Tomsk Polytechnic University

PHYSICS I Reports on Laboratory Experiments

Tomsk 2000

PHYSICS I Reports on Laboratory Experiments Mechanics and Molecular Physics TPU Press, Tomsk, 1999

These instructions have been approved by the Department of Theoretical and Experimental Physics and the Department of General Physics of TPU

Authors:

V. F. Pichugin V. M. Antonov All the laboratory experiments must be performed in the TPU Physics Laboratory. The estimation of students' laboratory activity is based on their ability to perform the laboratory experiment and to present the results in conventional format. The report must be carefully prepared. It must include all the measurements and calculations.

List of laboratory experiments

- 1. Measuring the linear dimensions of a body
- 2. Measuring the free fall acceleration
- 3. Determining the coefficient of sliding friction
- 4. Studying the distribution function of random variables
- 5. Elastic and inelastic collisions of balls
- 6. Studying dynamics laws with Athwood's machine
- 7. Determining the mean free path and the effective diameter of a molecule

Report on laboratory experiment No. 1 Measuring the linear dimensions of a body

The objective is to measure the linear dimensions of a body, to calculate its volume, and to estimate absolute and relative measurement errors

THEORY

There are two kinds of measurements: direct indirect and two types of errors: systematic_____ random To measure the linear dimensions of a body, you can use_____ Principal scales of these devices are base rules and vernier calipers. Vernier caliper is_ _____ One subdivision of the vernier caliper corresponds to $\frac{m-1}{m} = \left(1 - \frac{1}{m}\right)$ subdivisions of the basic ruler, where *m* is With the help of the vernier caliper, measurements are carried out with the accuracy $\Delta x = y - x = \frac{y}{m}$, where_____ *y*___ x The accuracy of the vernier caliper is $\frac{y}{z} =$ mm. The length L measured by this device is $L = ky + n\frac{y}{m}$, where *k* is ______ *n* is _____

The accuracy of the measuring scale of a micrometer caliper is $\frac{y}{m} = mm$.

Calculation formulas

The volume of a parallelepiped is	$V_P =$		
where <i>a</i>	b	С	
The volume of a cylinder is $V_C =$			where
d	h		

Data of measurements

							Table	1
No.	<i>a</i> , mm	<i>b</i> , mm	c, mm	$V_{\rm p},$	Δa , mm	$\Delta b \text{ mm}$	$\Delta c \text{ mm}$	$\Delta V_{\rm p}$
				mm^3				mm ³
1								
2								
3								
4								
5								
Average								

The values of ______ are measured by a vernier caliper with accuracy ______ mm, and the values of ______ are measured by a micrometer caliper with accuracy ______ mm.

					Table 2
D, mm	h, mm	V_C , mm ³	ΔD , mm	Δh , mm	ΔV_C , mm ³
	1	D, mm h, mm			

Error analysis

Errors in direct measurements

1. Calculate the average value of *a* (the number of measurements n = 5)

 \overline{a} =

2. Calculate the standard deviation for these measurements

 $\sigma_{\overline{a}} =$

3. Calculate the random error $\Delta \overline{a}_r =$ where $\alpha =$ $t_{\alpha n}$ Find $t_{\alpha,n}$ from the table of Student's coefficients with $\alpha = 0.95$ and n = 5 $t_{\alpha,n} =$ 4. Calculate the error of individual measurement where ℓ_a $\Delta \overline{a}_{i.m} =$ The value of \overline{a} is ______ so $\ell_a = _____ mm$. In a similar manner, calculate averages of b, C, D, and h. Error in individual measurement b 1. The average for n = 3 is 1. The average for n = 5 is D =b =2. The standard deviation is 2. The standard deviation is $\sigma_{\bar{h}} =$ $\sigma_{\overline{D}} =$ 3. The random error is 3. The random error is $\Delta \overline{D}_r =$ $\Delta \overline{b}_r =$ $\alpha =$ $\alpha =$ $t_{\alpha,n} =$ $t_{\alpha,n} =$ 4. The error in individual measurement 4. The error in individual measurement is $\Delta \overline{D}_{i.m} =$ is $\Delta \overline{b}_{i,m} =$ where $\ell_{\overline{D}} =$ where $\ell_{\bar{h}} =$ D is measured by _____ *b* is measured by _____ hence $\ell_{\overline{D}} = _$ mm. hence $\ell_{\overline{h}} = \underline{\qquad}$ mm. 5. The total error is 5. The total error is $\Delta D =$ $\Delta b =$

- 1. The average for n = 5 is $\overline{C} =$
- 2. The standard deviation is $\sigma_{\overline{C}} =$

h 1. The average for n = 3 is $\overline{h} =$ 2. The standard deviation is $\sigma_{\overline{h}} =$

Relative error (according to tutor's instruction)

$$\frac{\Delta \overline{V_p}}{\overline{V_p}} = \sqrt{\left(\frac{\Delta \overline{a}}{\overline{a}}\right)^2 + \left(\frac{\Delta \overline{b}}{\overline{b}}\right)^2 + \left(\frac{\Delta \overline{c}}{\overline{c}}\right)^2}, \text{ where }$$

 $\Delta \overline{a}$, $\Delta \overline{b}$, and $\Delta \overline{c}$ are the total errors in direct measurements of \overline{a} , \overline{b} , and c mm with $\alpha =$ $\Delta \overline{a} =$ $t_{\alpha,n} =$ $\Lambda \overline{b} =$ mm with $\alpha =$ $t_{\alpha,n} =$ $\Delta \overline{c} =$ mm with $\alpha =$ $t_{\alpha,n} =$

$$\begin{split} \mathbf{\epsilon} = & \frac{\Delta \overline{V_p}}{\overline{V_p}} \\ \Delta \overline{V_p} = & \end{split}$$

 $\Delta \overline{h}_r =$ $\alpha =$ $t_{\alpha,n} =$ 4. The error in individual measurement is $\Delta \overline{h}_{i.m} =$ where $\ell_{\overline{h}} =$ \overline{h} is measured by ______ hence $\ell_{\overline{h}} = _$ _____ mm. 5. The total error is

3. The random error is

$$\Delta h =$$

$$\frac{\Delta \overline{V_c}}{\overline{V_c}} = \sqrt{\left(\frac{2\Delta \overline{D}}{\overline{D}}\right)^2 + \left(\frac{\Delta \overline{h}}{\overline{h}}\right)^2}, \text{ where }$$

 $\Delta \overline{D}$ and $\Delta \overline{h}$ are the total errors in direct measurements of \overline{D} , \overline{h} .

$$\Delta D = \qquad \qquad \text{mm with } \alpha = \\ t_{\alpha,n} = \\ \Delta \overline{h} = \qquad \qquad \text{mm with } \alpha = \\ t_{\alpha,n} = \\ t_{\alpha,n} = \\ \end{cases}$$

 $\begin{vmatrix} \boldsymbol{\varepsilon} = \frac{\Delta \overline{V_c}}{\overline{V_c}} \\ \Delta \overline{V_c} = \end{vmatrix}$

The final result with confidence level $\alpha = 0.95$ (by the rule of rounding off) $\overline{V}_P \pm \Delta \overline{V}_P =$ mm³ $\overline{V}_C \pm \Delta \overline{V}_C =$ mm^3 Conclusions

Test questions

- 1. What errors are called systematic? Give some examples.
- 2. What errors are called the calibration ones?
- 3. Give the definition of uniform distribution parameter l_x for a physical quantity *x*.
- 4. Indicate possible sources of random errors. Can these errors be eliminated while performing an individual measurement?
- 5. Write the formula of a normal distribution and explain the meaning of all its parameters. How can these parameters be evaluated?
- 6. Indicate conditions at which the end points of confidence interval measurement errors are specified with the help of the Student distribution.
- 7. Give the general formula that expresses the error in indirect measurements of a certain quantity $Z(y_1, ..., y_m)$ in terms of errors in direct measurements of quantities $y_1, ..., y_m$.
- 8. Describe the procedure of measuring with a vernier caliper.
- 9. Describe the procedure of measuring with a micrometer caliper.

Report on laboratory experiment No. 2 Measuring the free fall acceleration

The objective is to measure the acceleration due to gravity g_{φ} in Tomsk, to calculate g_0 , and to compare it with the theoretical estimate.

THE A reference frame is	ORY
Noninertial reference frames are called	
A laboratory system is	
The net force that acts on a body in a labo	oratory coordinate system is where
$F_{gr} =$ is the force	ce of
	ce of
	ce of
Forces acting on a body in a noninertial reference frame at	The acceleration of a body on the Earth's surface at latitude ϕ
latitude φ r R φ φ The axis of the Earth's rotation	The axis of the Earth's rotation

	$g_{\varphi} - g_0 =$
mg =	$a_{cp} = \omega r =$
$mg_{\phi} =$ where	$g_{\varphi} =$

Calculation formulas

Experimental Setup

EM	
S	
ESW	

Data of measurements

		Time t, s									t_{av} , s	<i>g</i> _φ ,					
<i>h</i> , m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		m/s

CALCULATIONS

Evaluation of the free fall acceleration from the experimental data

 $g_{\varphi} =$

Calculation of the theoretical value

 $g_0 =$

Initial data for calculation $\gamma = 6.6720 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 / \text{ kg}$ $R_{\text{earth}} = 6.371 \cdot 10^6 \text{ m}$

$$M_{\rm earth} = 5.98 \cdot 10^{24} \, \rm kg.$$

Conclusions

Test questions

- 1. What reference frames are called noninertial?
- 2. What inertial forces do you know?
- 3. What is the direction of Coriolis force?
- 4. How do you estimate the accuracy of this method of measuring the free fall acceleration?
- 5. Write the formula for Δg .
- 6. In what direction will the body fall if the value of h is not small? Take into account all the forces.
- 7. What is the time delay?
- 8. Is there any difference between the weight of a body at poles and in the equator? Why?
- 9. Is it possible to use Newton's second law if the reference frame is the Earth itself?

Report on laboratory experiment No. 3 Determining the coefficient of sliding friction

The objective is to evaluate the coefficient of sliding friction *k*.

12

Calculation formulas

The coefficient of sliding friction is $k =$	where
<i>l</i> ₁	
l ₂	

The average coefficient of sliding friction is k =

Materials Mass of the k No. ℓ_2 , cm \bar{k} α , deg ℓ_1 , cm in contact load, kg 1 2 Duralumin-brass 3 45 4 5 1 2 3 0.2 45 4 5 1 2 Duralumin-rubber 3 50 4 5 1 2 3 0.2 50 4 5

Data of measurements

Table 1

Error analysis

Calculate the absolute and relative errors in measuring the coefficient of sliding friction k for materials in contact by the formulas

 $\sigma_{\bar{k}} = \sqrt{\frac{\sum_{i=1}^{n} (\bar{k} - k_i)^2}{n(n-1)}} = \Delta \bar{k}_r = t_{\alpha,n} \cdot \bar{\sigma}_{\bar{k}}$ where $t_{\alpha,n} = 2.26$ at $\alpha = 0.95$ and n = 10 (from the table).

$$\bar{k} \pm \Delta \bar{k}_r =$$
 with confidence level $\alpha = 0.95$
 $\varepsilon_{\bar{k}} = \frac{\Delta \bar{k}_r}{\bar{k}} =$

Test questions

- 1. What factors determine the magnitude of friction force?
- 2. What is the direction of friction force?
- 3. What physical parameters can affect the force of sliding friction?
- 4. Compare the coefficient of sliding friction with that of static friction.
- 5. Why two specimens having surfaces machined in equal quantity have different coefficients of dry sliding friction?
- 6. When does the rolling friction force act?
- 7. What is the static and sliding friction?
- 8. What is the mechanism of energy losses in friction?
- 9. When does the empirical law of dry friction (F = kN) violate?

Report on laboratory experiment No. 4 Studying the distribution function of random variables

The objective is_____

THEORY

Very often random variables are distributed according to the Gauss law

Here the average \tilde{x} is evaluated by the formula

where *n* is _____

The standard deviation is

The confidence level $\Delta \tilde{x}$ is _______ Which depends on which depends on

and

In our case, n = 150 and $t_{\alpha,n} =$ _____ with confidence level $\alpha =$ _____. Data of measurements and calculations

1.Try to record the time interval x = 1s by an electric timer. The number of measurements is n = 150. Taking into consideration that 1 revolution of the timer arm equals 1 s or 100 timer scale divisions, put the data in Table 1 in units of scale divisions.

2. Calculate \tilde{x} , $(x_i - \tilde{x})^2$, and σ and put them in Table 1.

					Table 1
п	X_i	$(x_i - \tilde{x})^2$	Ν	X_i	$(x_i - \tilde{x})^2$
1			76		
2			77		
3			78		
4			79		
5			80		
6			81		
7			82		
8			83		
9			84		
10			95		
11			86		
12			87		
13			88		

	1			
14			89	
15			90	
16			91	
17			92	
18			93	
19			94	
20			95	
20			96	
22			97	
22			98	
23			99	
24			100	
26			101	
27			102	
28			103	
29			104	
30			105	
31			106	
32			107	
33			108	
34			109	
35			110	
36			111	
37			112	
38			113	
39			114	
40			115	
41			116	
42			117	
43			118	
44			119	
45			120	
45			120	
47			122	
48			123	
49			124	
50			125	
51			126	
52			127	
53			128	
54			129	
55			130	
56			131	
57			132	
L	II	1.		

Table 1. continued

		100		· · · · · · · · · · · · · · · · · · ·
58		133		
59		134		
60		135		
61		136		
62		137		
63		138		
64		139		
56		140		
66		141		
67		142		
68		143		
69		144		
70		145		
71		146		
72		147		
73		148		
74		149		
75		150		
			$\widetilde{x} =$	$\sigma =$

2. Divide the total range of x_i variables into 10 arbitrary intervals and count the number of data N_i in each subinterval. Here Δx is the length of the intervals, and $\overline{x_i}$ are their centers.

3. Calculate the probability density
$$f_i = \frac{N_i}{n\Delta x}$$
.

4. Evaluate the parameters of the Gauss distribution $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\tilde{x}-x_i)^2}{2\sigma^2}}$ for the points \bar{x}_i .

points \overline{x}_i .

_				Table 2
Serial	Δx	N_i	f_i	f(x)
No. of				
interval				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Put all the calculated values in Table 2.

5. Using the data of Table 2, construct the histogram and the Gauss distribution.

6. Take arbitrarily 3, 5, and 10 successive measurements. (Three times for each series in different parts of the distribution.) Evaluate \tilde{x} and the confidence level $\Delta \tilde{x}$. Compare these values with those for n=150.

Test questions
1. What random physical variables do you know?
2. What is the mathematical meaning of the distribution function?
3. Write the Gauss distribution function and explain the meaning of its parameters σ , <i>x</i> , and \tilde{x} .
4. Find the width of the Gauss distribution function (the distance between the points at opposite edges at half maximum). Express this quantity in terms of σ .
5. What can you conclude while looking at the rectangles $x = \bar{x} \pm \Delta x$ found in the experiment?
experiment:

Report on laboratory experiment No. 5 Elastic and inelastic collisions of balls

The objective of the experiment is
THEORY The impact in mechanics is
The impact is called a) central when
b) completely elastic when
The head-on central impact is called perfectly inelastic when
The coefficient of restitution is
When one ball is initially at rest, the law of conservation of momentum has the form
Calculation formulas Speed of the moving ball before impact is $v_1 =$ where
Speeds of bolls after impact are
$u_1 =$ where $u_2 =$ where

The coefficient of restitution is k =

To check the validity of the law of conservation of momentum, the following relations must be tested:

_for an elastic impact

for an inelastic impact

Data of measurements

1) For the fist pair of balls

$$m_1 = m_2 =$$

Table 1

		r								
No.	α	$\sin \frac{\alpha}{2}$	$\sin^2\frac{\alpha}{2}$	α'	$\sin \frac{\alpha'}{2}$	$\sin^2\frac{\alpha'}{2}$	β	$\sin\frac{\beta}{2}$	$\sin^2\frac{\beta}{2}$	k
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
Average										

Checking of the law of conservation of momentum

$$m_1 \sin\frac{\alpha}{2} = -m_1 \sin\frac{\alpha}{2} + m_2 \sin\frac{\beta}{2} \tag{1}$$

Conclusions

2) For the second pair of balls

 $m_1 = _ m_2 = _$

Table 2

No.	α	$\sin \frac{\alpha}{2}$	$\sin^2\frac{\alpha}{2}$	α′	$\sin \frac{\alpha'}{2}$	$\sin^2\frac{\alpha'}{2}$	β	$\sin \frac{\beta}{2}$	$\sin^2\frac{\beta}{2}$	k
1										
2										
3										
4										

5					
6					
7					
8					
9					
10					
Average					

Checking of the law of conservation of momentum

$$m_1 \sin\frac{\alpha}{2} = -m_1 \sin\frac{\alpha}{2} + m_2 \sin\frac{\beta}{2} \tag{2}$$

Conclusions

3) For the third pair of balls (inelastic collision)

 $m_1 =$ _____

*m*₂=_____

Table 3

No.	α	$\sin \frac{\alpha}{2}$	β	$\sin\frac{\beta}{2}$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
Average				

Checking of the law of conservation of momentum

$$m_1 \sin \frac{\alpha}{2} = (m_1 + m_2) \sin \frac{\beta}{2}$$
 (3)

where $\alpha =$

Conclusions

Error analysis

Calculate the random error in measuring the coefficient of restitution k from the data in Tables 1 and 2 (according to tutor's instruction).

- 1. Calculate the average value of k
 - k =
- 2. Calculate the standard deviation of k $\sigma_{\bar{k}} =$
- 3. Calculate the random error $\Delta \bar{k}_r = t_{\alpha,n} \cdot \sigma_{\bar{k}} =$
 - $t_{\alpha,n} =$ (from the table)

 $\bar{k} \pm \Delta \bar{k}_r =$ with confidence level $\alpha = 0.95$.

The relative measurement error is

$$\varepsilon_k = \frac{\Delta \overline{k_r}}{\overline{k}} =$$

Test questions

- 1. What types of impacts do you know?
- 2. How do you understand the terms absolutely elastic collision, elastic collision, inelastic collision, and perfectly inelastic collision?
- 3. Why is it necessary to center the balls?
- 4. What is the elasticity coefficient?
- 5. Does this coefficient depend on collision angles?
- 6. What factors determine the values of the elasticity coefficient?
- 7. How do Eqs. (1) and (2) change when the collision is perfectly inelastic?
- 8. Describe the process of collision. What forces do act in this process? What is the elastic deformation?
- 9. Formulate the law of conservation of energy for the perfectly inelastic collision.
- 10. What is your opinion concerning Eq. (3)? Is it correct or not?

Report on laboratory experiment No. 6 Studying dynamics laws with Athwood's machine

The objective of the experiments is_____ THEORY The fundamental laws used in this work are The acceleration is _____ The force is ______ Newton's second law (for translational motion) _____ The basic law of rotational motion is Draw the diagram of forces acting upon the bodies shown in the figure and analyze their M motion. 1) For uniform motion of bodies, equations have the form The torque produced by the friction force is_____ $m + m_0 + m_1$ 2) For uniformly accelerated motion of bodies, the equation of motion has the form The friction force is _____ ______when ______ The acceleration of bodies is _____ 3) On the other hand, using the laws of kinematics, the acceleration can be found if

and ______ are specified, i.e., _____

Calculation formulas (explain the physical meaning of every quantity)

Problem 1

Compare the magnitude of acceleration calculated in accordance with laws of kinematics from the formula

Experimental data

Proble	Problem 1 Table 1									
No.	<i>m</i> ₁ , g	2 <i>m</i> , g	M_p , g	S, cm	<i>t</i> , s	t _{av} , s	$a = \frac{2S}{t^2},$ cm/s ²	$a = \frac{m_1 g}{2m + \frac{M}{2}}$ cm/s ²		
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5 \end{array} $										
1 2 3 4 5										

Calculations

1) Calculate the acceleration in accordance with the laws of kinematics from the formula

$$a = \frac{2S}{t^2}, \qquad a =$$

Calculate the acceleration in accordance with the laws of dynamics from the formula

$$a = \frac{m_1 g}{2m + \frac{M}{2}}, \qquad m_1 = \qquad a =$$

Compare the results obtained.

Conclusions

2) For the second extra mass	$m_1 =$
$a=\frac{2S}{t^2},$	<i>a</i> =
$a = \frac{m_1 g}{2m + \frac{M}{2m}},$	<i>a</i> =
2 2	

Conclusions

Problem 2

Table 2

No.	<i>m</i> ₁ , g	<i>m</i> ₂ , g	$k_1 = \frac{F_1}{F_2}$	S, cm	<i>t</i> ₁ , s	t_{1av} , s	<i>t</i> ₂ , s	$t_{2av},$ s	$k_2 = \frac{a_1}{a_2}$
1									
2									
3									
4									
5									

Calculations

Find the ratio of forces

$$k_1 = \frac{F_1}{F_2} = \frac{m_2 - m_1}{m_2 + m_1}, \qquad k_1 =$$

Find accelerations a_1 , a_2 and their ratio

$$a_{1} = \frac{2S}{t_{1 \text{ av}}^{2}}, \qquad a_{1} =$$

$$a_{2} = \frac{2S}{t_{2 \text{ av}}^{2}}, \qquad a_{2} =$$

$$k_{2} = \frac{a_{1}}{a_{2}}, \qquad k_{2} =$$
Compare k_{1} and k_{2}

$$k_{2} =$$

Conclusions

=

Test questions

- 1. How does the rotation friction force depend on the masses attached to each end of the cord?
- 2. What should be done to overcome the rotational friction force?
- 3. Under what conditions does the torque produced by the rotational friction force equal to that produced by tension in the cord?
- 4. Write the formula for the magnitude of rotational friction torque. On what quantities does the friction coefficient depend?
- 5. What conditions are needed to neglect the rotational friction force?
- 6. Write the equation of motion of bodies when $a \ll g$, $m_1 \ll m$, and $m_0 \ll m$.
- 7. Write the equation describing the motion of masses.
- 8. How can we verify that the motion of bodies is uniform or uniformly accelerated?
- 9. Write the kinematics equation of motion of bodies.
- 10. What is the magnitude of rotational friction force when the bodies move with acceleration?

Report on laboratory experiment No. 7 Determining the mean free path and the effective diameter of a molecule

Data of measurements

1) Estimation of the accuracy of the microscope and calculation of the capillary radius.

Table	1
-------	---

1 4010 1				
	1	2	3	ΔN_{av}
N_1				
N_2				
$\Delta N =$				
$N_{2} - N_{1}$				

The accuracy of the microscope is

$$x = \frac{2 \text{ mm}}{\Delta N_{\text{av}}},$$

x =

Table 2

	1	2	3	$\Delta N'_{av}$
N'_1				
N'_2				
$\Delta N' = N_2' - N_1'$				
$N'_{2} - N'_{1}$				

The capillary diameter is

 $d = \Delta N'_{av} \cdot x$ and its radius $r = \frac{d}{2}$.

d =

r =

Put the data in Table 3

Table 3

								10010-5			
No	<i>h</i> ₁ , m	<i>t</i> , s	h_2 , m	<i>l</i> , m	ΔP ,	V, m ³	<i>Т</i> , К	<i>P</i> , Pa	<i>r</i> , m	λ, m	<i>D</i> , m
	_				Ра	m^3					
1											
2											
3											

Reference data for calculations

 $R = 8.31 \text{ J/mol} \cdot \text{K}, \quad \mu = 0.029 \text{ kg/mol}, \qquad K = 1.38 \cdot 10^{-23} \text{ J/K}, \\ 1 \text{ mm Hg} = 133.3 \text{ Pa}, \qquad g = 9.8 \text{ m/s}^2, \qquad \rho_{\text{water}} = 10^3 \text{ kg/m}^3.$

CALCULATIONS

Calculate the mean free path $\bar{\lambda}$

 $\lambda_1 =$ $\lambda_2 =$

$$\lambda_3 =$$

$$\overline{\lambda} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3} =$$

Calculate the effective diameter of an air molecule

$$D_{eff} =$$

Compare the measured and theoretical values.

Measured value

Theoretical value

for air under standard conditions $\overline{\lambda} \cong 6.95 \cdot 10^{-8} \text{ m}$	$\overline{\lambda} =$
$D_{eff} \cong 0.35 \text{ nm} = 3.5 \cdot 10^{-10} \text{ m}$	$D_{eff} =$

Calculate the error in measuring $\overline{\lambda}$ by the method of evaluating the indirect measurement error.

Derive the formula for calculating

$$\frac{\Delta\lambda}{\overline{\lambda}} =$$

Error analysis

 $\overline{\lambda} \pm \Delta \overline{\lambda} =$

with confidence level $\alpha = 0.95$.

The relative error is

$$\delta_{\overline{\lambda}} = \frac{\Delta \lambda}{\overline{\lambda}} =$$

Test questions

- 1. What are the causes of transport phenomena?
- 2. What transport phenomena do you know?
- 3. Why the transport phenomena are rather "slow"?
- 4. What is D_{eff} ?
- 5. What physical phenomenon provides the basis for experimental determination of $\overline{\lambda}$ and D_{eff} ?
- 6. Give the relation between $\overline{\lambda}$ and D_{eff} .

- 7. Explain why $p_1 > p_2$. Here p_1 is the air pressure at the upper end of the capillary, and p_2 is the air pressure at the bottom of the capillary.
- 8. Explain why the term $\frac{h_1 + h_2}{2}$ is used.

9. Give the formulas for $\Delta \overline{\lambda}$ and ΔD_{eff} .

10. Explain the procedure of measuring the capillary radius by a microscope.