1. Find the diameter, the radius and centers of the given graph.
2. Find the vertex connectivity and the edge connectivity.
3. Find a minimum vertex cut for vertices b, h.
4. Find a maximum set of vertex-independent paths $\langle b, h\rangle$.

		b	c	d	e	f	g	h
a					1		1	1
b			1		1		1	
c		1		1	1			
d			1			1		
e	1	1	1				1	
f				1				1
g	1	1			1			1
h	1					1	1	

5. Construct the quotient graph for the given graph and determine its type of connectivity.

	a	b	c	d	e	f	g	h
a			1	1				1
b			1				1	
c	1							
d							1	
e	1					1		1
f		1			1			
g				1				
h								

6. By using operations with Boolean matrices find all pairs of vertices connected by paths of the length 3 .
7. By using Warshall algorithm find all pairs of vertices connected by paths going only through vertices $\{b, c, e\}$.

Connectivity. Variant 2.

1. Find the diameter, the radius and centers of the given graph.
2. Find the vertex connectivity and the edge connectivity.
3. Find a minimum vertex cut for vertices c, f.
4. Find a maximum set of vertex-independent paths $\langle c, f\rangle$.

	a	b	c	d	e	f	g	h
a		1	1				1	
b	1				1		1	1
c	1							
d						1	1	
e		1					1	
f				1				1
g	1	1		1	1			1
h		1				1	1	

5. Construct the quotient graph for the given graph and determine its type of connectivity.

	a	b	c	d	e	f	g	h
a		1		1				1
b					1		1	
c				1				
d								
e	1		1			1		
f								1
g				1				
h							1	

6. By using operations with Boolean matrices find all pairs of vertices connected by paths of the length 3 .
7. By using Warshall algorithm find all pairs of vertices connected by paths going only through vertices $\{b, d, e\}$.

a					b					c	d	e
			1									

Connectivity. Variant 3.

1. Find the diameter, the radius and centers of the given graph.
2. Find the vertex connectivity and the edge connectivity.
3. Find a minimum vertex cut for vertices a, d.
4. Find a maximum set of vertex-independent paths $\langle a, d\rangle$.

	a	b	c	d	e	f	g	h
a		1	1				1	1
b	1		1					1
c	1	1			1	1		
d							1	1
e			1					
f			1					1
g	1			1				
h	1	1		1		1		

5. Construct the quotient graph for the given graph and determine its type of connectivity.

	a	b	c	d	e	f	g	h
a							1	
b	1				1		1	
c						1		
d								
e		1	1			1		1
f		1						1
g				1				
h				1				

6. By using operations with Boolean matrices find all pairs of vertices connected by paths of the length 3 .
7. By using Warshall algorithm find all pairs of vertices connected by paths going only through vertices $\{a, c, d\}$.

	a	b	c	d	e
a		1		1	
b			1		
c				1	1
d	1		1		
e		1		1	

1. Find the diameter, the radius and centers of the given graph.
2. Find the vertex connectivity and the edge connectivity.
3. Find a minimum vertex cut for vertices a, h.
4. Find a maximum set of vertex-independent paths $\langle a, h\rangle$.

	a	b	c	d	e	f	g	h
a		1				1	1	
b	1				1	1		1
c				1	1			
d			1			1		
e		1	1				1	
f	1	1		1			1	1
g	1				1	1		1
h		1				1	1	

5. Construct the quotient graph for the given graph and determine its type of connectivity.

	a	b	c	d	e	f	g	h
a		1	1	1			1	
b					1	1		
c								1
d		1	1					
e								
f	1							1
g				1	1			
h							1	

6. By using operations with Boolean matrices find all pairs of vertices connected by paths of the length 3 .
7. By using Warshall algorithm find all pairs of vertices connected by paths going only through vertices $\{b, c, d\}$.

	a	b	c	d	e
a				1	1
b			1		
c	1				
d			1		1
e	1	1			

