Graph theory: trees

Yulia Burkatovskaya
Department of Information
Technologies
Associate professor

5. Trees

- Trees
- Minimum spanning tree
- Fundamental circuits and fundamental cut sets
- Rooted trees
- Maximum forest
- Search trees

5.1. Trees

- A connected acyclic graph is called a tree. In other words, a connected graph with no cycles is called a tree.
- An acyclic graph is called a forest.

Application of trees

- Chemistry (saturated hydrocarbons)
- Compilers (parsing)
if E1 then if E2 then E3 else E4

Methane

Ethane

Application of trees

- Physics (electrical circuits)
- Programming (search trees)

Six different characterizations of a tree

- (1) T is a tree.
- (2) Any two vertices of T are connected by exactly one path.
- (3) T is connected, and every edge is a cut-edge.
- (4) T is connected and has $n-1$ edges.
- (5) T contains no cycles and has $n-1$ edges.
- (6) T contains no cycles, and for any new edge e, the graph $T+e$ has exactly one cycle.

Six different characterizations of a tree

(1) \rightarrow (2)

- (1) T is a tree.
- (2) Any two vertices of Tare connected by exactly one path.
- $\quad T$ is connected \rightarrow any two vertices of T are connected.
- If there are two paths $\langle x, y\rangle$ then there is a cycle.

Six different characterizations of a tree

(2) \rightarrow (3)

- (2) Any two vertices of T are connected by exactly one path.
- (3) T is connected, and every edge is a cut-edge.
- Any two vertices of T are connected $\rightarrow T$ is connected.
- If $e=(x, y)$ is not a cut-edge then $G(x, y)$ is connected; hence, there is a path $\langle x, y\rangle$ which does not include e. So, there are two different paths $<x, y>$ in G.

Six different characterizations of a tree

(3) \rightarrow (4)

- (3) T is connected, and every edge is a cut-edge.
- (4) T is connected and has $m=n-1$ edges.

Mathematical induction method.

- Base: for $n=1$ one has $m=0$.
- Inductive step: Let for graphs with $1, \ldots, n-1$ vertices the statement is true. Consider graph T with n vertices. Delete any edge e from T. As e is a cut-edge, $\pi e=T_{1} \cup T_{2}$. They are connected, every edge is a cut-edge and the numbers of vertices is less than n ; so, $m_{1}=n_{1}$ - 1 and $m_{2}=n_{2}-1$. The number of edges in T is the sum of the numbers of edges in T_{1} and T_{2} plus the deleted edge; consequently

$$
m=m_{1}+m_{2}-1=n_{1}-1+n_{2}-1+1=n-1 .
$$

Six different characterizations of a tree

(4) \rightarrow (5)

- (4) T is connected and has $n-1$ edges.
- (5) T contains no cycles and has $n-1$ edges.
- Let T contain a cycle with s vertices and edges; then, to join other n -s vertices to the cycle one needs at least n -s edges. So, the total number of edges is

$$
m \geq s+n-s=n>n-1
$$

Six different characterizations of a tree

(5) \rightarrow (6)

- (5) T contains no cycles and has $n-1$ edges.
- (6) T contains no cycles, and for any new edge e, the graph T+e has exactly one cycle.
- As T is acyclic than it is a forest with k trees. For a tree,

$$
m=n-1
$$

The total number of edges in T is

$$
m_{1}+\ldots+m_{k}=n_{1}-1+\ldots+n_{k}-1=n-k .
$$

Hence; $k=1$ and T is a tree. Every two vertices of a tree are joined by the only path; so, adding a new edge produces exactly one cycle.

Six different characterizations of a tree

(6) \rightarrow (1)

- (6) T contains no cycles, and for any new edge e, the graph T+e has exactly one cycle.
- (1) T is a tree.
- If after adding any new edge a cycle appears then any two vertices are joined by a path; so, T is connected. This together with absence of cycles gives a tree.

5.2. Minimum spanning tree

- How to join all houses and to minimize the length of the communications?
- In a weighted graph, the minimum spanning tree is the set of edges with the minimum total weight such that they connect all of the nodes.

- Applications of MST problem:
https://www.geeksforgeeks.or $\mathrm{g} / \mathrm{p}=11110$.
http://computationaltales.blogspot.ru/20 11/08/minimum-spanning-trees-primsalgorithm.html

Greedy algorithms

- A greedy algorithm is an algorithmic paradigm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum.
- In many problems, a greedy strategy does not in general produce an
 optimal solution.
- But for the minimum spanning tree problem, greedy algorithms produce a global optimum.

Kruskal's algorithm

- Sort all the edges from low weight to high
- Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a cycle, then reject this edge.
- Keep adding edges until we have $p-1$ edges.
- https://www.programiz.com/dsa/kruskal-algorithm
- https://youtu.be/71UQH7Pr9kU

Kruskal's algorithm

Example.

- http://nadide.github.io/assets/img/algo-image/MST/kruskal.png

Kruskal's Algorithm

1 Given a network............	2 Choose the shortest edge (if there is more than one, choose any of the shortest)........	3 Choose the next shortest edge and add it \qquad
4 Choose the next shortest edge which wouldn't create a cycle and add it.	5 Choose the next shortest edge which wouldn't create a cycle ande add it.	${ }^{6}$ Repeat until you have a minimal spanning tree.

Prim's algorithm

- Initialize the minimum spanning tree with a vertex chosen at random.
- Find all the edges that connect the tree to new vertices, find the minimum and add it to the tree
- Keep adding edges until we have $p-1$ edges.
- https://www.programiz.com/dsa/prim-algorithm
- https://youtu.be/cplfcGZmX71

Prim's algorithm

Example.

- https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572\& $\underline{s t c=1 \& d=1148396387}$

Prim's Algorithm

5.3. Fundamental circuits and fundamental cut sets

Let $G(V, E)$ be a multigraph with n vertices, m edges and k connected components.

- Cocyclomatic number of the graph $G(V, E)$ is $\rho(G)=n-k$. It is the total number of edges in spanning trees of all connected components of the graph.
- Cyclomatic number of the graph $G(V, E)$ is $v(G)=m-n+k$. It indicates ho many edges need to be removed in order to the graph became a forest with k connected components.

Cyclomatic and cocyclomatic numbers

Example.

Cyclomatic and cocyclomatic numbers

In the theory of electrical circuits, the numbers have a definite physical meaning.

- The cyclomatic number is equal to the largest number of independent circuits in the electric circuit graph, i.e. the largest number of independent circular currents that can flow in the circuit.
- The cocyclomatic number is equal to the number of independent potential differences between the nodes of the circuit.

Fundamental circuits

Any circuit or cycle can be represented by the set of its edges.

- Modulo 2 addition (XOR):

$$
\mu_{1} \oplus \mu_{2}=\left\{e: e \in \mu_{1}, e \notin \mu_{2}\right\} \cup\left\{e: e \in \mu_{2}, e \notin \mu_{1}\right\}
$$

- Conjunction (AND):

$$
0 \mu=\emptyset, \quad 1 \mu=\mu .
$$

- Linear combination:

$$
\mu=\bigoplus_{i=1}^{n} a_{i} \mu_{i}, \quad a_{i} \in\{0,1\} .
$$

Fundamental circuits

Example.

$$
\begin{aligned}
& \mu_{1}=\{\delta, \zeta, \eta, \theta\} \\
& \mu_{2}=\{\gamma, \delta, \varepsilon\} \\
& \mu_{3}=\{\alpha, \beta, \gamma\} \\
& 1 \mu_{1} \oplus 1 \mu_{2} \oplus 0 \mu_{3}=\{\delta, \zeta, \eta, \theta\} \oplus\{\gamma, \delta, \varepsilon\} \oplus \emptyset=\{\gamma, \varepsilon, \zeta, \eta, \theta\}
\end{aligned}
$$

Fundamental circuits

A set of circuits is independent if any circuit is not a linear combination of others; otherwise, the set is dependent.
Example. Set $\left\{\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right\}$ is dependent as $\mu_{4}=\mu_{2}+\mu_{3}$; set $\left\{\mu_{1}\right.$, $\left.\mu_{2}, \mu_{4}\right\}$ is independent

$$
\begin{aligned}
& \mu_{1}=\{\delta, \zeta, \eta, \theta\} \\
& \mu_{2}=\{\gamma, \delta, \varepsilon\} \\
& \mu_{3}=\{\alpha, \beta, \gamma\} ; \\
& \mu_{4}=\{\alpha, \beta, \delta, \varepsilon\} .
\end{aligned}
$$

Fundamental circuits

An independent set of circuits is a system of fundamental circuits if in contains the greatest possible number of circuits; the circuits of this set are fundamental.
Example. Set $\left\{\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right\}$ is independent; any circuits is a linear combination of the circuits from the set.

$$
\begin{aligned}
& \mu_{1}=\{\delta, \zeta, \eta, \theta\} \\
& \mu_{2}=\{\gamma, \delta, \varepsilon\} \\
& \mu_{3}=\{\alpha, \beta, \gamma\} \\
& \mu_{4}=\{\theta, \iota, \kappa\}
\end{aligned}
$$

$$
\begin{aligned}
& \{\alpha, \beta, \delta, \varepsilon\}=\mu_{2} \oplus \mu_{3} ; \\
& \{\delta, \zeta, \eta, \theta, \iota, \kappa\}=\mu_{1} \oplus \mu_{4} ; \\
& \{\alpha, \beta, \varepsilon, \zeta, \eta, \theta\}=\mu_{1} \oplus \mu_{2} \oplus \mu_{3} .
\end{aligned}
$$

Fundamental circuits theorem

Theorem. For a simple connected graph, the number of fundamental circuits is equal to $v(G)=m-n+1$.
Example. Here $n=7, m=10$; there are $4=10-7+1$ independent circuits.

$$
\begin{aligned}
& \mu_{1}=\{\delta, \zeta, \eta, \theta\} ; \\
& \mu_{2}=\{\gamma, \delta, \varepsilon\} ; \\
& \mu_{3}=\{\alpha, \beta, \gamma\} ; \\
& \mu_{4}=\{\theta, \iota, \kappa\} .
\end{aligned}
$$

Fundamental cycles construction

Algorithm

- Start. There is graph $G(V, E)$.
- Step 1. Construct any spanning tree $T(V, E)$. Set $j=0$.
- Step 2. If $j=m-n+1$ then go to End; else set $j=j+1$.
- Step 3. Choose the next edge $e_{j}=\left(v_{j} u_{j}\right)$ not included into the spanning tree.
- Step 4. Find the path $\left\langle v_{j}, u_{j}\right\rangle$ in the spanning tree; together with the edge (v_{j}, u_{j}), it gives cycle Z_{j}. Go to Step 2.
- End. $\left\{Z_{j}\right\}$ is a system of fundamental cycles.

Fundamental cycles construction

Example.

$$
\begin{array}{lll}
e_{1}=\beta=(a, c), & <a, c>=a b c, & Z_{1}=\{\beta, \alpha, \gamma\} \\
e_{2}=\delta=(b, d), & <b, d>=b c d, & Z_{2}=\{\delta, \gamma, \varepsilon\} \\
e_{3}=\eta=(d, e), & <d, e>=d c b f e, & Z_{3}=\{\eta, \varepsilon, \gamma, \zeta, \theta\} \\
e_{4}=\kappa=(f, g), & <f, g>=f e g, & Z_{4}=\{\kappa, \theta, \iota\}
\end{array}
$$

Matrix of fundamental circuits

- Rows correspond to fundamental circuits, columns correspond to edges; an element is equal to 1 iff the edge belongs to the circuit.

Example.

$$
\begin{aligned}
& Z_{1}=\{\beta, \alpha, \gamma\} ; \\
& Z_{2}=\{\delta, \gamma, \varepsilon\} ; \\
& Z_{3}=\{\eta, \varepsilon, \gamma, \zeta, \theta\} ; \\
& Z_{4}=\{\kappa, \theta, \iota\} .
\end{aligned}
$$

$\Phi(G)=$| | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Z_{1} | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Z_{2} | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| Z_{3} | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| Z_{4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

Matrix of fundamental circuits

- Module 2 product of matrices $A: n \times k$ and $B: k \times m$ is matrix $C: n \times m$ calculated as follows

$$
C_{i j}=\bigoplus_{l=1}^{k} A_{i k} B_{k j} .
$$

- Theorem. If $/(G)$ is the incidence matrix of graph $G(V, E)$, $\Phi(G)$ is its matrix of fundamental circuits, then

$$
I \oplus \Phi^{T}=0
$$

Fundamental cuts

Consider graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ and two subsets

$$
V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset .
$$

Cut (cocycle) $P\left(V_{1}, V_{2}\right)$ is the set of edges joining vertices from V_{1} with vertices from V_{2}, i.e.

$$
P\left(V_{1}, V_{2}\right)=\left\{\left(v_{1}, v_{2}\right) \in E: v_{1} \in V_{1}, v_{2} \in V_{2}\right\} .
$$

A cut is proper if after removal of any its subset the graph is connected.
Example. Non-proper cut P is union of proper cuts P_{1} and P_{2}.

$$
\begin{aligned}
& P\left(V_{1}, V_{2}\right)=\{\beta, \gamma, \varepsilon, \iota, \kappa\} \\
& \quad P_{1}=\{\beta, \gamma, \varepsilon\} \text { и } P_{2}=\{\iota, \kappa\} .
\end{aligned}
$$

Fundamental cuts

Lemma. Any non-proper cut is a union of disjoint proper cuts.

A set of cuts is independent if any cut is not a linear combination of others; otherwise, the set is dependent.
Example. Set $\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\}$ is dependent as $\psi_{3}=\psi_{1}+\psi_{2}$; set $\left\{\psi_{1}, \Psi_{2}, \psi_{4}\right\}$ is independent

$$
\begin{aligned}
\psi_{1} & =\{\beta, \gamma, \varepsilon, \zeta, \eta\} \\
\psi_{2} & =\{\zeta, \eta, \iota, \kappa\} \\
\psi_{3} & =\{\beta, \gamma, \varepsilon, \iota, \kappa\} \\
\psi_{4} & =\{\zeta, \eta, \theta\}
\end{aligned}
$$

Fundamental cuts

An independent set of cuts is a system of fundamental cuts if in contains the greatest possible number of cuts; the cuts of this set are fundamental.
Example. Set is independent; any cut is a linear combination of the cuts from the set.

$$
\begin{aligned}
\psi_{1}= & \{\alpha, \beta\} ; \\
\psi_{2}= & \{\delta, \varepsilon, \zeta\} ; \\
\psi_{3}= & \{\zeta, \eta\} ; \\
\psi_{4}= & \{\zeta, \theta, \iota\} ; \\
\psi_{5}= & \{\iota, \kappa\} ; \\
\psi_{6}= & \{\beta, \gamma, \varepsilon\} . \\
& \{\alpha, \gamma, \delta, \theta, \kappa\}=\psi_{1} \oplus \psi_{2} \oplus \psi_{4} \oplus \psi_{5} \oplus \psi_{6} ; \\
& \{\alpha, \gamma, \varepsilon\}=\psi_{1} \oplus \psi_{6} ; \\
& \{\beta, \gamma, \varepsilon, \iota, \kappa\}=\psi_{5} \oplus \psi_{5} .
\end{aligned}
$$

Fundamental cuts theorem

Theorem. For a simple connected graph, the number of fundamental cus is equal to $\rho(G)=n+1$.
Example. Here $n=7$; there are $6=7-1$ independent cuts.

$$
\begin{aligned}
& \psi_{1}=\{\alpha, \beta\} ; \\
& \psi_{2}=\{\delta, \varepsilon, \zeta\} ; \\
& \psi_{3}=\{\zeta, \eta\} ; \\
& \psi_{4}=\{\zeta, \theta, \iota\} ; \\
& \psi_{5}=\{\iota, \kappa\} ; \\
& \psi_{6}=\{\beta, \gamma, \varepsilon\} .
\end{aligned}
$$

Fundamental cuts construction

Algorithm

- Start. There is graph $G(V, E)$.
- Step 1. Construct any spanning tree $T(V, E)$. Set $j=0$.
- Step 2. If $j=n-1$ then go to End; else set $j=j+1$.
- Step 3. Choose the next edge $e_{j}=\left(w_{j} u_{j}\right)$ included into the spanning tree. Remove it from the tree and obtain a forest from two trees with the sets of vertices W_{j} and U_{j}.
- Step 4. Find the cut $Y_{j}=P\left(W_{j}, U_{j}\right)$. Go to Step 2.
- End. $\left\{Y_{j}\right\}$ is a system of fundamental cuts.

Fundamental cuts construction

Example.

$$
\begin{array}{llll}
e_{1}=\alpha=(a, b), & U_{1}=\{a\}, & W_{1}=\{b, c, d, e, f, g\}, & Y_{1}=\{\alpha, \beta\} ; \\
e_{2}=\gamma=(b, c), & U_{2}=\{a, b, f, e, g\}, & W_{2}=\{c, d\}, & Y_{2}=\{\beta, \gamma, \delta, \eta\} ; \\
e_{3}=\varepsilon=(c, d), & U_{3}=\{a, b, c, e, f, g\}, & W_{3}=\{d\}, & Y_{3}=\{\delta, \varepsilon, \eta\} ; \\
e_{4}=\zeta=(b, f), & U_{4}=\{a, b, c, d\}, & W_{4}=\{e, f, g\}, & Y_{4}=\{\zeta, \eta\} ; \\
e_{5}=\theta=(e, f), & U_{5}=\{e, g\}, & W_{5}=\{a, b, c, d, f\}, & Y_{5}=\{\eta, \theta, \kappa\} ; \\
e_{6}=\iota=(e, g), & U_{6}=\{a, b, c, d, e, f\}, & W_{6}=\{g\}, & Y_{6}=\{\iota, \kappa\} .
\end{array}
$$

Matrix of fundamental cuts

- Rows correspond to fundamental cuts, columns correspond to edges; an element is equal to 1 iff the edge belongs to the cut.

Example.

$$
\begin{aligned}
& Y_{1}=\{\alpha, \beta\} ; \\
& Y_{2}=\{\beta, \gamma, \delta, \eta\} ; \\
& Y_{3}=\{\delta, \varepsilon, \eta\} ; \\
& Y_{4}=\{\zeta, \eta\} ; \\
& Y_{5}=\{\eta, \theta, \kappa\} ; \\
& Y_{6}=\{\iota, \kappa\} .
\end{aligned}
$$

$\Psi(G)=$| | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y_{1} | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Y_{2} | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| Y_{3} | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| Y_{4} | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| Y_{5} | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| Y_{6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

Matrix of fundamental cuts

- Theorem. If $\Psi(G)$ is the matrix of fundamental cuts of graph $G(V, E), \Phi(G)$ is its matrix of fundamental circuits, then

$$
\Phi \oplus \Psi^{T}=0
$$

5.4. Rooted trees

Rooted tree is a digraph with the following properties:

- there is a single node v with in-degree equal to 0 (it is called root);
- the in-degrees of all other nodes are equal to 1 ;
- each node is reachable from the root.

Example. All rooted trees with four vertices.

Properties of directed trees

Theorem. Any directed tree has the following properties:

- $m=n-1$;
- the in-degrees of all other nodes are equal to 1 ;
- each node is reachable from the root.

Example. All directed trees with four vertices.

