Tomsk Polytechnic University

PHYSICS I Reports on Laboratory Experiments

PHYSICS I

Reports on Laboratory Experiments
Mechanics and Molecular Physics
TPU Press, Tomsk, 1999

These instructions have been approved by the Department of Theoretical and Experimental Physics and the Department of General Physics of TPU

Authors:
V. F. Pichugin
V. M. Antonov

All the laboratory experiments must be performed in the TPU Physics Laboratory. The estimation of students' laboratory activity is based on their ability to perform the laboratory experiment and to present the results in conventional format. The report must be carefully prepared. It must include all the measurements and calculations.

List of laboratory experiments

1. Measuring the linear dimensions of a body
2. Measuring the free fall acceleration
3. Determining the coefficient of sliding friction
4. Studying the distribution function of random variables
5. Elastic and inelastic collisions of balls
6. Studying dynamics laws with Athwood's machine
7. Determining the mean free path and the effective diameter of a molecule

Report on laboratory experiment No. 1 Measuring the linear dimensions of a body

The objective is to measure the linear dimensions of a body, to calculate its volume, and to estimate absolute and relative measurement errors

THEORY

There are two kinds of measurements:
direct
indirect
\qquad
and two types of errors:
systematic
random
To measure the linear dimensions of a body, you can use \qquad
Principal scales of these devices are base rules and vernier calipers.
Vernier caliper is \qquad
One subdivision of the vernier caliper corresponds to $\frac{m-1}{m}=\left(1-\frac{1}{m}\right)$
subdivisions of the basic ruler, where
m is \qquad
With the help of the vernier caliper, measurements are carried out with the accuracy $\Delta x=y-x=\frac{y}{m}$, where \qquad
y_{1}
x \qquad
The accuracy of the vernier caliper is $\frac{y}{m}=\quad \mathrm{mm}$.
The length L measured by this device is $L=k y+n \frac{y}{m}$, where
k is \qquad
n is \qquad
The accuracy of the measuring scale of a micrometer caliper is $\frac{y}{m}=$ mm .

Calculation formulas
The volume of a parallelepiped is $V_{P}=$
where $a \quad b$ The volume of a cylinder is $V_{C}=$
c d

Data of measurements

Table 1

No.	$a, \mathrm{~mm}$	$b, \mathrm{~mm}$	$c, \mathrm{~mm}$	V_{p}, mm^{3}	$\Delta a, \mathrm{~mm}$	$\Delta b \mathrm{~mm}$	$\Delta c \mathrm{~mm}$	ΔV_{p}, mm^{3}
1								
2								
3								
4								
5								
Average								

The values of \qquad are measured by a vernier caliper with accuracy \qquad mm , and the values of \qquad are measured by a micrometer caliper with accuracy \qquad mm .

Table 2

No.	$D, \mathrm{~mm}$	$h, \mathrm{~mm}$	$V_{C}, \mathrm{~mm}^{3}$	$\Delta D, \mathrm{~mm}$	$\Delta h, \mathrm{~mm}$	$\Delta V_{C}, \mathrm{~mm}^{3}$
1						
2						
3						
Average						

Error analysis

Errors in direct measurements

1. Calculate the average value of a (the number of measurements $n=5$)
$\bar{a}=$
2. Calculate the standard deviation for these measurements
$\sigma_{\bar{a}}=$
3. Calculate the random error $\Delta \bar{a}_{r}=$
where $\quad \alpha=$
Find $t_{\alpha, n}$ from the table of Student's coefficients
with $\alpha=0.95$ and $n=5 \quad t_{\alpha, n}=$
4. Calculate the error of individual measurement
$\Delta \bar{a}_{i . m}=$
where ℓ_{a}

The value of \bar{a} is \qquad so $\ell_{a}=$ \qquad mm.

In a similar manner, calculate averages of b, C, D, and h.
Error in individual measurement
b

1. The average for $n=5$ is

$$
\bar{b}=
$$

2. The standard deviation is
$\sigma_{\bar{b}}=$
3. The random error is

$$
\begin{aligned}
& \Delta \bar{b}_{r}= \\
& \alpha= \\
& t_{\alpha, n}=
\end{aligned}
$$

4. The error in individual measurement
is $\Delta \bar{b}_{i, m}=$
where $\ell_{\bar{b}}=$
\bar{b} is measured by \qquad _,
hence $\ell_{b}=$ \qquad mm.
5. The total error is

$\Delta b=$

D

1. The average for $n=3$ is $D=$
2. The standard deviation is
$\sigma_{\bar{D}}=$
3. The random error is

$$
\begin{gathered}
\Delta \bar{D}_{r}= \\
\alpha= \\
t_{\alpha, n}=
\end{gathered}
$$

4.The error in individual measurement
is $\Delta \bar{D}_{i, m}=$
where $\ell_{\bar{D}}=$
\bar{D} is measured by \qquad ,
hence $\ell \bar{D}=$ \qquad mm.
5. The total error is
$\Delta \bar{D}=$

C

1. The average for $n=5$ is
$C=$
2. The standard deviation is

$$
\sigma_{\bar{C}}=
$$

h

1. The average for $n=3$ is $\bar{h}=$
2. The standard deviation is $\sigma_{\bar{h}}=$
3. The random error is

$$
\begin{aligned}
& \Delta \bar{C}_{r}= \\
& \alpha= \\
& t_{\alpha, n}=
\end{aligned}
$$

4.The error in individual measurement
is $\Delta \bar{C}_{i . m}=$
where $\ell_{\bar{C}}=$
\bar{C} is measured by \qquad , hence $\ell_{\bar{C}}=$ \qquad mm .
5. The total error is

$$
\Delta C=
$$

3. The random error is

$$
\begin{gathered}
\Delta \bar{h}_{r}= \\
\alpha= \\
t_{\alpha, n}=
\end{gathered}
$$

4. The error in individual measurement
is $\Delta \bar{h}_{i . m}=$
where $\ell_{\bar{h}}=$
\bar{h} is measured by \qquad ,
hence $\ell_{\bar{h}}=$ \qquad mm .
5. The total error is
$\Delta \bar{h}=$

Relative error

(according to tutor's instruction)

$$
\frac{\Delta \bar{V}_{p}}{\bar{V}_{p}}=\sqrt{\left(\frac{\Delta \bar{a}}{\bar{a}}\right)^{2}+\left(\frac{\Delta \bar{b}}{\bar{b}}\right)^{2}+\left(\frac{\Delta \bar{c}}{\bar{c}}\right)^{2}} \text {, where }
$$

$\Delta \bar{a}, \Delta \bar{b}$, and $\Delta \bar{c}$ are the total errors in direct measurements of \bar{a}, \bar{b}, and \bar{c}
$\Delta \bar{a}=$
$\Delta \bar{b}=$
$\Delta \bar{c}=$
$\varepsilon=\frac{\Delta \bar{V}_{p}}{\bar{V}_{p}}$
$\Delta \bar{V}_{p}=$
mm with $\alpha=$

$$
t_{\alpha, n}=
$$

mm with $\alpha=$

$$
t_{\alpha, n}=
$$

mm with $\alpha=$

$$
t_{\alpha, n}=
$$

The final result with confidence level $\alpha=0.95$
(by the rule of rounding off)
$\bar{V}_{P} \pm \Delta \bar{V}_{P}=$
mm^{3}
$\bar{V}_{C} \pm \Delta \bar{V}_{C}=$
mm^{3}

Test questions

1. What errors are called systematic? Give some examples.
2. What errors are called the calibration ones?
3. Give the definition of uniform distribution parameter l_{x} for a physical quantity x.
4. Indicate possible sources of random errors. Can these errors be eliminated while performing an individual measurement?
5. Write the formula of a normal distribution and explain the meaning of all its parameters. How can these parameters be evaluated?
6. Indicate conditions at which the end points of confidence interval measurement errors are specified with the help of the Student distribution.
7. Give the general formula that expresses the error in indirect measurements of a certain quantity $Z\left(y_{1}, \ldots, y_{m}\right)$ in terms of errors in direct measurements of quantities y_{1}, \ldots, y_{m}.
8. Describe the procedure of measuring with a vernier caliper.
9. Describe the procedure of measuring with a micrometer caliper.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Report on laboratory experiment No. 2

Measuring the free fall acceleration

The objective is to measure the acceleration due to gravity g_{φ} in Tomsk, to calculate g_{0}, and to compare it with the theoretical estimate.

THEORY
A reference frame is \qquad

Noninertial reference frames are called

A laboratory system is

The net force that acts on a body in a laboratory coordinate system is
where
$F_{g r}=$
$F_{c p}=$
$F_{c o r}=$
Forces acting on a body in a noninertial reference frame at latitude φ

The axis of the Earth's rotation is the force of \qquad is the force of \qquad is the force of \qquad
The acceleration of a body on the Earth's surface at latitude φ

The axis of the Earth's rotation
$m g_{\varphi}=$
where \qquad
Calculation formulas
$g_{\varphi}=$
where \qquad
$g_{0}=$ where \qquad

Experimental Setup

EM \qquad
S \qquad
ESW \qquad

Data of measurements

$h, \mathrm{~m}$	Time t, s															$t_{a v}, \mathrm{~S}$	$\begin{aligned} & g_{\varphi}, \\ & \mathrm{m} / \mathrm{s} \end{aligned}$
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		

CALCULATIONS

Evaluation of the free fall acceleration from the experimental data
$g_{\varphi}=$
Calculation of the theoretical value
$\mathrm{g}_{0}=$

Initial data for calculation
$\gamma=6.6720 \cdot 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg} \quad R_{\text {earth }}=6.371 \cdot 10^{6} \mathrm{~m} \quad M_{\text {earth }}=5.98 \cdot 10^{24} \mathrm{~kg}$.

Conclusions

Test questions

1. What reference frames are called noninertial?
2. What inertial forces do you know?
3. What is the direction of Coriolis force?
4. How do you estimate the accuracy of this method of measuring the free fall acceleration?
5. Write the formula for Δg.
6. In what direction will the body fall if the value of h is not small? Take into account all the forces.
7. What is the time delay?
8. Is there any difference between the weight of a body at poles and in the equator? Why?
9. Is it possible to use Newton's second law if the reference frame is the Earth itself?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Report on laboratory experiment No. 3 Determining the coefficient of sliding friction

The objective is to evaluate the coefficient of sliding friction k.

THEORY

The types of friction are \qquad
The force of sliding friction acts if \qquad

The friction coefficient depends on \qquad
The method of limiting angle is used to evaluate k. The method is based on the following physical phenomenon: \qquad

The force of sliding friction $F_{s l}$ (for homogeneous solid materials in contact) is approximately equal to the maximum static frictional force $F_{s l}=k N$
 $k=$ \qquad

Experimental Setup
\qquad
Diagram of the experiment
Here
\qquad
Directions of forces \mathbf{N} and $\mathbf{F}_{f r}$ are fixed, but the direction of \mathbf{F}_{l} is variable and
depends on \qquad

Here
M
M_{1} \qquad
$M_{1} M_{2}$ \qquad
M_{2} \qquad
$M M_{1}$ \qquad

Calculation formulas
The coefficient of sliding friction is $k=$
where
ℓ_{1} \qquad
ℓ_{2}
The average coefficient of sliding friction is $k=$
Data of measurements
Table 1

Error analysis

Calculate the absolute and relative errors in measuring the coefficient of sliding friction k for materials in contact by the formulas
$\sigma_{k}=\sqrt{\frac{\sum_{i=1}^{n}\left(\bar{k}-k_{i}\right)^{2}}{n(n-1)}}=$
$\Delta \bar{k}_{r}=t_{\alpha, n} \cdot \bar{\sigma}_{\bar{k}}$
where $t_{\alpha, n}=2.26$ at $\alpha=0.95$ and $n=10$ (from the table).
$\bar{k} \pm \Delta \bar{k}_{r}=\quad$ with confidence level $\alpha=0.95$.
$\varepsilon_{\bar{k}}=\frac{\Delta \bar{k}_{r}}{\bar{k}}=$

Test questions

1. What factors determine the magnitude of friction force?
2. What is the direction of friction force?
3. What physical parameters can affect the force of sliding friction?
4. Compare the coefficient of sliding friction with that of static friction.
5. Why two specimens having surfaces machined in equal quantity have different coefficients of dry sliding friction?
6. When does the rolling friction force act?
7. What is the static and sliding friction?
8. What is the mechanism of energy losses in friction?
9. When does the empirical law of dry friction $(F=k N)$ violate?

Report on laboratory experiment No. 4 Studying the distribution function of random variables

The objective is \qquad

THEORY

Very often random variables are distributed according to the Gauss law
Here the average \tilde{x} is evaluated by the formula
where n is \qquad
The standard deviation is

The confidence level $\Delta \tilde{x}$ is \qquad
Here $t_{\alpha, n}$ is called \qquad which depends on
and

In our case, $n=150$ and $t_{\alpha, n}=$ \qquad with confidence level $\alpha=$ \qquad .
Data of measurements and calculations

Abstract

1.Try to record the time interval $x=1 \mathrm{~s}$ by an electric timer. The number of measurements is $n=150$. Taking into consideration that 1 revolution of the timer arm equals 1 s or 100 timer scale divisions, put the data in Table 1 in units of scale divisions.

2. Calculate $\tilde{x},\left(x_{i}-\tilde{x}\right)^{2}$, and σ and put them in Table 1.

Table 1

n	X_{i}	$\left(x_{i}-\tilde{x}\right)^{2}$	N	x_{i}	$\left(x_{i}-\tilde{x}\right)^{2}$
1			76		
2			77		
3			78		
4			79		
5			80		
6			81		
7			82		
8			83		
9			95		
10			86		
11			87		
12			88		
13					

58			133		
59		134			
60		135			
61		136			
62		137			
63		138			
64		139			
56		140			
66		141			
67		142			
68		144			
69		145			
70		146			
71		148			
72			149		
73					
74					
75					

2. Divide the total range of x_{i} variables into 10 arbitrary intervals and count the number of data N_{i} in each subinterval. Here Δx is the length of the intervals, and \bar{x}_{i} are their centers.
3. Calculate the probability density $f_{i}=\frac{N_{i}}{n \Delta x}$.
4. Evaluate the parameters of the Gauss distribution $f(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{\left(\tilde{x}-x_{i}\right)^{2}}{2 \sigma^{2}}}$ for the points \bar{x}_{i}.
Put all the calculated values in Table 2.
Table 2

Serial No. of interval	Δx	N_{i}	f_{i}	$f(x)$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

5. Using the data of Table 2, construct the histogram and the Gauss distribution.

6. Take arbitrarily 3,5 , and 10 successive measurements. (Three times for each series in different parts of the distribution.) Evaluate \tilde{x} and the confidence level $\Delta \tilde{x}$. Compare these values with those for $n=150$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Test questions

1. What random physical variables do you know?
2. What is the mathematical meaning of the distribution function?
3. Write the Gauss distribution function and explain the meaning of its parameters σ, x, and \tilde{x}.
4. Find the width of the Gauss distribution function (the distance between the points at opposite edges at half maximum). Express this quantity in terms of σ.
5. What can you conclude while looking at the rectangles $x=\bar{x} \pm \Delta x$ found in the experiment?
\qquad

Report on laboratory experiment No. 5 Elastic and inelastic collisions of balls

The objective of the experiment is \qquad
\qquad
\qquad

THEORY

The impact in mechanics is \qquad

The impact is called a) central when \qquad
b) completely elastic when

The head-on central impact is called perfectly inelastic when \qquad

The coefficient of restitution is \qquad

When one ball is initially at rest, the law of conservation of momentum has the form
\qquad
\qquad
\qquad
Calculation formulas
Speed of the moving ball before impact is $v_{1}=$ where
\qquad
\qquad
\qquad
\qquad

Speeds of bolls after impact are
$u_{1}=$
where \qquad
$u_{2}=$
where \qquad

The coefficient of restitution is $k=$

To check the validity of the law of conservation of momentum, the following relations must be tested:
for an elastic impact
for an inelastic impact

Data of measurements

1) For the fist pair of balls

$$
m_{1}=
$$

$$
m_{2}=
$$

Table 1

No.	α	$\sin \frac{\alpha}{2}$	$\sin ^{2} \frac{\alpha}{2}$	α^{\prime}	$\sin \frac{\alpha^{\prime}}{2}$	$\sin ^{2} \frac{\alpha^{\prime}}{2}$	β	$\sin \frac{\beta}{2}$	$\sin ^{2} \frac{\beta}{2}$	\boldsymbol{k}
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
Average										

Checking of the law of conservation of momentum

$$
\begin{equation*}
m_{1} \sin \frac{\alpha}{2}=-m_{1} \sin \frac{\alpha^{\prime}}{2}+m_{2} \sin \frac{\beta}{2} \tag{1}
\end{equation*}
$$

\qquad
\qquad
Conclusions
\qquad
\qquad
\qquad
2) For the second pair of balls $m_{1}=$ \qquad $m_{2}=$ \qquad
Table 2

No.	α	$\sin \frac{\alpha}{2}$	$\sin ^{2} \frac{\alpha}{2}$	α^{\prime}	$\sin \frac{\alpha^{\prime}}{2}$	$\sin ^{2} \frac{\alpha}{2}$	β	$\sin \frac{\beta}{2}$	$\sin ^{2} \frac{\beta}{2}$	k
1										
2										
3										
4										

5										
6										
7										
8										
9										
10										
Average										

Checking of the law of conservation of momentum

$$
\begin{equation*}
m_{1} \sin \frac{\alpha}{2}=-m_{1} \sin \frac{\alpha^{\prime}}{2}+m_{2} \sin \frac{\beta}{2} \tag{2}
\end{equation*}
$$

Conclusions

\qquad
\qquad
\qquad
\qquad
3) For the third pair of balls (inelastic collision)

$$
m_{1}=\ldots \quad m_{2}=
$$

\qquad

Table 3

No.	α	$\sin \frac{\alpha}{2}$	β	$\sin \frac{\beta}{2}$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
Average				

Checking of the law of conservation of momentum

$$
\begin{equation*}
m_{1} \sin \frac{\alpha}{2}=\left(m_{1}+m_{2}\right) \sin \frac{\beta}{2} \tag{3}
\end{equation*}
$$

Conclusions

Error analysis

Calculate the random error in measuring the coefficient of restitution k from the data in Tables 1 and 2 (according to tutor's instruction).

1. Calculate the average value of k
$k=$
2. Calculate the standard deviation of \bar{k}

$$
\sigma_{\bar{k}}=
$$

3. Calculate the random error

$$
\begin{aligned}
& \Delta \bar{k}_{r}=t_{\alpha, n} \cdot \sigma_{\bar{k}}= \\
& t_{\alpha, n}=\quad \quad(\text { from the table })
\end{aligned}
$$

$\bar{k} \pm \Delta \bar{k}_{r}=$
with confidence level $\alpha=0.95$.

The relative measurement error is
$\varepsilon_{k}=\frac{\Delta \bar{k}_{r}}{\bar{k}}=$

Test questions

1. What types of impacts do you know?
2. How do you understand the terms absolutely elastic collision, elastic collision, inelastic collision, and perfectly inelastic collision?
3. Why is it necessary to center the balls?
4. What is the elasticity coefficient?
5. Does this coefficient depend on collision angles?
6. What factors determine the values of the elasticity coefficient?
7. How do Eqs. (1) and (2) change when the collision is perfectly inelastic?
8. Describe the process of collision. What forces do act in this process? What is the elastic deformation?
9. Formulate the law of conservation of energy for the perfectly inelastic collision. 10. What is your opinion concerning Eq. (3)? Is it correct or not?
\qquad

Report on laboratory experiment No. 6 Studying dynamics laws with Athwood's machine

The objective of the experiments is \qquad

THEORY

The fundamental laws used in this work are \qquad
The acceleration is \qquad

The force is \qquad
Newton's second law (for translational motion) \qquad

The basic law of rotational motion is \qquad

Draw the diagram of forces acting upon the bodies shown in the figure and analyze their motion.

1) For uniform motion of bodies, equations have the form

The torque produced by the friction force is \qquad
2) For uniformly accelerated motion of bodies, the equation of motion has the form

The friction force is \qquad when \qquad
The acceleration of bodies is \qquad
3) On the other hand, using the laws of kinematics, the acceleration can be found if
\qquad and \qquad are specified, i.e., \qquad

Calculation formulas

(explain the physical meaning of every quantity)

Problem 1

Compare the magnitude of acceleration calculated in accordance with laws of kinematics from the formula

$$
a=\frac{2 S}{t^{2}}, \text { where } \quad S
$$

\qquad
\qquad
t \qquad
and that calculated in accordance with the law of dynamics from the formula

$$
a=\frac{m_{1} g}{2 m+\frac{M}{2}} \text {, where }
$$

$$
m_{1} \text { is }
$$

$$
m \text { is }
$$

\qquad

$$
M_{p}
$$

\qquad

Problem 2

Check the relation

$$
\frac{a_{1}}{a_{2}}=\frac{F_{1}}{F_{2}}, \text { where }
$$

$$
a_{1} \text { is }
$$

\qquad

$$
a_{2} \text { is }
$$

\qquad
$F_{1}=P_{2}-P_{1}=\left(m_{2}-m_{1}\right) g$, where m_{1} is \qquad
$F_{1}=P_{2}+P_{1}=\left(m_{2}+m_{1}\right) g$,
m_{2} is \qquad

Experimental Setup

where
A is \qquad
C is \qquad
B is \qquad
ESW is \qquad
EM is \qquad
1 is \qquad
2 is

Experimental data

Problem 1
Table 1

No.	$m_{1}, \mathrm{~g}$	$2 m, \mathrm{~g}$	$M_{p}, \mathrm{~g}$	$S, \mathrm{~cm}$	$t, \mathrm{~s}$	$t_{\mathrm{av}}, \mathrm{s}$	$a=\frac{2 S}{2}$, t^{2}	$a=\frac{m_{1} g}{2 m+\frac{M}{2}}$ $\mathrm{~cm} / \mathrm{s}^{2}$
1								
2								
3								
4								
5								
1								
2								
3								
4								
5								

Calculations

1) Calculate the acceleration in accordance with the laws of kinematics from the formula

$$
a=\frac{2 S}{t^{2}}, \quad a=
$$

Calculate the acceleration in accordance with the laws of dynamics from the formula

$$
a=\frac{m_{1} g}{2 m+\frac{M}{2}},
$$

$m_{1}=\quad a=$

Compare the results obtained.

Conclusions

2) For the second extra mass $m_{1}=$

$$
\begin{array}{ll}
a=\frac{2 S}{t^{2}}, & a= \\
a=\frac{m_{1} g}{2 m+\frac{M}{2}}, & a=
\end{array}
$$

Problem 2

Table 2

No.	$m_{1}, \mathrm{~g}$	$m_{2}, \mathrm{~g}$	$k_{1}=\frac{F_{1}}{F_{2}}$	$S, \mathrm{~cm}$	$t_{1}, \mathrm{~s}$	$t_{1 \mathrm{av}}$,	$t_{2}, \mathrm{~s}$	$t_{2 \mathrm{av}}$	$k_{2}=\frac{a_{1}}{a_{2}}$
1									
2									
3									
4									
5									

Calculations

Find the ratio of forces

$$
k_{1}=\frac{F_{1}}{F_{2}}=\frac{m_{2}-m_{1}}{m_{2}+m_{1}}, \quad k_{1}=
$$

Find accelerations a_{1}, a_{2} and their ratio
$a_{1}=\frac{2 S}{t_{1 \mathrm{av}}^{2}}, \quad a_{1}=$
$a_{2}=\frac{2 S}{t_{2}^{2} \text { av }}$,
$a_{2}=$
$k_{2}=\frac{a_{1}}{a_{2}}, \quad k_{2}=$
Compare k_{1} and k_{2}

$$
k_{2}=
$$

Conclusions

Test questions

1. How does the rotation friction force depend on the masses attached to each end of the cord?
2. What should be done to overcome the rotational friction force?
3. Under what conditions does the torque produced by the rotational friction force equal to that produced by tension in the cord?
4. Write the formula for the magnitude of rotational friction torque. On what quantities does the friction coefficient depend?
5. What conditions are needed to neglect the rotational friction force?
6. Write the equetion of motion of bodies when $a \ll g, m_{1} \ll m$, and $m_{0} \ll m$.
7. Write the equation describing the motion of masses.
8. How can we verify that the motion of bodies is uniform or uniformly accelerated?
9. Write the kinematics equation of motion of bodies.
10. What is the magnitude of rotational friction force when the bodies move with acceleration?
\qquad

Report on laboratory experiment No. 7 Determining the mean free path and the effective diameter of a molecule

The objective of the experiments is \qquad
\qquad

THEORY

Transport phenomena are \qquad
The mean free path is \qquad
The effective diameter of a molecule is \qquad

Calculation formulas
The mean free path is $\bar{\lambda}=$ where \qquad
The pressure difference along the pipe is $\Delta P=$
where h_{1}
h_{2}
\qquad
\qquad
r is the radius of a capillary, $r=$
The effective molecule diameter $D_{\text {eff }}=$
where \qquad

Where \quad Experimental Setup
1 -
3
4
5
$h_{1}($ measured $)$
h_{2} (measured)
V (measured)

Data of measurements

1) Estimation of the accuracy of the microscope and calculation of the capillary radius.
Table 1

	1	2	3	$\Delta N_{a v}$
N_{1}				
N_{2}				
$\Delta N=$				
$N_{2}-N_{1}$				

The accuracy of the microscope is

$$
x=\frac{2 \mathrm{~mm}}{\Delta N_{\mathrm{av}}}
$$

$x=$

Table 2

	1	2	3	$\Delta N_{a v}^{\prime}$
N_{1}^{\prime}				
N_{2}^{\prime}				
$\Delta N^{\prime}=$				
$N_{2}^{\prime}-N_{1}^{\prime}$				

The capillary diameter is

$$
d=\Delta N_{\mathrm{av}}^{\prime} \cdot x
$$

and its radius $r=\frac{d}{2}$.
$d=$
$r=$

Put the data in Table 3

Table 3

No	$h_{1}, \mathrm{~m}$	$t, \mathrm{~s}$	$h_{2}, \mathrm{~m}$	$l, \mathrm{~m}$	ΔP, Pa	V, m^{3}	$T, \mathrm{~K}$	$P, \mathrm{~Pa}$	$r, \mathrm{~m}$	$\lambda, \mathrm{~m}$	$D, \mathrm{~m}$
1											
2											
3											

Reference data for calculations

$$
\begin{array}{lr}
R=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}, \quad \mu=0.029 \mathrm{Kg} / \mathrm{mol}, & K=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}, \\
1 \mathrm{~mm} \mathrm{Hg}=133.3 \mathrm{~Pa}, \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}, & \rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

CALCULATIONS

Calculate the mean free path $\bar{\lambda}$

$$
\begin{aligned}
& \lambda_{1}= \\
& \lambda_{2}= \\
& \lambda_{3}= \\
& \bar{\lambda}=\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{3}=
\end{aligned}
$$

Calculate the effective diameter of an air molecule

$$
D_{e f f}=
$$

Compare the measured and theoretical values.

Theoretical value
for air under standard conditions

$$
\begin{array}{c|l}
\bar{\lambda} \cong 6.95 \cdot 10^{-8} \mathrm{~m} & \bar{\lambda}= \\
D_{e f f} \cong 0.35 \mathrm{~nm}=3.5 \cdot 10^{-10} \mathrm{~m} & D_{\text {eff }}=
\end{array}
$$

Measured value

Calculate the error in measuring $\bar{\lambda}$ by the method of evaluating the indirect measurement error.

Derive the formula for calculating

$$
\frac{\Delta \bar{\lambda}}{\bar{\lambda}}=
$$

Error analysis
$\bar{\lambda} \pm \Delta \bar{\lambda}=\quad$ with confidence level $\alpha=0.95$.
The relative error is
$\delta_{\bar{\lambda}}=\frac{\Delta \bar{\lambda}}{\bar{\lambda}}=$

Test questions

1. What are the causes of transport phenomena?
2. What transport phenomena do you know?
3. Why the transport phenomena are rather "slow"?
4. What is $D_{\text {eff }}$?
5. What physical phenomenon provides the basis for experimental determination of λ and $D_{e f f}$?
6. Give the relation between $\bar{\lambda}$ and $D_{e f f}$.
7. Explain why $p_{1}>p_{2}$. Here p_{1} is the air pressure at the upper end of the capillary, and p_{2} is the air pressure at the bottom of the capillary.
8. Explain why the term $\frac{h_{1}+h_{2}}{2}$ is used.
9. Give the formulas for $\Delta \bar{\lambda}$ and $\Delta D_{\text {eff }}$.
10. Explain the procedure of measuring the capillary radius by a microscope.
\qquad
