
1

Graph theory: paths

Yulia Burkatovskaya

Department of Information

Systems and Technologies

Associate professor

2

3. Paths

 Graph traversal

 Shortest paths

3

3.1. Graph traversal

Graph traversal is the problem of visiting all the vertices in a
graph, updating and/or checking their values along the way.

Breadth-first search (BFS) is a graph traversal algorithm that
begins at a start vertex and explores all its neighbors (out-
neighbors for a digraph). Then for each of those nearest
vertices, it explores their unexplored neighbors, and so on,

until all the vertices are visited.

4

Graph traversal

Example. BFS.

5

Graph traversal

Depth-first search (DFS) is a graph traversal algorithm that
begins at a start vertex, explores its not visited neighbor and
then considers that neighbor as a start vertex. If all the
neighbors are visited then “backtracking” is used, i.e. the
previous vertex is considered as a start vertex.

6

Graph traversal

Example. DFS.

7

3.2. Shortest path

The shortest path problem is one of the classical problems in graph

theory that is due to its practical importance.

Indeed, we constantly come across the search for optimal paths. For

example, GPS-navigators search for a time-minimum path between two

objects.

Example. Q-GIS.

8

Shortest path

Shortest paths problems

 The single-pair shortest path problem, in which we have to find
shortest paths from a source vertex v to a single destination vertex u.

 The single-source shortest path problem, in which we have to find
shortest paths from a source vertex v to all other vertices in the
graph.

 The single-destination shortest path problem, in which we have to
find shortest paths from all vertices in the directed graph to a single
destination vertex v.

 The all-pairs shortest path problem, in which we have to find
shortest paths between every pair of vertices v, u in the graph.

9

3.2.1. Single-source shortest path
problem

Here we consider the single-source shortest path problem for the

following types of graphs:

 an unweighted graph (Lee algorithm);

 a weighted graph with positive weights (Dijkstra algorithm);

 a weighted graph with arbitrary weights (Dijkstra modified

algorithm, Bellman-Ford algorithm).

10

Single-source shortest path
problem in unweighted graphs

In an unweighted graph, the shortest path <u,v> is a path of
minimum length | <u,v> |.

Lee algorithm (based on the BFS) is usually used to find the
shortest path.

Lee algorithm was proposed by C.Y.Lee in 1961 as a connection

routing method in electronic design automation, and it is still

widely used for finding the shortest paths in graphs.

It uses a wave propagation style; a wave k are all vertices that

can be reached in k steps from the start vertex. The wave stops

when the target is reached, and the path is determined by

backtracking through the vertices.

11

Lee algorithm

 Start. Given a graph G(V,E) and start the vertex x, find the

shortest path <x,v> for every vertex v reachable from x.

 Step 1. Set the wave number k=0 and label the vertex x by 0.

Other vertices are unlabeled.

 Step 2. For all the vertices labeled by k, label their unlabeled

out-neighbors by k+1.

 Step 3. If there are vertices labeled by k+1, set k=k+1 and go

to Step 2.

 Step 4. If k=0, go to the end. Else for all labeled vertices,

determine the shortest paths.

12

Lee algorithm

 Step 5. For the vertices labeled by 1, the shortest paths

consist of one edge: <x,v>=xv. Set m=1.

 Step 6. If there are no vertices labeled by m+1 go to the end.

 Step 7. For every vertex y labeled by m+1, determine the

preceding vertex z in the shortest path. The vertex z is labeled

by m, and (z,y)∈E. The shortest path <x,y> is constructed by

adding the vertex y to the shortest path <x,z>.

 Step 8. Set m=m+1 and go to Step 6.

 End. All the vertices reachable from x are labeled; the label is

the length of the shortest path from the vertex x. The shortest

paths have been constructed.

13

Lee algorithm

Example. Here numbers near the

vertices are labels. For the

vertices {b,f} labeled by 2, the

preceding vertex in the shortest

path should be labeled by 1.

There is the only vertex h labeled

by 1, and there are edges (h,b)

and (h,f). We add b and f to path

<a,h> and obtain the shortest

paths

 <a,b>=ahb;

 <a,f>=ahf.

14

Lee algorithm

Example. We can demonstrate

the execution of the algorithm at

the diagram. Vertices with the

same wave number are in the

same vertical line; the wave

number increases from left to

right. The diagram also shows the

shortest paths.

15

Single-source shortest path
problem in weighted graphs

A weighted graph associates a label (weight) with every edge in

the graph.

The weight of a path W(<u,v>) is the sum of weights of the

edges included in the path.

The shortest path <u,v> in a weighted graph is a path of minimal

weight W(<u,v>) .

Example.

16

Dijkstra algorithm

Dijkstra's algorithm, conceived by

Dutch computer scientist Edsger

Dijkstra in 1956 and published in

1959, is a graph search algorithm

that solves the single-source

shortest path problem for a graph

with nonnegative edge path

weights. This algorithm is often

used in routing and as a subroutine

in other graph algorithms.

17

Dijkstra algorithm

 Start. Given a graph 𝐺 𝑉, 𝐸 with the weight matrix W and start the

vertex 𝑥, find the shortest path 𝑥, 𝑣 for every vertex 𝑣 reachable

from 𝑥.

 Step 1. Label the vertex 𝑥 by 0 and other vertices by infinity. Put all

the vertices into the priority queue Q and mark them as unvisited.

 Step 2. If the priority queue is empty go to Step 5.

 Step 3. Extract the vertex t with the minimum label from the queue Q

(the vertex leaves the queue). Mark it as visited.

 Step 4. For all unvisited out-neighbors of the vertex t, update the

labels:

𝜆 𝑣 = 𝑚𝑖𝑛 𝜆 𝑣 , 𝜆 𝑡 + 𝑤𝑡,𝑣 .

 Then go to Step 2.

18

Dijkstra algorithm

 Step 5. For the vertices with finite labels, construct the shortest

paths. Vertex 𝑦 precedes vertex 𝑣 in the shortest path if

𝜆 𝑦 + 𝑤𝑦,𝑣 = 𝜆 𝑣 .

 The process is finished if 𝑦 = 𝑥.

 End. All the vertices reachable from x are labeled by finite values; the

label is the weight of the shortest path from the vertex x. The shortest

paths have been constructed.

19

Dijkstra algorithm

Example. http://theoryofprogramming.com/2015/01/11/dijkstras-
algorithm/

20

Dijkstra algorithm

Example.

21

Dijkstra algorithm

Example.

22

Dijkstra algorithm

Example.

23

Dijkstra algorithm

Example. Proceeding similarly…

24

Table implementation

Example. Here 𝑣 is the vertex extracted from the priority queue,
𝜆 𝑣 is its label, columns 𝑎 − ℎ contain current labels of the
corresponding unvisited vertices.

25

Negative weights?

For graphs with negative weights of edges, Dijkstra algorithm
does not work.

Example. Starting with vertex 𝑎, we mark it as visited. The labels
𝜆 𝑏 = 1 and 𝜆 𝑐 = 3. Then we extract the vertex 𝑏 from the
queue and mark it as visited. At the next iteration, we extract
the vertex 𝑐. As we do not update labels for visited vertices,
the label of the vertex 𝑏 remains 𝜆 𝑏 = 1, in spite of

 𝑊 𝑎𝑐𝑓 = 3 − 4 = −1.

26

Modified Dijkstra algorithm

Step 4 is changed.

 Step 4. For all out-neighbors of the vertex 𝑡, update the labels:

𝜆 𝑣 = 𝑚𝑖𝑛 𝜆 𝑣 , 𝜆 𝑡 + 𝑤𝑡,𝑣 .

 If for a visited vertex, the new label is less than the old one mark

the vertex as unvisited and put it in the priority queue. Then go to

Step 2.

27

Modified Dijkstra algorithm

Example. Here the visited vertices are written in italic, the vertex

with the minimum weight from the queue is written in bold.

Bellman-Ford algorithm

Bellman-Ford algorithm is an example of the dynamic

programming method. DP can be used:

 If the given problem can be broken up in to smaller subproblems

and these smaller subproblems are in turn divided in to smaller

ones, and in this process, if you observe some overlapping

subproblems;

 If the optimal solutions to the subproblems contribute to the

optimal solution of the given problem.

28

Bellman-Ford algorithm

In the shortest path problem:

 Any shortest path consists of shortest paths; i.e., if

< 𝑥, 𝑦 > = 𝑥 … 𝑧 … 𝑦

then it contains the shortest paths < 𝑥, 𝑧 > and < 𝑧, 𝑦 >.

 The weight of the shortest paths it the sum of the weightf of its

subpaths; i.e.

𝑊 𝑥, 𝑦 = 𝑊 𝑥, 𝑧 + 𝑊 𝑧, 𝑦 .

29

Bellman-Ford algorithm

 The algorithm first calculates the shortest distances which have at-most

one edge in the path.

 Then, it calculates the weights of the shortest paths with at-most 2

edges, and so on. After the 𝑘-th iteration of outer loop, the weights of

the shortest paths with at most 𝑘 edges are calculated.

 Assuming that there is no negative weight cycle, if we have calculated

shortest paths with at most 𝑘 edges, then an iteration over all edges

guarantees to give shortest path with at-most 𝑘 + 1 edges.

 There can be maximum 𝑝 − 1 edges in any simple path, that is if after

the (𝑝 − 1)-th iteration the weight of the paths still change then the

graph contains a negative-weight cycle.

30

31

Bellman-Ford algorithm

 Start. Given a graph 𝐺 𝑉, 𝐸 with the weight matrix 𝑊 and

start the vertex 𝑥, find the shortest path 𝑥, 𝑣 for every vertex

𝑣 reachable from 𝑥.

 Step 1. Label the vertex 𝑥 by 0 and other vertices by infinity.

Set the iteration number 𝑘 = 0.

 Step 2. If 𝑘 = 𝑝 then the graph contains a negative-weight

cycle, go to the end. Else increase the iteration number

𝑘 = 𝑘 + 1.

 Step 3. For all edges 𝑢, 𝑣 update the label 𝜆 𝑣 :

𝜆 𝑣 = 𝑚𝑖𝑛 𝜆 𝑣 , 𝜆 𝑢 + 𝑤𝑢,𝑣 .

32

Bellman-Ford algorithm

 Step 4. If some labels were changed then go to Step 2.

 Step 5. All the vertices reachable from 𝑥 are labeled by finite

values; the label is the weight of the shortest path from the

vertex 𝑥 . For these vertices, construct the shortest paths.

Vertex 𝑦 precedes vertex 𝑣 in the shortest path if

𝜆 𝑦 + 𝑤𝑦,𝑣 = 𝜆 𝑣 .

 The process is finished if 𝑦 = 𝑥.

 End.

33

Bellman-Ford algorithm

Example.

http://www.programming-

algorithms.net/article/47389/Bell

man-Ford-algorithm

https://image.slideserve.com/473

818/bellman-ford-example-l.jpg

http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm
http://www.programming-algorithms.net/article/47389/Bellman-Ford-algorithm

K shortest paths

 What if we need more than one

path?

 Yen's algorithm computes single-

source K-shortest loopless paths

for a graph with non-negative edge

cost.

 The algorithm was published by Jin

Y. Yen in 1971 and employs any

shortest path algorithm to find the

best path, then proceeds to find

K − 1 deviations of the best path.

34

Yen’s algorithm

 What if we need more than one path?

 Yen's algorithm computes single-source K-shortest loopless

paths for a graph with non-negative edge cost.

 The algorithm was published by Jin Y. Yen in 1971 and

employs any shortest path algorithm to find the best path, then

proceeds to find K − 1 deviations of the best path.

35

