustration of the adequateness of the relations ob-
tained, we can mention the results of independent high-
resolution analyses of the ν5 and 2ν5 bands of the CHD3

molecule from Refs. [50] and [51]. In this case, the param-
eter ηv5=1E from Ref. [50] is 3.565753 cm−1 and ηv5=2E

from Ref. [51] is −2 × 3.596929 cm−1. One can see an
excellent agreement between both values. As one more il-
lustration, we can mention the results of a preliminary ro-
vibrational analysis of the ν5 + ν6 hybrid band of 13CH3D
[52] which can be compared with the results of the analysis
of the fundamental bands ν5 and ν6 [53]. In this case, k–l
splitting parameters in [53] are: ηv5=1E = −2.643331 cm−1

and ηv6=1E = + 6.283671 cm−1. As seen from Table 1, one
can expect that ηv5=v6=1A1,v5=v6=1A2 = + 8.927002 cm−1

and ηv5=v6=1E = −3.640340 cm−1. And, indeed, the cor-

responding parameters obtained from a preliminary fit to
experimental data for the ν5 + ν6 hybrid band have the val-
ues +8.82 cm−1 and −3.53 cm−1, a more than satisfactory
agreement between both pairs of values.

5.5. Parameters of the a1/a2 (K = 1) rotational
splittings, γ vE , Coriolis interaction
parameters, γ v Aλ,vE , and Fermi interaction
parameters, γ vnE,vmE

The parameters γ vE which describe the a1/a2 (K = 1) ro-
tational splittings in the vibrational states of E symmetry,
the Coriolis interaction parameters γ vAλ,vE , and the Fermi
interaction parameters γ vnE,vmE are the main parameters
related to the operators (J 2

+ + J 2
−)/(J 2

+ − J 2
−) in Equations

(35)–(36), (37)–(38), and (44)–(45). Using Equations (15)–
(22) and (46) it can be shown that all these effects can be
described by the parameters which have the form

γ v�,v�′ = d
(v)
λ γλ + d (v)

μ γμ + d (v)
ν γν, (68)

where λ, μ, and ν are different, and

γλ = −3

8

(Be
x)2Be

z

ωλ

(̃
axz

λ1

)2 − 3√
2

(Be
x)2ãxx

λ1

kλλλ

ω
3/2
λ

−
∑
μ′

1√
2

(Be
x)2ãxx

μ′
1

kλλμ′

ω
3/2
μ′

−
∑

i

(
Be

xζ
x
iλ2

)2
4ωiωλ

×
{

(ωi + ωλ)2

ωi − ωλ

+ (ωi − ωλ)2

ωi + ωλ

}
. (69)

(For γ μ or γ ν the index λ on the right-hand side of Equation
(69) should be changed to μ or ν, respectively.) For vλ +
vμ + vν ≤ 4, non-zero values of coefficients d (...)

... are
presented in Table 2.

As discussed in Section 5.4, Equations (68)–(69) allow
one to make predictions of different parameters on the basis
of known values of parameters γ vλ=1E of the fundamental
bands (the latter can be determined with high accuracy from
the analysis of a1/a2 (K = 1) splittings in the fundamen-
tal bands). This is especially important for the prediction
of resonance interaction parameters which are very often
determined from the fit with poor reliability. It is also seen
from Table 2 that the a1/a2 (K = 1) splitting parameters
γ vE are non-zero for the fundamental bands, νλ, but equal
to zero for the first overtone, 2νλ, and combination, νλ +
νμ, bands.

As an illustration of the adequacy of Equation (69),
we made a calculation of the γ v5=1E and γ v6=1E parame-
ters for the CH3D and CHD3 molecules using the potential
parameters from Ref. [54]. The result is presented in Ta-
ble 3. As seen from Table 3, there is a very good agreement
between calculated and experimental values of the γ v6=1E

(CH3D) and γ v5=1E (CHD3) parameters. The agreement
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Table 1. Values of non-zero coefficients c, Equation (67), used for the determination of parameters η.

lλ lμ lν cλ cμ cν ��̃a lλ lμ lν cλ cμ cν ��̃a

1 0 0 1 E 2 2 0 1 −1 A1/A2

2 0 0 −1 E 1 3 0 1 1E
3 0 0 −1 A1/A2 1 3 0 1 2E
4 0 0 1 E 1 3 0 1 1E/2E
5 0 0 −1 E 2 3 0 −1 1E
6 0 0 −1 A1/A2 2 3 0 −1 2E
1 1 0 −1 −1 E 2 3 0 1 1E/2E
1 1 0 −1 1 A1/A2 1 1 1 1 1 −1 1E
1 2 0 −1 1 E 1 1 1 1 −1 1 2E
1 2 0 −1 −1 A1/A2 1 1 1 −1 1 1 3E
2 2 0 1 1 E 1 1 1 1 1 1 A1/A2

aIn that column the type of parameter is presented: ��̃ = E corresponds to the ηvE k–l splitting parameter of Equation (34); ��̃ = A1/A2 corresponds to
the ηvA1,vA2 Coriolis interaction parameter of Equation (39); ��̃ = E/E corresponds to the ηvE,vE Fermi interaction parameter of Equation (43).

Table 2. Values of non-zero coefficients d, Equations (68) and (70), used for the determination of parameters γ v�,v�′
and βv�,v�′

.

vλ lλ vμ lμ vν lν � ṽλ̃lλ ṽμ̃lμ ṽν l̃ν �̃ d
(..)
λ d (..)

μ d (..)
ν

11 00 00 E 11 00 00 E 2
20 00 00 A1 22 00 00 E 4
11 11 00 E 11 11 00 A1 2 2
11 11 00 E 11 11 00 A2 2 −2
31 00 00 E 31 00 00 E 4
31 00 00 E 33 00 00 A1 2

√
3

31 00 00 E 33 00 00 A2 2
√

3
11 20 00 E 11 20 00 E 2
11 22 00 E 11 22 00 A1 2
11 22 00 E 11 22 00 A2 2
11 11 11 1E 11 11 11 2E 2
11 11 11 1E 11 11 11 3E 2
11 11 11 2E 11 11 11 3E 2
11 11 11 1E 11 11 11 A1 2
11 11 11 1E 11 11 11 A2 −2
11 11 11 2E 11 11 11 A1 2
11 11 11 2E 11 11 11 A2 −2
11 11 11 3E 11 11 11 A1 2
11 11 11 3E 11 11 11 A2 −2

vλ lλ vμ lμ vν lν � ṽλ̃lλ ṽμ̃lμ ṽν l̃ν �̃ d
(..)
λ d (..)

μ d (..)
ν

40 00 00 A1 42 00 00 E −4
√

3
42 00 00 E 44 00 00 E −4
20 20 00 A1 22 20 00 E 4
20 22 00 E 22 22 00 E 2

√
2

20 22 00 E 22 22 00 A1 2
√

2
20 22 00 E 22 22 00 A2 −2

√
2

11 31 00 E 11 31 00 A1 2 4
11 31 00 E 11 31 00 A2 2 −4
11 31 00 E 11 33 00 1E

√
6

11 31 00 E 11 33 00 2E
√

6
11 31 00 A1 11 33 00 1E

√
6

11 31 00 A2 11 33 00 1E
√

6
11 31 00 A1 11 33 00 2E −√

6
11 31 00 A2 11 33 00 2E −√

6
11 33 00 1E 11 33 00 1E 2
11 33 00 2E 11 33 00 2E −2
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2542 O.N. Ulenikov et al.

Table 3. Values of some a1/a2 splitting parameters, γ vE , of the CH3D and CHD3 isotopomers.

CH3D CHD3

Parameter Calculated Experimental [55] Calculated Experimental [50]

γ v5=1E /10−3 cm−1 −1.03 0.72 −5.87 −5.95
γ v6=1E /10−3 cm−1 −16.90 −17.53 12.1 16.8

between calculated and experimental values of the γ v5=1E

(CH3D) and γ v6=1E (CHD3) parameters is not that good,
and the differences between calculated and experimental
values are 1.75 × 10−3 cm−1 for CH3D and 4.7 × 10−3

cm−1 for CHD3. However, even such discrepancies can be
considered as acceptable if one takes into account the fol-
lowing:

(1) In one case, the discrepancy is about 25% of the
absolute value of the parameter γ

v6=1E
calc (CHD3).

(2) In the case of the parameter γ v5=1E (CH3D), the
discrepancy is comparable with discrepancies for
the parameters γ v6=1E (CH3D) and γ v5=1E (CHD3)
even with different signs of experimental and cal-
culated values. It should be mentioned also that
we used in our calculations the ab initio PES from
Ref. [54], and the relatively large difference be-
tween the values for γ

v6=1E
calc and γ v6=1E

exp. of CHD3

can be explained by possible uncertainties in PES
parameters.

As one more illustration of the adequacy of the results,
we compare the experimental values of the parameter
γ v5=1E = −0.5948 × 10−2 cm−1 from [50] with γ v5=2E =
−0.4451 × 10−4 cm−1 from [51] for CHD3. As mentioned
above, in the framework of the approximation used, the pa-
rameters γ vE of the first-overtone bands should be equal
to zero. And, indeed, the absolute value of the parameter
γ v5=2E is less than 1% of the absolute value of the parame-
ter γ v5=1E . The fact that the parameter γ v5=2E is not equal
to zero can be explained by the effects of higher orders.

5.6. Parameters βvE , Coriolis interaction
parameters βv Aλ,vE , and Fermi interaction
parameters βvnE,vmE

The parameters βvE , Equations (35) and (36), Coriolis in-
teraction parameters βvAλ,vE , Equations (37) and (38), and
Fermi interaction parameters βvnE,vmE , Equations (44) and
(45), are the main parameters related to the operators [(J+
± J−), Jz]+ in the equations mentioned. It can be shown that
all of these parameters can be expressed in the following
form:

βv�,v�′ = d
(v)
λ βλ + d (v)

μ βμ + d (v)
ν βν, (70)

where the non-zero coefficients d (...)
... have exactly the same

form as in Equation (68) and can be used from Table 2. In
their turn, the parameters βλ have been determined as

βλ = 3
√

2

8

(Be
x)2Be

z

ωλ

(̃
axx

λ1
ãxz

λ1

)+ 3

2
(Be

x)(Be
z )̃axz

λ1

kλλλ

ω
3/2
λ

+
∑

μ

1

2
(Be

x)(Be
z )̃axx

μ1

kλλμ

ω
3/2
μ

+
∑
μ �=λ

(
Be

xζ
x
μ1λ2

) (
Be

z ζ
z
μ1λ2

)
2
√

2ωλωμ

×
{

(ωμ + ωλ)2

ωμ − ωλ

+ (ωμ − ωλ)2

ωμ + ωλ

}
. (71)

What has been said in Sections 2–5 is valid for every
symmetric top XYZ3 (C3v) molecule. Moreover, it is also
valid for every symmetric top XY3 (C3v) molecule taking
into account that there are only two doubly degenerate vi-
brational modes in XY3 instead of three in XYZ3.

6. ‘Expanded local mode’ approach applied
to the CH4 molecule

Here we apply results obtained in Section 5 to derive iso-
topic relations for substitutions of the type CH3D ← CH4

and CHD3 ← CH4 in methane. In the present section, we
summarise very briefly some results obtained in Ref. [35]
for the CH4 molecule in the framework of the ‘expanded
local mode’ approach.

The classical local mode approach was extensively dis-
cussed in molecular spectroscopy originally by Mecke in
the 1930s [56], and again in the 1980s and 1990s (see, e.g.
[57–60], the discussion in [61], the review of the history in
[19], and the later review in [62]). The approach was found
to be very efficient for the study of the rotational-vibrational
structure of highly excited vibrational states of XY2 (C2v

symmetry), XY3(C3v), XY4(Td), and some other types of
molecules. By its basic statements, the local mode model
assumes the following:

(1) Deformation motions in the molecule are neglected.
(2) The mass of the central nucleus X is assumed

to be considerably greater than the masses m of
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the nuclei Y, i.e. in the limit, one has the ratio
m/M = 0.

(3) The equilibrium angle between bonds X–Y is
fixed for the XY2(C2v), XY3(C3v), and XY4(Td)
molecules.

(4) In the intramolecular potential function, only
changes in the bond lengths are taken into account;
the dependence on changes in interbond angles is
neglected.

As a result, the local mode approach allows one to derive a
set of simple relations between spectroscopic parameters of
the molecule considered (see, e.g. Refs. [56–62]). Unfortu-
nately, the above-mentioned limitations of the model are too
serious, particularly because the deformation motions are
not taken into account. It is clear that the deformation mo-
tions are important for understanding the processes taking
place in the molecules.

The presence of the deformation motions can be taken
into account by using the extension of a classical local
mode model (‘expanded local mode’ approach) which was
derived in Ref. [37] and applied to asymmetric [37,38,63],
symmetric [39,64], and spherical top [35,36] molecules.
The key point of the ‘expanded local mode’ model is the
possibility to present the transformation coefficients, lNαλ,
of a molecule in the form of simple analytical expressions.
If one takes into account that spectroscopic parameters of
a molecule are functions of these lNαλ transformation coef-
ficients (see, e.g. Refs. [47,48]), one may hope that these
spectroscopic parameters also can be expressed in a simple
form. In this case, all the results of the classical local mode
model are reproduced by the ‘expanded local mode model’
for the corresponding molecules. Moreover, the ‘expanded’
model provides the possibility to consider the deformation
motions as well, and to produce numerous additional sim-
ple relations between different spectroscopic parameters of
the molecule considered.

As to CH4, it was shown in Ref. [35] that its transfor-
mation coefficients lNαλ can be estimated with good accu-
racy (with less than 2% error) by a very simple form (see
Table 4 which is reproduced here for convenience from
[35]). Moreover, a set of simple approximate relations be-
tween different force field parameters are also fulfilled with
good accuracy:

F33

267
= F11

272
= 4F22

97ρ2
e

= 3F44

67ρ2
e

= −2F34

19ρe

, (72)

2

3
F244 = −7

3
F222 = −2

3
F444 = ρeF144 = 4ρe

5
F122

= −ρeF234 = 2ρeF344 = ρ2
e

2
F233 = ρ2

e F334

= −2ρ2
e F134 = ρ3

e

90
F111 = ρ3

e

90
F333

= ρ3
e

90
F133 = −ρ2

e

30
F11, (73)

and

F4444(2) = 2F4444(1) = 2F2244(2) = 4F2222

= −13ρe

7
F3444(1) = −39ρe

7
F3444(2)

= −19ρ2
e

7
F3344(3) = −57ρ2

e

7
F3344(1)

= 24ρ2
e

7
F2334 = −24ρ2

e

7
F2233(1)

= −12ρ2
e

7
F2233(2) = 18ρ3

e

7
F3334(1)

= 18ρ3
e

7
F3334(2) = ρ4

e

70
F1111 = ρ4

e

70
F1133

= ρ4
e

70
F1333 = ρ4

e

70
F3333(1) = ρ4

e

70
F3333(2). (74)

All the other Fijkl parameters are equal to zero, or close to
zero, with a good accuracy of 1% –3%. The value ρe is the
equilibrium distance between the nuclei C and H.

7. Some results from the isotopic substitution theory

As was shown in [34], the following three statements are
correct for an arbitrary isotopic substitution in a polyatomic
molecule:

(1) A set of equations allows one to determine all har-
monic frequencies, ω′

c, of an isotopically substi-
tuted molecule as functions of harmonic frequen-
cies, ωa, of a mother molecule and a set of coeffi-
cients Aab; or, conversely, to determine coefficients
Aab as functions of harmonic frequencies of the
mother and substituted molecules:∑

a

Abaω
2
aαac = αbcω

′2
c . (75)

Here αac (or αbc) are additional coefficients which
are also determined from a solution of the set of
equations (75) and additional relations:

Aab =
∑

c

αacαbc. (76)

(2) From the statements above, the second equation
(76) can take the following form (mN and m′

N

are the masses of atoms before and after isotopic
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2544 O.N. Ulenikov et al.

Table 4. Transformation coefficients, lNαλ, of CH4 in the ‘expanded local mode’ model.a

Nα/λ 1 21 22 3x 3y 3z 4x 4y 4z

1x
√

2A A
√

3A 3
√

3B −4
√

2B −4
√

2B 4
√

3B 3
√

2B 3
√

2B

2x −√
2A −A −√

3A 3
√

3B −4
√

2B 4
√

2B 4
√

3B 3
√

2B −3
√

2B

3x −√
2A −A −√

3A 3
√

3B 4
√

2B −4
√

2B 4
√

3B −3
√

2B 3
√

2B

4x
√

2A A
√

3A 3
√

3B 4
√

2B 4
√

2B 4
√

3B −3
√

2B −3
√

2B
5x 0 0 0 −6B 0 0 −8B 0 0
1y −√

2A −A
√

3A −4
√

2B 3
√

3B 4
√

2B 3
√

2B 4
√

3B −3
√

2B

2y
√

2A A −√
3A −4

√
2B 3

√
3B −4

√
2B 3

√
2B 4

√
3B 3

√
2B

3y −√
2A −A

√
3A 4

√
2B 3

√
3B −4

√
2B −3

√
2B 4

√
3B 3

√
2B

4y
√

2A A −√
3A 4

√
2B 3

√
3B 4

√
2B −3

√
2B 4

√
3B −3

√
2B

5y 0 0 0 0 −6B 0 0 −8B 0
1z −√

2A 2A 0 −4
√

2B 4
√

2B 3
√

3B 3
√

2B −3
√

2B 4
√

3B

2z −√
2A 2A 0 4

√
2B −4

√
2B 3

√
3B −3

√
2B 3

√
2B 4

√
3B

3z
√

2A −2A 0 −4
√

2B −4
√

2B 3
√

3B 3
√

2B 3
√

2B 4
√

3B

4z
√

2A −2A 0 4
√

2B 4
√

2B 3
√

3B −3
√

2B −3
√

2B 4
√

3B
5z 0 0 0 0 0 −6B 0 0 −8B

aHere A = 1
2
√

6
, B = 1

20 .

substitution):

Aab = δab −
∑
Nα

(m′
N − mN )

m′
N

lNαalNαb, (77)

and this determines the Aab coefficients via trans-
formation coefficients, lNαa, of a mother iso-
topomer. Usually these transformation coefficients
are known for every mother isotopomer.

(3) The third statement can be written as

l′Nγa =
∑
αb

Ke
αγ

(
mN

m′
N

)1/2

lNαb(α−1)ab, (78)

and it provides the possibility to calculate the trans-
formation coefficients of a substituted isotopomer
as functions of the characteristics of a mother
species. Here Ke

αγ is the matrix that provides a
rotation of the molecular equilibrium coordinate
axes from a mother species to a substituted one un-
der isotopic substitution. In Equations (75)–(78), α,
β,γ = x, y, z and a, b, c enumerate the vibrational
modes.

The relations (75)–(78) allow one to obtain the transfor-
mation coefficients lNγ a of any substituted molecule if one
knows the corresponding coefficients lNαb of a mother iso-
topic species. Unfortunately, because of the complexity in
the general case, results can be obtained only in numeri-
cal form. On the other hand, if the coefficients lNαb of a
mother molecule and the coefficients (α−1)ab on the right-
hand side of Equation (78) have relatively simple values,
one may expect that the transformation coefficients l′Nγa

of a substituted molecule also can be obtained in a simple
form.

8. Isotopic relations for CH3D and CHD3

In the present section, we use the results derived above to
obtain relatively simple isotopic relations between some of
the most important spectroscopic parameters of CH3D and
CHD3, on one hand, and the spectroscopic parameters of
the mother molecule, CH4, on the other hand. In order to
do so, we shall first discuss the transformation coefficients
l′Nγa , Coriolis coefficients ζ ′α

ab, ro-vibrational coefficients

a
′αβ
a , and normal mode force field parameters of the CH3D

and CHD3 isotopomers.

8.1. Transformation coefficients, Harmonic
frequencies, and equilibrium rotational
parameters of CH3D and CHD3

As a first step in the analysis, we (in accordance with Equa-
tion (78)) determine the transformation coefficients l′Nγa

for both CH3D and CHD3. In order to realise this

(1) the set of equations (75)–(76) should be solved with
the values Aλμ determined by Equation (77); and

(2) the elements, Ke
αγ , of the matrix, which provide

a rotation of the molecular equilibrium coordinate
axes from a mother species to a substituted one,
should be determined. The latter problem is solved
easily, and the corresponding matrix is obtained in
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Table 5. Transformation coefficients, l′Nαb, of CH3D in the framework of the ‘expanded local mode’ model.a

Nα/b 1 2 3 4 5 6 7 8 9

1x −47C −5C 17C 63C 0 14C 0 5C 0
2x 23C 3C −9C 15C 28C −40C 31C 24C −11C
3x 23C 3C −9C 15C −28C −40C −31C 24C 11C
4x 0 0 0 −C 0 18C 0 51C 0
5x 0 0 0 −26C 0 11C 0 −36C 0
1y 0 0 0 0 −2C 0 −58C 0 30C
2y 40C 5C −15C 28C 47C 31C −4C −11C 11C
3y −40C −5C 15C −28C 47C −31C −4C 11C 11C
4y 0 0 0 0 −C 0 18C 0 51C
5y 0 0 0 0 −26C 0 11C 0 −36C
1z 16C 2C 43C −23C 0 34C 0 38C 0
2z 16C 2C 43C 11C 20C −17C −29C −19C −33C
3z 16C 2C 43C 11C −20C −17C 29C −19C −33C
4z 5C −80C −12C 0 0 0 0 0 0
5z −15C 31C −32C 0 0 0 0 0 0

aHere C = 1
50

√
3

.

the following form:

⎛⎜⎜⎝
Ke

xx Ke
xy Ke

xz

Ke
yx Ke

yy Ke
yz

Ke
zx Ke

zy Ke
zz

⎞⎟⎟⎠

=

⎛⎜⎜⎝
√

2/3 −√
1/6 −√

1/6
0 −√

1/2
√

1/2√
1/3

√
1/3

√
1/3

⎞⎟⎟⎠ (79)

both for CH3D and CHD3. From a solution of the
Equations (75) and (76), one can obtain harmonic
frequencies, ωa, αab coefficients, and, as a conse-
quence, the transformation coefficients, l′Nγ a, from
Equation (78). In this case, for the harmonic fre-
quencies, the following results are obtained:

ω2
1

120
= ω2

2

32
= ω2

3

81 + 28
√

3
= ω2

4

72 − 28
√

3

= ω
′2
1

119 + 2
√

3
= ω

′2
2

66 + √
3

= ω
′2
3

6 + 10
√

3

= ω
′2
4

119 + 6
√

3
= ω

′2
5

14 + 9
√

3
= ω

′2
6

1 + 10
√

3
(80)

for CH3D and

ω2
1

120
= ω2

2

32
= ω2

3

81 + 28
√

3
= ω2

4

72 − 28
√

3

= ω
′2
1

122 + 3
√

3
= ω

′2
2

52 + 6
√

3
= ω

′2
3

5 + 5
√

3

= ω
′2
4

64 + 4sqrt3
= ω

′2
5

14 + 5
√

3
= ω′

6
2

11 + 2
√

2
(81)

for CHD3. The l′Nγb coefficients are presented in
Tables 5 and 6. The equilibrium rotational param-
eters, Be

α , can also be obtained very easily on the
basis of Equation (79) in the following form for
CH3D:

23B ′e
x = 23B ′e

y = 17B ′e
z = 17Be (82)

and

61B ′e
x = 61B ′e

y = 76B ′e
z = 38Be (83)

for CHD3.

To illustrate the quality of our results, Table 7 presents
numerical values of the harmonic wavenumbers of the
CH3D and CHD3 species estimated using the isotopic rela-
tions (80)–(81) (column I). In this case, the ‘basic’ ‘exper-
imental’ value of the parameter ω1(CH4) = 3040.38 cm−1

was taken from Ref. [35] (here we used the parameter ω1

of CH4 as the ‘basic’ value in isotopic relations; however,
one can also use another harmonic frequency of CH4 as the
‘basic’ value). For comparison, values of the same param-
eters obtained from ab initio calculations [54] are shown
in column IV of Table 7. It should be noted that in spite of
the fact that the values of harmonic frequencies in column
I were obtained without any information about the CH3D
and CHD3 molecules, the results used for comparison can
be considered as quite satisfactory. Columns II and III of
Table 7 present the result of analogous calculations using
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2546 O.N. Ulenikov et al.

Table 6. Transformation coefficients, l′Nαb, of CHD3 in the framework of the ‘expanded local mode’ model.a

Nα/b 1 2 3 4 5 6 7 8 9

1x 2C −46C 20C 60C 0 6C 0 16C 0
2x −C 23C −10C 15C 26C −6C 7C −42C 34C
3x −C 23C −10C 15C −26C −6C −7C −42C −34C
4x 0 0 0 −0.7C 0 70C 0 −14C 0
5x 0 0 0 −37C 0 −18C 0 32C 0
1y 0 0 0 0 −0.4C 0 −10C 0 −62C
2y −2C 40C −17C 26C 45C 7C 2C 34C −4C
3y 2C −40C 17C −26C 45C −7C 2C −34C −4C
4y 0 0 0 0 −0.7C 0 70C 0 −14C
5y 0 0 0 0 −37C 0 −18C 0 32C
1z 0.1C 16C 38C −22C 0 37C 0 9C 0
2z 0.1C 16C 38C 11C 19C −18C −32C −5C −8C
3z 0.1C 16C 38C 11C −19C −18C 32C −5C 8C
4z −83C −9C −11C 0 0 0 0 0 0
5z 24C −17C −44C 0 0 0 0 0 0

aHere C = 1
50

√
3

.

the isotopic relations (80)–(81), but with the values of the
‘basic’ parameters ω4(CH4) = 1345.3 cm−1 and ω1(CH4) =
3036.2 cm−1 which were taken from the ab initio calcula-
tions [54]. One can see that the differences between values
of the same quantities in columns I, II, and IV are no more
than 0.05%. All the values in column III are smaller than
the values of the corresponding parameters in columns I,
II, and IV by 2–4 cm−1 (about 0.15%–0.20% which can be
considered to be a more than satisfactory accuracy of the
predictions).

Table 7. Harmonic wavenumbers of the CH3D and CHD3

molecules (in cm−1).

Parameter Ia IIb IIIc IVd

CH3D

ω′
1 3071.4 3070.9 3067.2 3071.4

ω′
2 2284.2 2283.8 2281.1 2285.2

ω′
3 1340.3 1340.1 1338.5 1339.8

ω′
4 3157.1 3156.6 3152.8 3156.8

ω′
5 1509.7 1509.5 1507.7 1508.1

ω′
6 1187.9 1187.8 1186.3 1188.1

CHD3

ω′
1 3130.2 3129.7 3125.9 3130.5

ω′
2 2192.3 2191.9 2189.3 2191.3

ω′
3 1025.8 1025.6 1024.4 1025.4

ω′
4 2337.4 2337.1 2334.3 2337.0

ω′
5 1321.2 1321.0 1319.4 1321.4

ω′
6 1055.5 1055.4 1054.1 1055.5

aCalculated with Equations (80)–(81) (the ‘experimental basic’ value of
the parameter ω1(CH4) = 3040.38 cm−1 was taken from [26]).
bCalculated with Equations (80)–(81) (the ‘ab initio basic’ value of the
parameter ω4(CH4) = 1345.3 cm−1 was taken from Table I (column ‘cc-
pVQZ’) of [54]).
cCalculated with Equations (80)–(81) (the ‘ab initio basic’ value of the
parameter ω1(CH4) = 3036.2 cm−1 was taken from Table I (column ‘cc-
pVQZ’) of [54]).

8.2. Anharmonic coefficients, x′
ab/x′

lλ lμ
,

and ro-vibrational coefficients, α
′β
b , of CH3D

and CHD3

The equations obtained in Sections 5.1 and 5.2, on one hand,
and the information from Equations (72)–(74) and Tables 5
and 6, on the other hand, allow us to obtain the following
approximate relations between anharmonic coefficients for
CH3D:

x11 ≈ −7

3
Be = − 7

32

�

πcmρ2
= 7

10
x ′

11 = 34

5
x ′

12

= 15

2
x ′

13 = 3

18
x ′

14 = 13

20
x ′

15 = 11

5
x ′

16 = 9

25
x ′

22

= 2x ′
23 = −7x ′

24 = 15

4
x ′

25 = 14

25
x ′

26 = 9

5
x ′

33

= 6

5
x ′

34 = 5x ′
35 = 6x ′

36 = 2

5
x ′

44 = 2

3
x ′

45 = 3

2
x ′

46

= 7x ′
55 = 4x ′

56 = −92x ′
66 = −x ′

l4l4
= 7x ′

l4l5

= 51x ′
l4l6

= −34x ′
l5l5

= 5

2
x ′

l5l6
= −18x ′

l6l6
, (84)

and the following relations for CHD3:

x11 ≈ −7

3
Be = − 7

32

�

πcmρ2
= 1

5
x ′

11 = 6x ′
12 = 32

25
x ′

13

= −28

5
x ′

14 = 3

10
x ′

15 = 25x ′
16 = 7

5
x ′

22 = −4

5
x ′

23

= 8

25
x ′

24 = 3x ′
25 = 6

5
x ′

26 = 7

4
x ′

33 = 3

2
x ′

34 = 9x ′
35

= −12x ′
36 = 3

5
x ′

44 = 7

4
x ′

45 = 3

2
x ′

46 = −30x ′
55

= −245x ′
56 = 7x ′

66 = −7

5
x ′

l4l4
= −65x ′

l4l5
= 17x ′

l4l6

= −40x ′
l5l5

= −27

2
x ′

l5l6
= 25x ′

l6l6
. (85)
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Table 8. Anharmonic parameters, x ′
λμ (in cm−1).

CH3D CHD3

Parameter Calc.a [54]b Exp.c Calc.d Calc.e [54]b Exp.c

1 2 3 4 5 6 7 8

x ′
11 −17.876 −17.197 −5.321 −62.565 −59.221 −58.994

x ′
12 −1.840 −1.878 −2.555 −2.086 −2.204 −2.905

x ′
13 −1.668 −0.981 4.884 −9.776 −9.731 −9.193

x ′
14 −75.078 −72.771 −99.022 2.234 2.184 2.337

x ′
15 −19.251 −19.016 −9.179 −41.710 −20.855 −21.111 −21.367

x ′
16 −5.688 −5.612 −7.233 −0.501 −0.309 −1.406

x ′
22 −34.758 −31.167 −27.944 −8.938 −8.826 1.139

x ′
23 −6.257 −6.739 −7.312 15.641 15.727 3.096

x ′
24 1.788 1.639 −7.730 −39.103 −37.352 −42.727

x ′
25 −3.337 −3.331 −3.522 −4.171 −4.017 −5.220

x ′
26 −22.345 −22.266 −17.587 −10.428 4.813 4.674 −2.489

x ′
33 −6.952 −6.802 −7.759 −7.150 −7.230 −6.188

x ′
34 −10.428 − 9.440 −10.517 −8.342 −8.449 −6.977

x ′
35 −2.503 −2.033 −2.908 −1.390 −1.029 −2.795

x ′
36 −2.086 −1.091 −3.073 1.043 1.638 3.445

x ′
44 −31.283 −31.611 −32.402 −20.855 −18.601 −16.349

x ′
45 −18.770 −14.611 −8.373 −7.150 −7.195 −8.454

x ′
46 −8.342 −7.686 −9.304 −8.342 −8.402 −11.044

x ′
55 −1.788 −1.874 −4.417 0.417 −4.813 −4.604 −4.552

x ′
56 −3.128 −4.068 −5.090 0.051 0.055 4.919

x ′
66 0.136 0.261 0.261 −1.788 −5.688 −5.500 −5.306

x ′
l4l4

12.513 12.636 28.539 8.937 8.252 8.560
x ′

l4l5
−1.788 −1.721 −7.062 0.193 −0.060 3.584

x ′
l4l6

−0.245 −0.230 3.160 −0.736 −0.729 1.143
x ′

l5l5
0.368 0.384 2.380 0.313 5.403 5.095

x ′
l5l6

−5.001 −5.056 −4.684 0.927 0.921 5.894
x ′

l6l6
0.695 0.645 1.516 −0.501 3.128 3.251 2.871

aCalculated with Equation (84) (the ‘basic’ value of the parameter x11(CH4) = −12.513 cm−1 was taken from [54]).
bTaken from Ref. [54].
cTaken from the analysis of experimental data, Ref. [6].
dCalculated using Equation (85) with x11(CH4) = −12.513 cm−1.
eCalculated using Equation (88) with x11(CH4) = −12.513 cm−1.

In Equations (84) and (85), x11 is one of the anharmonic
coefficients of the‘mother’ CH4 molecule. In accordance
with [35], the parameter x11 can be connected with the
other xλμ anharmonic parameters of CH4 (see Equation
(18) of [35]). This implies that, in principle, any of the xλμ

parameters of the CH4 molecule can be used as the ‘basic’
value in Equations (84)–(85) for the numerical estimation
of anharmonic parameters x ′

λμ of the CH3D and CHD3

isotopomers.
Analogous relations for the ro-vibrational coefficients

α
β
b were obtained in the following form:

Y3 = − �
2

16πρ4cm3/2F
1/2
11

= −2α
′x
1 = −22

25
α

′x
2

= 2α
′x
3 = −42

25
α

′x
4 = 28

25
α

′x
5 = −19

25
α

′x
6 = −3

5
α

′z
1

= −3α
′z
2 = 7

5
α

′z
3 = −3α

′z
4 = −α

′z
5 = 21

5
α

′z
6 (86)

for CH3D and

Y3 = − �
2

16πρ4cm3/2F
1/2
11

= −39

20
α

′x
1 = −2α

′x
2

= −11

5
α

′x
3 = −42

25
α

′x
4 = 13

2
α

′x
5 = 25

2
α

′x
6 = −18

5
α

′z
1

= −8

5
α

′z
2 = 10

3
α

′z
3 = −7α

′z
4 = 44

25
α

′z
5 = −29

25
α

′z
6 (87)

for CHD3. Again, as in Equations (84)–(85), Y3 is one of
the four ro-vibrational parameters of the CH4 molecule,
and it is connected with the other three ro-vibrational pa-
rameters of CH4 by Equation (19) of [35]. When the re-
lations (84)–(87) were derived, we took into account the
presence of resonance interactions between pairs of vi-
brational states, (..v1..v5..)/(..v1 ± 1..v5 ∓ 2..), (..v3..v5..)/
(..v3 ± 1..v5 ∓ 1..), for CH3D, and interactions between
pairs of states, (..v1..v5..)/(..v1 ± 1..v5 ∓ 2..), (..v2..v6..)/
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2548 O.N. Ulenikov et al.

(..v2 ± 1..v6 ∓ 2..), (..v3 v4 v5..)/(..v3 ± 1v4 ∓ 1v5 ± 1..),
(..v3..v6..)/(..v3 ± 1..v6 ∓ 1..), for CHD3.

Table 8 (columns 2 and 5) illustrates the suitability of the
relations (84)–(85). In this case, as in the previous subsec-
tion, only the single initial parameter x11 = −12.513 cm−1

of the CH4 species was taken from Ref. [54] as the ba-
sic one. For comparison, values of the corresponding x ′

λμ

parameters obtained on the basis of ab initio calculations
from Ref. [54] are shown in columns 3 and 7 of Table 8.
If one takes into account that the values of the x ′

λμ pa-
rameters in columns 2 and 5 were calculated without any
information about CH3D and CHD3, and with using only
one x11 parameter of the CH4 mother molecule, one can
find a satisfactory agreement in most cases, with the excep-
tion of the parameters x ′

15, x ′
26, x ′

55, x ′
66, x ′

l5l5
, and x ′

l6l6
of

CHD3. The discrepancies in the values of these parameters
can be understood if one takes into account the following:
to produce the isotopic relations, Equation (85), we took
into account the presence of resonance interactions of the
type (..v1..v5..)/(..v1 ± 1..v5 ∓ 2..) and (..v2..v6..)/(..v2 ±
1..v6 ∓ 2..). In [54] these interactions were not taken into
account. To check the correctness of the approach used in
the present study, we also derived isotopic relations anal-
ogous to relations, Equation (85), but without taking into
account the resonance interactions mentioned. The results
are as follows:

3

5
x ′

15 = −13

5
x ′

26 = 13

5
x ′

55 = 11

5
x ′

66 = −4x ′
l6l6

= x11.

(88)

Column 6 of Table 8 shows the result of estimating the
corresponding parameters on the basis of Equation (88).
One can now find a good agreement of the results with the
values of the parameters in column 7.

For comparison, columns 4 and 7 of Table 8 present ex-
perimental values of the x ′

λμ anharmonic coefficients from
Ref. [6]. Again, one can find a satisfactory agreement be-
tween the parameters in most cases. However, one can see
large differences between estimated and experimental val-
ues of the parameters x ′

11, x ′
14, x ′

15, x ′
45, x ′

l4l4
, x ′

l4l5
for CH3D,

and of the parameters x ′
22, x ′

23, x ′
26, x ′

56, x ′
l5l6

for CHD3. In the
second case, the presence of discrepancies can be explained
by the neglect of interactions of the type (..v2..v6..)/(..v2 ±
1..v6 ∓ 2..) in [6]. It is more difficult to explain the dis-
crepancies in the values of parameters x ′

45, x ′
l4l4

, and x ′
l4l5

of CH3D. One possible reason may be a strong correla-
tion between the corresponding parameters which can lead
to incorrectly fitted values. In any case, further analysis is
desirable.

To illustrate the quality of the relations derived for the
ro-vibrational coefficients α

′β
b , we will consider results of

the high-resolution analyses of the bands ν3, ν5, and ν6

of CH3D [50]. Column 2 of Table 9 presents values of
parameters α

′β
b (β = x, z; b = 3, 5, 6) predicted on the

Table 9. Some α
′β
b parameters of the CHD3 molecule.

Parameter Calc.a Exp.b Exp.c

1 2 3 4

α
′x
3 /cm−1 0.0152 0.0788 0.0194

α
′z
3 /cm−1 −0.0100 −0.0104

α
′x
5 /cm−1 −0.0051 −0.0046

α
′z
5 /cm−1 −0.0190 −0.0207

α
′x
6 /cm−1 −0.0027 −0.0343 −0.0036

α
′z
6 /cm−1 0.0288 0.0284

aCalculated by the relations in Equation (87).
bExperimental values from Ref. [50].
c‘Experimental’ values corrected in accordance with Figure 3 (see text for
details).

basis of relations (87). The values of the corresponding
α parameters obtained from the fit of experimental data
[50] are shown in column 3. One can find a satisfactory
agreement between predicted and experimental values for
the parameters α′x

5 , α′z
5 , α′z

3 , and α′z
6 . At the same time,

the predicted values of the α′x
3 and α′x

6 parameters differ
very much from the corresponding experimental values. To
understand the situation, it is necessary to take into account
the following:

(1) The band ν5 was considered in Ref. [50] as an
isolated state. As is found from the discussion fol-
lowing Equation (87), resonance interactions also
were neglected in deriving the relations for the co-
efficients α′x

5 and α′z
5 .

(2) The bands ν3 and ν6 have been considered as in-
teracting in [50]. In this case, it follows from the
symmetry properties of the XYZ3 (C3v) molecule
that the interaction is described by the operator,
Equation (37). This implies that this interaction, on
one hand, does not affect the C(v3=1) and C(v6=1)

(as a consequence, the α′z
3 and α′z

6 ) parameters, but,
on the other hand, strongly connects the parameters
B(v3=1) and B(v6=1) (α′x

3 and α′x
6 ) with each other.

To illustrate these points, Figure 3 shows the dependence of
the experimental values of α′x

3 (curve A) and α′x
6 (curve B)

on the value of the resonance interaction parameter, α′ (see
Equation (37) and remarks after Equation (38)). The dashed
horizontal lines (1) and (2) correspond to the values of the
α′x

3 and α′x
6 parameters predicted with the relations (87). The

dashed vertical line I indicates the experimental value of the
Coriolis interaction parameter, α′ ≡ α̃ =1.701 cm−1, from
Table 10 of Ref. [50]. In this case, the crossing of the line I
with the curves A and B indicates the experimental values
of the parameters α′x

3 and α′x
6 from Ref. [50]. To construct

the curves A and B, we took experimental ro-vibrational
energy levels of the states (v3 = 1) and (v6 = 1) from
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Molecular Physics 2549

Figure 3. Dependence of the experimental values of α′x
3 (curve

A) and α′x
6 (curve B) on the value of the resonance interaction pa-

rameter, α′. The dashed horizontal lines (1) and (2) correspond to
the values of the parameters α′x

3 and α′x
6 predicted with the relations

(87). The dashed vertical line I indicates the ‘experimental’ value
of the Coriolis interaction parameter, α′ ≡ α̃ =1.701 cm−1, from
Table 10 of Ref. [50]. The dashed vertical line II corresponds to
the value of the resonance interaction parameter, α̃ =1.836 cm−1,
obtained from the theoretical prediction in the present paper on
the basis of isotopic relation.

Ref. [50]. Then, we changed the value of the resonance
interaction parameter, α̃, in steps of 0.01 cm−1 and, for
every fixed value of the parameter α̃, made a fit of the same
set of spectroscopic parameters. As the analysis showed
(and as one would expect because of a strong correlation
between the parameters α′x

3 and α′x
6 , on one hand, and the

resonance interaction parameter, α̃, on the other hand), the
quality of fits (judged by the rms deviation) was practically
unchanged for all fits, but the values of the α′x

3 and α′x
6

parameters obtained from fits were changed in accordance
with the curves A and B. It should be mentioned that the
vertical dashed line II in Figure 3 corresponds to the value of
the resonance interaction parameter α̃ =1.836 cm−1 which
was obtained from the theoretical prediction in the present
paper on the basis of the isotopic relations. One can see that
the curves A and B cross the lines (1) and (2) very close

Table 10. Centrifugal distortion coefficients D′
J , D′

JK, D′
K, and

parameter ε ′.

CH3D CHD3

Parameter Calc.a Exp.b Calc.c Exp.d

D′
J /10−4 cm−1 0.503 0.526 0.479 0.495

D′
JK/10−4 cm−1 1.189 1.264 −0.372 −0.383

D′
K/10−4 cm−1 −0.761 −0.790 0.130 0.134

ε ′/10−4 cm−1 0.030 0.032 0.054 −0.289

aCalculated with Equation (89).
bTaken from the analysis of experimental data, Ref. [65].
cCalculated on the basis of Equation (90).
dTaken from the analysis of experimental data, Ref. [66].

to the line II. This implies that the fit, being made with the
theoretically predicted value of the resonance interaction
parameter α̃, gives the ‘experimental’ values of the α′x

3
and α′x

6 parameters very close to the theoretically predicted
ones. The values obtained for the parameters α′x

3 and α′x
6

are shown in column 4 of Table 9. One can see a reasonably
good agreement between the α′ values presented in the
second and fourth columns.

8.3. Centrifugal distortion coefficients D′
J,

D′
J K ,D′

K , and parameter ε′

As follows from Equations (19)–(22), the coefficients a..
..

are proportional to (Be
..)

−1/2. This implies that both the
centrifugal distortion coefficients, DJ, DJK, DK, and the

parameter ε′ are proportional to
(
Be

..

)3
/ω2

... Indeed, the use
of Equations (71)–(74) in (54)–(57) leads to the following
result for CH3D:

B3
e

ω2
1

= 8

25
D′

J = 13

98
D′

JK = −11

52
D′

K = 27

5
ε′ (89)

and to

B3
e

ω2
1

= 42

125
D′

J = − 54

125
D′

JK = 31

25
D′

K = 3ε′ (90)

for CHD3. Here Be and ω1 are the parameters of the mother
CH4 molecule. Values with ‘prime’ belong to isotopically
substituted species. Table 10 illustrates the validity of the
relations obtained. The results of the calculation with iso-
topic relations are shown in columns 2 and 4 of Table 10.
Columns 3 and 5 present the corresponding experimental
values for the ground vibrational states from Refs. [65]
and [66]. One can find a satisfactory agreement of all re-
sults with the exception of the parameter ε′ of CHD3. The
discrepancy between the ‘calculated’ and ‘experimental’
values of the parameter ε′ can be explained by the fact
that in Ref. [66] the value of ε′ was not varied, but was
fixed. The variable parameter in [66] was h′

3. As discussed
in Ref. [66], the parameters ε′ and h′

3, as determined from
the fit, are strongly correlated: a change of the parameter
ε′ will lead to a change of the parameter h′

3 without any
change of the quality of the fit. Taking into account also
the good agreement between calculated and experimental
values of all other parameters in Table 10, one can conclude
that the value ε′ = 0.054 × 10−4 cm−1 is probably correct
for CHD3, and the large deviation of the ‘experimental’
value −0.289 × 10−4 cm−1 from the calculated value is
an artefact from the fit.

8.4. Isotopic relations for η′v�,v�′
, γ ′v�,v�′

,
and β ′v�,v�′

As in the previous sections, the use of Equations (80)–(83)
in equations (67)–(71) allows one to obtain the following

D
ow

nl
oa

de
d 

by
 [

T
om

sk
 S

ta
te

 U
ni

ve
rs

ity
] 

at
 0

2:
59

 1
7 

O
ct

ob
er

 2
01

4 



2550 O.N. Ulenikov et al.

Figure 4. A small part of the high-resolution spectrum of the ν2 + ν6 band of 12CH3D in the region of 3330–3340 cm−1. The upper
trace shows the experimental spectrum as decadic absorbance lg(I0/I) [6,8] with the experimental conditions: absorption path length, 10
m; sample pressure, 3 mbar; instrumental resolution, 0.0027 cm−1; temperature, 80 K. The lower trace presents a simulated spectrum
obtained with the use of parameters estimated on the basis of the isotopic relations. Assignments of transitions, JK�–J ′

K ′�′ , are shown in
the upper trace: J, K, � are the quantum numbers and symmetry of the upper ro-vibrational states; J′, K′, �′ are the quantum numbers and
symmetry of the lower ro-vibrational states (see [4,6,8]).

simple relations for the coefficients η′v�,v�′
, γ ′v�,v�′

, and
β ′v�,v�′

for CH3D:

Be = −10η′
4 = 95

49
η′

5 = −17

20
η′

6, (91)

Y3 = − �
2

16πρ4cm3/2F
1/2
11

= −38γ ′
4 = 32γ ′

5

= 2γ ′
6 = 15β ′

4 = −8β ′
5 = 28

5
β ′

6, (92)

and

Be = −6η′
4 = −37

25
η′

5 = 89

20
η′

6, (93)

Y3 = − �
2

16πρ4cm3/2F
1/2
11

= −18γ ′
4 = 28

5
γ ′

5

= −42γ ′
6 = 18β ′

4 = 7β ′
5 = 30β ′

6 (94)

for CHD3.

To illustrate the validity of the relations derived here,
we compared the result of calculations with these relations
and the experimental data from Refs. [55] and [50]. In par-

ticular,
(

η′
6

η′
5

)calc
= −2.281,

(
η′

6
η′

5

)exp
= −2.310 for CH3D,

and
(

η′
5

η′
6

)calc
= −3.007,

(
η′

5
η′

6

)exp
= −3.097 for CHD3.

As an illustration of the quality of the results, a small
part of the high-resolution spectrum of the ν2 + ν6 band
of CH3D is presented in Figure 4. The upper part of Fig-
ure 4 shows the experimental Fourier transform infrared
spectrum recorded at ETH Zürich with the Bruker IFS 125
prototype (ZP 2001) at 80 K in a collisional-cooling cell
[4,6,8]. The bottom part of Figure 4 presents a predicted
spectrum obtained with the spectroscopic parameters as
estimated from the isotopic relations derived here. The rel-
ative line strengths necessary for the comparison were cal-
culated using only one dipole parameter and then calibrated
with the strongest transition at 3337.5950 cm−1. A simple
Doppler profile was used for the line shapes. Noting that
the prediction does not result from a fit, the agreement
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Molecular Physics 2551

Figure 5. An overview spectrum of the 3ν1 band of 12CHD3. The upper trace shows the experimental spectrum (the spectrum has been
recorded with the Zürich Fourier transform infrared spectrometer Bruker IFS prototype ZP 2001 [4,6,8,68,69] as decadic absorbance
lg(I0/I) with the experimental conditions: absorption path length, 10 m; sample pressure, 3 mbar; instrumental resolution, 0.0027 cm−1;
temperature, 80 K). The lower trace presents a predicted spectrum obtained with the use of parameters estimated on the basis of the
isotopic relations.

with experiment is more than satisfactory for the overall
pattern. One can see, however, that the wavenumber scale
at the bottom of Figure 4 is shifted by about 15.7 cm−1.
This difference of about 0.4% between the experimental
and calculated band centres of ν2 + ν6 can be considered
as a satisfactory agreement, remembering that the accuracy
of the isotopic relations was estimated to be within 0.1%–
0.2% for the harmonic frequencies of the vibrations and
somewhat less satisfactory for the anharmonic coefficients.
Thus, applying a constant shift, one obtains an adequate
prediction for the patterns which can be easily recognised
in the experimental spectra. In this way, the results of the
present paper can be helpful in the future in numerous
cases for the assignment of transitions in excited vibrational
states.

In further support of the above statements, we show in
Figure 5 a prediction for the second stretching overtone
band, 3ν1, in the region 8560–8680 cm−1 together with an
experimental spectrum recorded at ETH Zürich with the
Bruker IFS 125 prototype (ZP 2001) at 80 K [4,6,8,68,69].
The bottom part of Figure 5 presents a spectrum obtained

with the spectroscopic parameters which have been esti-
mated from the isotopic relations without any adjustments
to the experimental data for CHD3. Again even in this high
energy range, the relative line strengths have been success-
fully calculated using only one dipole moment parameter.
A simple Doppler profile was used for the line shapes. The
prediction for the pattern of relative line positions is excel-
lent. Of course, the band centres are less well predicted by
the isotopic relations, the difference between experimen-
tal and predicted values of the 3ν1 band centre being about
30 cm−1. The accuracy of the isotopic relations is estimated
as 0.1%–0.2% for the harmonic frequencies and some-
what less for the anharmonic coefficients. Thus, a shift of
30 cm−1 for the region of 8600 cm−1 agrees with such
an estimate for the accuracy. A small part of the spectrum
shown in Figure 5 is presented in Figure 6. One can see
a more than satisfactory agreement between experimental
and predicted spectra. Small discrepancies in line strengths
can be explained by the line intensities in the simulated
spectrum being estimated using one dipole moment param-
eter only. These examples should provide ample illustration
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2552 O.N. Ulenikov et al.

Figure 6. A small part of the high-resolution spectrum of the 3ν1 band of 12CHD3 in the region of 8660–8670 cm−1. The lower trace
presents a predicted spectrum obtained with the use of parameters estimated on the basis of the isotopic relations. Assignments of
transitions, JK�–J ′

K ′�′ , are shown: J, K, � are the quantum numbers and symmetry of the upper ro-vibrational states; J′, K′, �′ are the
quantum numbers and symmetry of the lower ro-vibrational states (see refs. [4,6,8,68,69] for the experiments and also caption to Fig. 5).

for the potential usefulness of the present theory in helping
to assign spectra.

9. Conclusions

Using operator perturbation theory, the low-order Taylor ex-
pansion of the intramolecular potential hypersurface, and
symmetry properties of the C3v symmetric molecules in
the framework of the ‘expanded local mode’ approach, we
determined a set of relations which allow one to connect
different types of spectroscopic parameters (parameters of
diagonal blocks, Coriolis, and Fermi interaction parame-
ters) for various isotopomers of XYZ3 and also XY3 (C3v)
molecules. Numerous isotopic relations are derived for the
CH3D ←CH4 and CHD3 ←CH4 substitutions in methane.
We have illustrated the success of these relations with ex-
amples comparing spectroscopic experiment with theory.

The obvious advantage of the simple analytical relations
derived here is that they allow us to predict (or connect) di-
rectly the spectroscopic parameters of the effective Hamil-
tonians of different isotopomers, without passing through
expensive numerical calculations of energy levels using

the multidimensional potential hypersurface. The disadvan-
tages are related to the approximate nature of our results,
depending on the model Hamiltonian used here. In partic-
ular, the uncertainties for the parameters obtained with the
isotopic relations can be estimated to be between 0.1% and
0.4%. As a consequence, one finds a corresponding shift in
absolute band positions between predicted and experimen-
tal spectra. However, the relative accuracies of predicted
line positions are considerably better than their absolute
values (as demonstrated by the examples shown in Fig-
ures 4–6). The reason is an error of only 0.1%–0.4 % even
for the largest of rotational/centrifugal parameters which
leads to a small error in predicted spectral patterns com-
pared to the error in harmonic frequencies which leads to
shifts in the band centres.

The importance of our results can be seen in light of
the following observations. In the analysis of the high-
resolution ro-vibrational spectra of highly excited states,
it is often necessary to include many interacting vibra-
tional levels. In such a situation, there frequently arise
correlations between various parameters of the diago-
nal and the resonance coupling parameters in the blocks
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Molecular Physics 2553

corresponding to the polyads of strongly coupled levels, as
given by Equations (39)–(45). These correlations then pre-
vent the unambiguous simultaneous determination of all the
parameters of the effective Hamiltonian to a fit of the ex-
perimental data. By using the numerous simple theoretical
relations derived in the present work, one can then remove
many of the correlations and ambiguities. Thus, it is pos-
sible to provide an analysis of spectra of one isotopomer
by using theoretical predictions obtained from the relations
to spectroscopic parameters of another isotopomer. It is
also possible to use the theoretical relations derived here
in a simultaneous analysis of spectroscopic data for several
different isotopomers. Finally, the theoretical relations de-
rived in the present work can also be used for a consistency
check of spectroscopic parameters derived independently
for different isotopomers. Thus, we think that the results of
the present work will prove useful in many spectroscopic
analysis in the future. Further interesting applications of the
general approach described here would concern 13C Substi-
tution in CH4, given the recent progress in the high resolu-
tion spectra and analysis of methane isotopomers [67–70].
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Appendix A. G-matrix elements for the C3v

symmetry group
(J )Gm

NA1
= (−i)J√

2
(1 + δN,0)−1/2(δm,3N + (−1)(J+3N)δm,−3N ),

(J )Gm
NA2

= (−i)J+1
√

2
(1 − 2δN,0)(1 + δN,0)−1/2(δm,3N +

(−1)(J+3N+1)δm,−3N ),
(J )Gm

NE1 = (−i)J√
2

(δm,3N+1 + (−1)(J+3N+1)δm,−(3N+1)),
(J )Gm

NE2 = (−i)J+1
√

2
(δm,3N+1 + (−1)(J+3N)δm,−(3N+1)),

(J )Gm
(N+1+{(J−1)/3})E1 = (−i)J√

2
(δm,3N+2 +

(−1)(J+3N)δm,−(3N+2)),
(J )Gm

(N+1+{(J−1)/3})E2 = (−i)J−1
√

2
(δm,3N+2 +

(−1)(J+3N+1)δm,−(3N+2)).

The index N takes the following values:
N = 0, 1, . . . , {J/3} for the states of A1 and A2 symmetry;
N = 0, 1, . . . , {(J − 1)/3} for the states of E symmetry.
The nomenclature of the rotational states is shown in Figure 2.

Appendix B. Symmetrised rotational operators

In this appendix, we present the first (with the degree � ≤ 3) non-
zero irreducible rotational operators of the SO3 and C3v symmetry
groups that have been used in the present paper.

B.1. Rotational operators symmetrised in the SO3

symmetry group
In accordance with Equations (1)–(3), the symmetrised rotational
operators, R�(K)

n (0 ≤ � ≤ 3, and 0 ≤ K ≤ 3), can be obtained in
the following form:

R
1(1)
+1 = −J+ = − 1√

2
(Jx − iJy) J+|Jk〉 = 1√

2
(J (J + 1)

−k(k + 1))
1
2 |Jk + 1〉

R
1(1)
−1 = J− = 1√

2
(Jx + iJy) J−|Jk〉 = 1√

2
(J (J + 1)

−k(k − 1))
1
2 |Jk − 1〉,

R
1(1)
0 = J0 J0|Jk〉 = k|Jk〉

(B.1)
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R
2(2)
0 =

√
3

2
J 2

0 − 1√
6
J 2

R
2(2)
±1 = ∓ 1√

2
[J0, J±]+

R
2(2)
±2 = J 2

±

R
2(0)
0 = − 1√

3
J 2, (B.2)

R
3(3)
0 = − 3√

10
J 2J0 +

√
5

2
J 3

0 + 1√
10

J0

R
3(3)
±1 = ± 3

2
√

15
J±J 2 ∓

√
15

4
(J±J 2

0 + J 2
0 J±) ± 3

4
√

15
J±

R
3(3)
±2 =

√
3

2
(J0J

2
± + J 2

±J0)

R
3(3)
±3 = ∓J 3

±

R
3(1)
±1 = ± 1√

3
J 2J±

R
3(1)
0 = − 1√

3
J 2J0, (B.3)

where J 2 =∑α J 2
α .

B.2. Rotational operators symmetrised in the C3v

symmetry group
The use of the results of the above subsection in the general rela-
tions, Equation (5), allows one to determine rotational operators
symmetrised in the C3v group:

R1(1,A2) = J0 = Jz

R
1(1,E)
1 = − i√

2
(J− − J+) = Jy

R
1(1,E)
2 = 1√

2
(J− + J+) = Jx, (B.4)

R2(0,A1) = − J 2

√
3

R2(2,A1) = −
√

3

2
J 2

0 + 1√
6

∑
α

J 2
α

R
2(2,1E)
1 = 1

2
([J0, J−]+ + [J0, J+]+)

R
2(2,1E)
2 = i

2
([J0, J−]+ − [J0, J+]+)

R
2(2,2E)
1 = − 1√

2

(
J 2

+ + J 2
−
)

R
2(2,2E)
2 = i√

2

(
J+

− − J 2
+
)
, (B.5)

and

R3(1,A2) = −J 2J0√
3

R
3(1,E)
1 = i√

6
J 2 (J− − J+)

R
3(1,E)
2 = − 1√

6
J 2 (J− + J+)

R3(3,A1) = i√
2

(
J 3

− − J 3
+
)

R3(3,1A2) = − 1√
2

(
J 3

− + J 3
+
)

R3(3,2A2) = 3√
10

J 2J0 −
√

5

2
J 3

0 − 1√
10

J0

R
3(3,1E)
1 = i√

2

{
3

2
√

15
(J+ − J−)J 2

−
√

15

4

[
(J+ − J−)J 2

0 + J 2
0 (J+ − J−)

] }
+ 3i

4
√

30
(J+ − J−)

R
3(3,1E)
2 = 1√

2

{
3

2
√

15
(J+ + J−)J 2

−
√

15

4

[
(J+ + J−)J 2

0 + J 2
0 (J+ + J−)

] }
+ 3

4
√

30
(J+ + J−)

R
3(3,2E)
1 = i

√
3

2
√

2

{
J0(J 2

+ − J 2
−) + (J 2

+ − J 2
−)J0
}

R
3(3,2E)
2 = −

√
3

2
√

2

{
J0(J 2

+ + J 2
−) + (J 2

+ + J 2
−)J0
}
.

(B.6)

Appendix C. Anharmonic part of the
intramolecular potential energy
surface of the XYZ3 molecule

Here we present the anharmonic part of the intramolecular poten-
tial energy surface of the XYZ3 molecule in symmetrised form:

Vanh = V
(3)

anh + V
(4)

anh + · · · , (C.1)

where

V
(3)

anh =
∑

i≤j≤l

kij lqiqjql +
∑
i,λ≤μ

kiλμqi(qλ1qμ1 + qλ2qμ2 )

+
∑

λ≤μ≤ν

kλμν(qλ1qμ1qν1

−qλ1qμ2qν2 − qλ2qμ2qν1 − qλ2qμ1qν2 ), (C.2)

V
(4)

anh =
∑

i≤j≤l≤m

kijlmqiqjqlqm
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+
∑

i≤j,λ≤μ

kijλμqiqj (qλ1qμ1 + qλ2qμ2 )

+
∑

i,λ≤μ≤ν

kiλμνqi(qλ1qμ1qν1 − qλ1qμ2qν2

− qλ2qμ2qν1 − qλ2qμ1qν2 )

+
∑
λ<μ

k
(1)
λλμμ(q2

λ1
+ q2

λ2
)(q2

μ1
+ q2

μ2
)

+
∑
λ<μ

k
(2)
λλμμ(qλ1qμ2 − qλ2qμ1 )2

+
∑

λ;μ �=λ;ν �=λ,μ

k
(1)
λλμν(qλ1

2 + qλ2
2)(qμ1qν1 + qμ2qν2 )

+
∑

λ;μ �=λ;ν �=λ,μ

k
(2)
λλμν(qλ1qμ2 − qλ2qμ1 )(qλ1qν2 − qλ2qν1 )

+
∑

λ

kλλλλ(q2
λ1

+ q2
λ2

)2

+
∑

λ,μ �=λ

kλλλμ(qλ1
2 + qλ2

2)(qλ1qμ1 + qλ2qμ2 ). (C.3)

Appendix D. Symmetrised wavefunctions of the
doubly degenerate harmonic oscillator

(v 0 a1) = |v 0〉;
(v 6p �= 0 a1) = 1√

2
(|v 6p〉 + |v − 6p〉),

(v 6p a2) = − i√
2

(|v 6p〉 − |v − 6p〉);

(v 6p + 1 e1) = 1√
2

(|v 6p + 1〉 − |v − (6p + 1)〉),

(v 6p + 1 e2) = i√
2

(|v 6p + 1〉 + |v − (6p + 1)〉);

(v 6p + 2 e1) = 1√
2

(|v 6p + 2〉 + |v − (6p + 2)〉),

(v 6p + 2 e2) = − i√
2

(|v 6p + 2〉 − |v − (6p + 2)〉);

(v 6p + 3 a1) = 1√
2

(|v 6p + 3〉 − |v − (6p + 3)〉),

(v 6p + 3 a2) = − i√
2

(|v 6p + 3〉 + |v − (6p + 3)〉);

(v 6p + 4 e1) = 1√
2

(|v 6p + 4〉 + |v − (6p + 4)〉),

(v 6p + 4 e2) = i√
2

(|v 6p + 4〉 − |v − (6p + 4)〉),

(v 6p + 5 e1) = 1√
2

(|v 6p + 5〉 − |v − (6p + 5)〉),

(v 6p + 5 e2) = − i√
2

(|v 6p + 5〉 + |v − (6p + 5)〉).

Here, in the symmetrised functions (v lγ ), the value l ≥ 0. At
the same time, functions |v l〉 are the eigenfunctions of a doubly
degenerate harmonic oscillator (see, e.g. Equations (III.9) and
(III.10) of Ref. [46]), and l = −v, −v + 2, −v + 4, . . . , v − 4,
v − 2, v in those, |v l〉, functions.
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