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ABSTRACT: The optimization of a palladium-catalyzed Heck−Matsuda reaction using an optimization algorithm is presented.
We modified and implemented the Nelder−Mead method in order to perform constrained optimizations in a multidimensional
space. We illustrated the power of our modified algorithm through the optimization of a multivariable reaction involving the
arylation of a deactivated olefin with an arenediazonium salt. The great flexibility of our optimization method allows to fine-tune
experimental conditions according to three different objective functions: maximum yield, highest throughput, and lowest
production cost. The beneficial properties of flow reactors associated with the power of intelligent algorithms for the fine-tuning
of experimental parameters allowed the reaction to proceed in astonishingly simple conditions unable to promote the coupling
through traditional batch chemistry.
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■ INTRODUCTION

For decades, chemists have mainly focused their creativity on
chemical processes while paying little attention to the reaction
vessel. As a consequence, the vast majority of synthetic work
reported so far have been invented in batch, although many
successful transpositions under flow conditions have been
reported these last years.1 Flow chemistry offers many
significant improvements over batch chemistry such as better
mass and heat transfer, efficient mixing, safety enhancement,
reduced reaction time and waste, and higher reproducibility, as
well as benefits resulting from automation.2 The miniatur-
ization of flow devices makes them perfectly sized for the
screening and optimization of reactions involving high added
value compounds such as elaborated intermediates or expensive
organometallic catalysts.
Traditional optimization studies are mainly based on the

know-how of chemists and eventually use the principles of
design of experiment (DoE) methods. While DoE can be
automated to speed-up the screening of predetermined
experimental conditions and allows response surface modeling,
it requires a high number of experiments to locate an
optimum.3 DoE has been also studied with flow reactors for
the efficient optimization of chemical reactions.4 The facile
automation of flow devices through the use of integrated
software, enabling the programming of predetermined param-
eters, has allowed the development of solution-phase high
throughput (HT) flow chemistry for the synthesis of small
libraries5 or the simple optimization of reaction conditions.6 In
order to enhance the throughput of flow devices, the creation of

reaction zones, created by programmed delay between injection
pulses and separated by fresh solvent, has been proposed.7 With
these ingenious segmented-type systems, eventually featuring
in-line analysis,7a,b catalyst screening,7a,b and reaction discov-
ery7c,d have been successfully reported. However, the
optimization of complex reactions requires a more rational
approach not following predetermined parameters to attain a
higher efficiency.
A much more appealing strategy consists in integrating

feedback with intelligent algorithms. This approach enables
optimization systems to analyze previous reaction data in order
to adapt and modify the following experiments in a short time
frame.8 This research line has been pioneered by deMello and
co-workers for the synthesis of CdSe nanoparticles,9 and up to
now, the groups of Jensen,10 Poliakoff,11 Cronin,12 Ley,13

Lapkin,14 and Bourne15 have contributed to this emerging but
still unexplored research area. The challenge associated with
intelligent optimization systems results in the need to perform a
constrained optimization without knowledge and a priori on
the value of reaction parameters, making the optimization of
complex reactions a challenge beyond classical optimization
techniques.
Optimization of reactions involving organometallic catalysts

are usually time-consuming since the optimal conditions
depend not only on the value of well-known parameters
including the temperature, time, and concentration but also, in
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many examples, on the use of additives such as base and ligand
among others. Our team has a long-standing interest for
palladium-catalyzed Heck reactions involving arenediazonium
salts as arylating agents,16 and we developed several method-
ologies both in batch17 and flow18 modes following a traditional
empirical approach for reaction optimization. While the Pd-
catalyzed arylation of activated alkenes such as acrylates or
styrenes with diazonium salts is now well-mastered,19 the
arylation of unactivated acyclic alkenes is one of the synthetic
challenges in this research line that has been pioneered by the
teams of Correia20 and Sigman.21 We also recently reported our
own contribution to this research area with the development of
a simple catalytic system using 2-pyridinemethanol as
inexpensive ligand.22 From these studies we learned that the
arylation of acyclic alkenes (i) requires the use of a ligand for
stabilizing Pd complexes and (ii) has only found success in
batch mode while the use of flow conditions remain unknown.
Therefore, we wondered if the better mass and heat transfer
and efficient mixing offered by flow chemistry could allow Pd-
catalyzed arylation of unactivated alkenes with diazonium salts
without the use of any additive including base and ligand for
the sake of waste reduction, experimental simplicity and
environmental concerns. We reasoned that for tackling such a
challenging task with uncertain chances of success, the use of an
optimizing algorithm integrating a feedback into the
optimization could speed-up the process and increase the
opportunity of finding adequate experimental conditions.
In this paper we describe our recent findings on the use of a

modified Simplex algorithm for the optimization of a Heck-
Matsuda reaction in a flow device, involving the arylation of
buten-1,4-diol. Our work culminated with the optimization of
the coupling with astonishingly simple experimental conditions
not requiring any additive including base and ligand. Moreover,
the modified simplex algorithm showed great flexibility since
the experimental conditions could be tuned according to the
nature of the objective function which could be either the yield,
the productivity (mg/h) or the unitary cost (€/g).

■ RESULTS AND DISCUSSION

We recently studied the arylation of cis-2-buten-1,4-diol (2)
with arenediazonium salts in batch. These studies revealed the
need of a ligand for attaining high conversion due to the high
susceptibility of Pd complexes to form Pd nanoparticles in
MeOH (Scheme 1). With the aim of developing a more
practical and sustainable procedure, we reasoned that kinetic
enhancements usually observed in flow reactors over conven-
tional batch equipment could allow to simplify drastically the

experimental procedure, through the suppression of both ligand
and base. In order to address this challenge, we studied a
benchmark reaction involving the coupling of cis-2-buten-1,4-
diol (2) with 4-chlorobenzene diazonium tetrafluoroborate (1).
Little attention has been paid to the Heck−Matsuda reaction

in flow conditions.18,23 However, from these studies and others
related to the use of diazonium salts in flow,24 it became
obvious that the high crystallinity of diazonium salts and the
rapid decomposition of Pd complexes into Pd NPs depositing
on the side of the tubing often led to clogging issues. Therefore,
before starting the optimization procedure in flow, a variety of
solvents were screened, and we found that a mixture of DMF/
MeOH (5:1) solubilizes diazonium salt 1 while stabilizing
Pd(TFA)2 with no apparent formation of Pd NPs after 30 min
of stirring. The experimental setup consisted in two ways
equipped with 1 mL loops (Scheme 2). Loop A was loaded
with a solution of 1 and 2 in DMF/MeOH, and loop B was
filled with a solution of Pd(TFA)2 in DMF/MeOH with the
required loading. Each way was pumped with two independent
pumps and the flow streams met at a T-shaped mixer (3 μL).
The resulting mixture was introduced in a PEEK reactor (5
mL) placed in an oven and finally collected into a fraction
collector for offline analysis by GC-MS. The optimization
algorithm was fed with the GC yield and proposed a new set of
conditions according to the objective function.

Implementation of the Optimization Algorithm. Since
there is no a priori reaction and gradient information, the
objective function must be treated as a “black box” and
optimized with an algorithm belonging to the category of direct
search methods. We selected the Nelder−Mead Simplex
method (see Supporting Information for details) due to its
simplicity, robustness, and to its low requirement of function
evaluations (experiments) compared to other optimization
methods (e.g., gradient-based methods and metaheuristics),
making it particularly well-suited for expensive-to-evaluate
optimization problems.25 Since the Nelder−Mead method is
designed for smooth functions, we assume smoothness on the
experimental domain of the functions to be optimized. The
Nelder−Mead method minimizes (or maximizes) an objective
function by exploring the feasible domain of the function with a
general simplex (a convex polyhedron formed by n+1 vertices,
being n the number of independent variables, and each of the
vertices a function evaluation). The method successively makes
geometrical modifications to the simplex (size and shape) in
order to replace the vertex with the worst result by a better
point until convergence on a local optimum. The five possible
geometrical modifications of the simplex (reflection, expansion,
inside contraction, outside contraction, and shrink) are
schematically represented, for two dimensions, in Figure 1.
Remarkably, the five geometrical transformations are extrapo-
lated to higher dimensions. For details on how the Nelder−
Mead method selects the geometrical transformations of the
simplex, please refer to the original publication of the Nelder−
Mead method.25 The number of function evaluations of the
Nelder−Mead method depends on the number of variables, the
nature of the objective function, the distance between the initial
simplex and the optimum, the size of the initial simplex, and the
geometrical coefficients of the method (reflection, expansion,
and contraction coefficients). An example of optimization is
provided in Supporting Information.
Since the Nelder−Mead algorithm has not been initially

developed for the specificities of chemical reactions, it was
modified and implemented in Matlab to (i) handle the

Scheme 1. General Scheme of the Strategy with Respect to
Literature Precedents
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restrictions imposed by the upper and lower bounds of

variables and (ii) diversify the search to escape from local

optima and find better optima (potentially the global optimum)

in multioptima functions. The flow diagram of the modified

method is given in Figure 2.

In this work, we attributed four variables to the objective
functions, e.g., temperature, residence time, reagents stoichi-
ometry, and catalyst loading, leading to a four-dimensional
space which cannot be graphically represented. As neither the
nature of the objective function nor an expected location of the
optimum are known, the starting simplex was randomly located
in the feasible domain of the reaction. The modifications to the
original Nelder−Mead algorithm that we implemented through
Matlab for optimizing the benchmark Heck−Matsuda reaction
are discussed below.

Size of the Simplex. Selecting the adequate size for the
initial simplex is not a straightforward task since the vertices
must be sufficiently spaced to ensure significantly different
results of their function values and let the method establishing
the direction of the search. However, very large simplexes are
also not suitable since the search might be interrupted
prematurely when it reaches the boundary of the feasible
domain of the function. Typically, the initial simplex is given by
fixing one of the vertices of the simplex as a random point Xo in
the feasible domain of the objective function, and generating
the n equidistant vertices as the adjacent points, increasing (or
decreasing) one variable at a time by a magnitude d, as shown
in eq 1. Since the responsiveness of our objective function
differs significantly from one variable to another, we selected a
specific magnitude d for each variable; the points of our initial
simplex being not equidistantly spaced. The value of d was
empirically fixed by the minimum change that could be
expected in the objective function. The selected values of d
were 10 °C, 10 min, −0.33 equiv, and 1 mol % for the
temperature, residence time, equivalent of diazonium salt 1
with respect to diol 2, and catalyst loading, respectively. Due to
physical, chemical, and economic constraints, we fixed upper
and lower bounds for each of the four variables as depicted in
the Table 1. With regard to the geometrical coefficients, we
selected the reflection coefficient (alpha) = 1, the contraction

Scheme 2. Overview of the Equipment Configuration

Figure 1. Geometrical transformations of the simplex: (a) reflection, (b) expansion, (c) inside contraction, (d) outside contraction, and (e) shrink.

Figure 2. Flow diagram of the adapted Nelder−Mead optimization
algorithm.

Organic Process Research & Development Article

DOI: 10.1021/acs.oprd.6b00310
Org. Process Res. Dev. 2016, 20, 1979−1987

1981

http://dx.doi.org/10.1021/acs.oprd.6b00310


coefficient (beta) = 0.5, and the expansion coefficient (gamma)
= 2.
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Constraint Adaptations. The Nelder−Mead Simplex
method is a direct search optimization algorithm for uncon-
strained problems. However, the variables of chemical reactions
are limited by physical, chemical, and economic factors
requiring to restrict the search space. The usual strategy to
restrict the research space consists in imposing penalties on the
points violating the restrictions,25 forcing the simplex to remain
within the delimited domain. However, when the optimum lies
on the boundary (which is very likely in our case), the method
requires successive contractions and numerous function
evaluations to place the point on the border (see Figure S2).
In order to reduce the number of costly experiments, we
modified the algorithm to contract the simplex by projecting
the point falling out of the feasible domain on the boundary, as
shown in Figure 3 on a simplified two-dimensional example.

Dimensionality Reduction of the Search. It is worth
mentioning that in an n-dimension problem, only up to n
points of the simplex can be projected on the boundary since
projecting the n+1 points on the boundary would (i) prevent
the simplex from escaping from the boundary if required and
(ii) affect the convexity of the simplex (Figure S3). To prevent
the method from projecting more than n points of the simplex
on the boundary, we modified the algorithm to reduce the

dimensions of the search and explore the boundary where the n
points are projected. Our modification consists in stopping the
n-dimensional Nelder−Mead search when the method attempts
to project the n+1th point on the boundary and starting a new
(n−1)-dimensional search over the boundary where the n
points of the simplex are projected (see Supporting
Information for details, Figures S4−S5).

Dimension Recovery. Reducing the dimensions of the
search results in a reduction of the number of function
evaluations, as long as the optimum belongs to the boundary in
which the search is performed. However, when the global
optimum is located outside of the boundary, the algorithm is
required to explore more exhaustively the feasible domain.
Therefore, this point is a good candidate to start a new n-
dimensional search since the global optimum could likely be
found in its vicinity. To restore the original dimensional search,
we replicated the geometry of the last simplex generated before
the dimension reduction and translated it on the constrained
optimum found on the boundary (see a two-dimensional
example in Figure 4). We prevented the method from exploring

sections of the boundary that were already explored using
penalties. If no better points are found in the vicinity of the new
n-dimensional simplex, the method returns to the boundary by
performing successive contractions of the simplex and stops the
search.

Stopping Criteria. Typically, the Nelder−Mead search is
terminated (i) when either the simplex gets small enough
around the optimum or (ii) the standard deviation of the
function values at the vertices are very small,26 requiring an
extensive number of experiments. With the aim of reducing the
number of expensive experiments, we additionally implemented
the following stopping criteria, considering that the search stops
when any of the stopping criteria is reached:
(iii) If the objective function is bounded by a known/

expected value (e.g., 100% of reaction yield), the search stops
without performing further experiments;
(iv) The method stops after having performed a predefined

maximum number of function evaluations. The best point
obtained along the exploration is considered as the optimum,

Table 1. Values of the Variables in the Feasible Domain

variable lower bound upper bound

temperature (°C) 25 70
residence time (min) 5 45
equivalent of 1 0.5 2
catalyst loading (mol %) 1 5

Figure 3. Modification of the Nelder−Mead method to project the
points falling out of the feasible domain on the boundary. The
reflected point A′ leads to an expansion A″* out of the feasible
domain, which is projected on the boundary at A″.

Figure 4. Two-dimensional representation of the translation of the
reflected simplex in order to recover the dimensions of the search. The
simplex A′−B′−C is reflected perpendicularly to the upper bound of
variable 1 and translated toward the optimum found on the boundary
(constrained optimum). The two-dimensional search restarts with the
simplex M−N−O. The penalties on the explored regions of the
boundary force the reflected point N′* to contract toward N′.
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but the user might consider it useful to restart the method from
a new random point to find other potential optima in the
unexplored domain;
(v) Nearby an optimum, the simplex contracts and shrinks

until all of the vertices of the simplex approach to the optimum.
As this process costs numerous function evaluations, we stop
the search when the best result obtained is not improved after n
+1 consecutive simplexes (the number of simplexes is different
from the number of experiments, for details please refer to the
Supporting Information). The number of allowed attempts to
replace the optimum (n+1) corresponds to the number of the
vertices of the simplex, meaning that each point has at least one
opportunity to be replaced. This shortcut stopping criterion is
meant to reach near optimal (or optimal) results within a low
number of function evaluations. It is activated in two cases:
either when the simplex falls in a valley of the objective function
without improving the result, or when the search is focused in
the neighborhood of an optima with asymptotical improvement
of the result. In both cases, the user (in the feedback stage)
could still decide to continue via diversification (in case of
falling in a valley of the objective function) or via intensification
(in case of falling in the neighborhood of an optima).
User Decision: Intensification, Diversification, and

Termination. Optimization problems treated as a “black
box” require a trade-off between the quality of the result
obtained and the number of function evaluations being under
the responsibility of the user for prioritizing the best alternative.
In our modified Nelder−Mead Simplex method we imple-
mented a feedback stage for a dialogue between the user and
the optimization algorithm, simplifying the decision-making
process. After finding one of the stopping criteria described
above, the method proposes to the user three different
alternatives: (i) continue with the Nelder−Mead search
(intensification), (ii) start a new Nelder−Mead search from a
new random point (diversification), or (iii) terminate the
optimization algorithm (Figure 2).
(i) Intensification. While the Nelder−Mead method

improves the result at the beginning of the exploration rapidly,
upon increasing the number of experiments the result improves
asymptotically, meaning that it requires several function
evaluations to attain the optimum. When the method locates
a potential optimum without spending numerous function
evaluations, the user can decide to continue with the Nelder−
Mead search and improve the result at the expenses of
performing extra experiments. This approach is particularly
helpful to overcome premature termination of the exploration.
(ii) Diversification. The Nelder−Mead method is a direct

search optimization algorithm, which is not able to escape from
a local optimum. In order to escape from a local optimum and
diversify the search, the user can decide to restart the Nelder−
Mead method from a random point outside of the explored

domain while using penalties to prevent the algorithm from
falling in already explored regions. This multistart strategy is
suitable to tackle multioptima objective functions.
(iii) Termination. The user can decide to stop the method

without performing any further experiment when either the
number of evaluations is too high or the result obtained fills the
expectations.
It is worth mentioning that the algorithm is able to run

automatically without user interaction. We consider, however,
that the user feedback is certainly a guarantee for obtaining the
best possible result in a minimum number of experiments.

Optimization of the Heck−Matsuda Reaction. The
modified Nelder−Mead algorithm was used for the optimiza-
tion of three different objective function, e.g., (i) maximization
of the yield, (ii) maximization of the productivity expressed as
mg/h, and (iii) minimization of the production cost expressed
as €/g of product 3. The three optimizations started from the
same initial simplex, constructed with the point Xo at 30 °C, 5
min of residence time, 1 equiv of diazonium salt 1 and 1 mol %
of Pd(TFA)2, and using the values of d given in the
methodology (vide supra). Since the optimization was carried
out with four variables, the initial simplex is formed by five
points (Table 2). While multioptima might exist in the
optimized functions, we considered useless to perform a
multistart search (diversification) at the user feedback stage
since we already obtained high quality optima in a low number
of experiments.

Maximization of the Yield. From the five initial experiments
forming the first simplex, the best yield (24%) was obtained
when the catalyst loading was increased from 1 to 2 mol %
(Table 2, run 5), revealing the high impact of this variable on
the optimization. Having constructed the initial simplex, the
method started the optimization of the reaction yield. The four-
dimensional optimization required 14 experiments to improve
the yield from 6% to 92% (Figure 5). This result is very
impressive as this excellent yield was reached with a limited
number of experiments, and neither a base nor a ligand was
required for the coupling, while the same benchmark reaction
conducted in batch reached only 24% yield in the absence of
ligand.27 The four-dimensional search stopped at the 14th
experiment (optimum i, Table 2), since continuing the search
would result in deforming the simplex by projecting all of its
vertices on the boundary where the catalyst loading reaches its
upper bound (5 mol %). According to the flow diagram
depicted in Figure 2, the algorithm performed a three-
dimensional Nelder−Mead search over the boundary by fixing
the catalyst loading to 5 mol %, but unfortunately without
finding better results. Therefore, the 14th experiment (92%
yield) was considered as the optimum since we reached a
stopping criterion after n+1 consecutive simplexes without
improving the result. We should mention that the optimum was

Table 2. Parameters of the Initial Simplex and Optimal Conditions for the Three Objective Functions

run temp. (°C) residence time (min) equiv of 1 catalyst loading (mol %) yield (%) objective function

1 30 5 1 1 6
2 40 5 1 1 9
3 30 15 1 1 6
4 30 5 0.67 1 3
5 30 5 1 2 24
optimum (i) 52.5 31.3 1.33 5 92 92%
optimum (ii) 63.3 5 2 4.3 67 427.1 mg/h
optimum (iii) 54.5 11.4 1.43 2.1 77 8.51 €/g

Organic Process Research & Development Article

DOI: 10.1021/acs.oprd.6b00310
Org. Process Res. Dev. 2016, 20, 1979−1987

1983

http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.6b00310/suppl_file/op6b00310_si_001.pdf
http://dx.doi.org/10.1021/acs.oprd.6b00310


found in the 14th experiment, but the algorithm took 20
experiments to reach the stopping criterion (see Table S1 in
Supporting Information for details on the 20 experiments).
Maximization of the Throughput (mg/h). While in batch

the maximization of the yield is usually one of the most
important objectives of synthetic chemists, this parameter is less
relevant for continuous flow chemistry whose efficiency is more
adequately described by the throughput expressed as the
number of mole of the product per time unit. The method
started with the same initial simplex in four dimensions, and
immediately after, the method reduced the search into a three-
dimensional space by fixing the residence time to its lower
bound (5 min). After seven experiments (Figure 6a), including
the initial simplex, the throughput increased by 1 order of
magnitude with respect to the first point, from 38.3 mg/h to
427.1 mg/h (Table 2). The three-dimensional search was
stopped after generating n+1 simplexes without improving the
result. The four-dimensional search was recovered after seven
experiments to explore the vicinity of the potential optimum.
Since no better results were found, the seventh experiment was
considered as the optimum, and we decided to stop the
optimization (in the feedback stage of the algorithm). The
algorithm required only 13 experiments (Figure 6b) (including
the dimension reduction and dimension recovery) to reach the
stopping criterion (see Table S2 in the Supporting Information
for details on the 13 experiments).
Minimization of the Production Cost of Product 3 (€/g).

While the maximization of the throughput is an important
parameter related to the reaction efficiency, it does not consider
the cost of the product synthesis. In the industrial environment
both the throughput and the cost are crucial parameters for
evaluating the economic viability of a synthesis. The max-
imization of the yield or the throughput of a catalytic reaction
are often plagued by a high loading of the catalyst which is

usually an expensive reagent. Our optimizations are no
exception, since our conditions related to the best yield and
highest throughput require 5 and 4.3 mol % Pd, respectively.
Therefore, we decided to optimize the production cost (PC) of
product 3 which is given by eq 2 where E is the power
consumption (electricity) and C is the cost of chemicals
(starting materials and catalyst) per gram of compound 3
produced. E was computed as the power consumption of two
pumps (Ep) and an oven (Eo), while C is the addition of the
cost of diazonium salt 1 (Cds), diol 2 (Cd), and Pd catalyst
(CPd). The power consumptions of the pumps and oven are
given as a function of time in eqs 3 and 4 respectively, where
Wp and Wo are the average power of the pumps and oven
respectively, t is the time, and Ce is the cost of electricity (0.15
€/kWh) for France in 2016. With flow rates ranging from 0.05
to 0.5 mL/min, the power consumption Wp was measured as
0.026 kW per pump, while the average power consumption of
the oven (in kW) is given by a linear function of the
temperature in eq 5 in the operational range of 25−70 °C.

= +PC E C (2)

=E W tCi
p p e (3)

=E W tCo o e (4)

= −W T0.0017 0.0339o (5)

Regarding the cost of chemicals, we neglected the solvents,
and the cost of starting materials and catalyst materials was
established as follow: diazonium salt 1 = 1.42 €/g, diol 2 = 0.11
€/g, and Pd catalyst = 131.80 €/g. The objective of this study
was to show the power of an algorithm to help chemists in
minimizing the cost of a chemical synthesis, but we were aware

Figure 5. (a) Results of the maximization of the yield in four
dimensions. (b) Representation of the four-dimensional experimental
conditions of the maximization of the yield.

Figure 6. (a) Results of the maximization of the throughput. The
initial simplex corresponds to the four-dimensional search and points
6−7 to the three-dimensional search. (b) Representation of the four-
dimensional experimental conditions of the maximization of the
throughput.
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that the values computed reflected an incomplete part of the
cost since several parameters including isolation, purification,
transportation, and salary expenses were not considered.
After the initial simplex, the optimization started without

falling in the boundaries of the feasible domain, and no
dimensionality reduction was required. After 11 experiments,
the algorithm found a potential optimum corresponding to ca.
9.91 €/g (Figure 7a). The algorithm continued the search and

generated n+1 simplexes (corresponding to 6 experiments) but
unfortunately without improving the result. Since this value was
considered unacceptable, we decided to continue the search
(via the feedback stage) to improve the result at the expense of
new experiments (intensification). A new optimum point
corresponding to ca. 8.51 €/g was located at the 18th
experiment, and the method search stopped because the
exploration reached the predefined maximum number of
experiments accepted by the user (25 experiments). Figure
7b shows the experimental conditions of the 25 points, noting
that the major improvements on the results are attained in the
first eight experiments (see Table S3 in Supporting Information
for details). Remarkably, in this study we were able to reduce
the production cost by a factor of approximately 7, from ca.
60.63 to 8.51 €/g in only 18 experiments.

■ CONCLUSION
In summary, we demonstrated that the use of an intelligent
algorithm speed-up and simplifies optimization processes in
flow. We implemented the Nelder−Mead optimization
algorithm to perform multivariable reaction optimizations in a
four-dimensional space with a variety of objective functions.
Through the study of a benchmark reaction involving the
palladium-catalyzed coupling of an arenediazonium salt with an

allylic diol, we were able to fine-tune experimental conditions
according to the objective functions which can be the (i)
maximum yield, (ii) highest throughput, or (iii) lowest
production cost. Remarkably, the combination of flow reactors
with intelligent algorithms allowed transformations that are not
possible with traditional batch reactors. This technology can
certainly be applied for optimizations having a higher number
of variables and exciting advancements in the near future will
consist in using more sophisticated flow setups for the
optimization of multicatalytic or multistep processes. Our
current studies are focusing on these promising developments
and will be communicated in due course.

■ EXPERIMENTAL SECTION
Materials. All commercial reagents were used as received

from Sigma-Aldrich, Fischer Scientific Ltd., and Alfa Aesar.
Extra pure methanol and DMF were used without further
purification.

Methods. Purification of product 3 was carried out by flash
column chromatography using silica gel (40−30 mm).
Analytical thin layer chromatography (TLC) was performed
on 0.25 mm silica gel 60-F254 plates. Visualization was
accomplished using a UV lamp (254 nm). 1H and 13C NMR
spectra were recorded at 300 and 75 MHz, respectively, and
they are reported as δ values (ppm) relative to residual CDCl3
δ H (7.26 ppm) and CDCl3 δ C (77.00 ppm) as internal
standards. Low-resolution mass spectroscopy (LRMS) was
performed using chemical ionization (CI). High-resolution
mass spectroscopy (HRMS) was recorded on an orbitrap
spectrometer. The GC analyses were performed on a GC-FID
Agilent 7820A chromatograph equipped with a 30 m HP5
capillary column. The GC-MS analyses were recorded on a
TRACE GC Ultra (ThermoScientific) apparatus equipped with
a 30 m TR-5MS silica capillary column and a DSQII
quadrupole analyzer (ThermoScientific). Sample loops and
reactors were made out of PEEK with a 0.75 mm internal
diameter. T-mixers were made out of PEEK with an internal
volume of 3 μL, and connecting tubing was made out of PFA
with a 0.75 mm internal diameter.

Reaction Setup for the Optimization of the Heck−
Matsuda Reaction Using a Flow Device. The experimental
setup consisted of two pathways equipped with 1 mL loops. A
DMF/MeOH (5:1) solution of buten-1,4-diol (0.1 M) and the
required amount of 4-chlorobenzene diazonium tetrafluorobo-
rate were loaded in loop A (1 mL) at 25 °C. A solution of the
required amount of Pd(TFA)2 in DMF/MeOH (5:1) was
loaded in loop B (1 mL) at 25 °C. Each pathway was pumped
with two independent pumps at the required flow rate, and the
resulting flow streams went through a T-shaped mixer (3 μL).
The resulting mixture was introduced in a PEEK reactor (5
mL) placed in an oven. The reaction is conducted at the
corresponding temperature and finally collected into a fraction
collector for offline analysis by GC-MS. The collected fraction
was diluted with DMF/MeOH (5:1) in a 25 mL volumetric
flask. An aliquot of the diluted crude mixture (1 mL) was
transferred to a chromatography vial containing a known
amount of internal standard (n-dodecane) and analyzed by GC-
MS. The optimization algorithm was fed with the GC yield
(calibrated in the presence of n-dodecane as an internal
standard) and proposed new values of temperature, flow rate,
amount of 4-chlorobenzene diazonium tetrafluoroborate, and
Pd(TFA)2 loading. The process was repeated until reaching the
termination criterion of the optimization algorithm.

Figure 7. (a) Representation of the four-dimensional experimental
conditions of the minimization of the production cost of 3. (b) Results
of the minimization of the production cost of product 3 with a four-
dimensional search.
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Product 3 was obtained as a mixture of diastereomers
(58:42). The NMR data are consistent with literature
precedent.20a Major diastereomer: 1H NMR (300 MHz,
CDCl3) δ (ppm) 7.25−7.28 (m, 2H), 7.14−7.17 (m, 2H),
5.14 (dd, 1H, J = 2.5, 5.8 Hz), 4.29 (t, 1H, J = 8.3 Hz), 3.79
(dd, 1H, J = 6.9, 8.4 Hz), 3.54−3.62 (m, 1H), 3.38 (s, 3H),
2.32 (dd, 1H, J = 7.7, 12.9 Hz), 2.04 (ddd, 1H, J = 5.1, 9.3, 13.1
Hz); minor diastereomer: 1H NMR (300 MHz, CDCl3) δ
7.25−7.28 (m, 4H), 5.16 (d, 1H, J = 4.4 Hz), 4.17 (t, 1H, J =
8.1 Hz), 3.72 (dd, 1H, J = 8.5, 9.7 Hz), 3.42 (s, 3H), 3.32−3.36
(m, 1H), 2.59 (ddd, 1H, J = 5.5, 10.3, 13.7 Hz), 1.91 (ddd, 1H,
J = 2.4, 7.7, 10.2 Hz); 13C NMR (75 MHz, CDCl3) δ (ppm)
141.4, 140.0, 132.4, 132.3, 129.1, 128.7, 128.7, 128.5, 105.7,
105.4, 73.7, 73.0, 54.9, 54.7, 43.6, 42.1, 41.4, 41.1.
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