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3. Paths 

 Graph traversal 

 Shortest paths 
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3.1. Graph traversal 

Graph traversal is the problem of visiting all the vertices in a 
graph, updating and/or checking their values along the way. 

Breadth-first search (BFS) is a graph traversal algorithm that 
begins at a start vertex and explores all its neighbors (out-
neighbors for a digraph). Then for each of those nearest 
vertices, it explores their unexplored neighbors, and so on, 

until all the vertices are visited.  
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Graph traversal 

Example. BFS. 
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Graph traversal 

Depth-first search (DFS) is a graph traversal algorithm that 
begins at a start vertex, explores its not visited neighbor and 
then considers that neighbor as a start vertex. If all the 
neighbors are visited then “backtracking” is used, i.e. the 
previous vertex is considered as a start vertex.    
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Graph traversal 

Example. DFS. 
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3.2. Shortest path 

The shortest path problem is one of the classical problems in graph 

theory that is due to its practical importance.  

Indeed, we constantly come across the search for optimal paths. For 

example, GPS-navigators search for a time-minimum path  between two 

objects. 

Example. Q-GIS. 
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Shortest path 

Shortest paths problems 

 The single-pair shortest path problem, in which we have to find 
shortest paths from a source vertex v to a single destination vertex u.  

 The single-source shortest path problem, in which we have to find 
shortest paths from a source vertex v to all other vertices in the 
graph.  

 The single-destination shortest path problem, in which we have to 
find shortest paths from all vertices in the directed graph to a single 
destination vertex v.  

 The all-pairs shortest path problem, in which we have to find 
shortest paths between every pair of vertices v, u in the graph.  
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3.2.1. Single-source shortest path 
problem  

Here we consider the single-source shortest path problem for the 

following types of graphs: 

 an unweighted graph (Lee algorithm); 

 a weighted graph with positive weights (Dijkstra algorithm); 

 a weighted graph with arbitrary weights (Dijkstra modified 

algorithm, Bellman-Ford algorithm). 
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Single-source shortest path 
problem in unweighted graphs 

In an unweighted graph, the shortest path <u,v> is a path of 
minimum length  | <u,v> |. 

Lee algorithm (based on the BFS) is usually used to find the 
shortest path. 

Lee algorithm was proposed by C.Y.Lee in 1961 as a connection 

routing method in electronic design automation, and it is still 

widely used for finding the shortest paths in graphs.  

It uses a wave propagation style; a wave k are all vertices that 

can be reached in k steps from the start vertex. The wave stops 

when the target is reached, and the path is determined by 

backtracking through the vertices. 
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Lee algorithm 

 Start. Given a graph G(V,E) and start the vertex x, find the 

shortest path <x,v> for every vertex v reachable from x. 

 Step 1. Set the wave number k=0 and label the vertex x by 0. 

Other vertices are unlabeled. 

 Step 2. For all the vertices labeled by k, label their unlabeled 

out-neighbors by k+1. 

 Step 3. If there are vertices labeled by k+1, set k=k+1 and go 

to Step 2. 

 Step 4. If k=0, go to the end. Else for all labeled vertices, 

determine the shortest paths. 
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Lee algorithm 

 Step 5. For the vertices labeled by 1, the shortest paths 

consist of one edge: <x,v>=xv. Set m=1. 

 Step 6. If there are no vertices labeled by m+1 go to the end. 

 Step 7. For every vertex y labeled by m+1, determine the 

preceding vertex z in the shortest path. The vertex z is labeled 

by m, and (z,y)∈E. The shortest path <x,y> is constructed by 

adding the vertex y to the  shortest path <x,z>. 

 Step 8. Set m=m+1 and go to Step 6. 

 End. All the vertices reachable from x are labeled; the label is 

the length of the shortest path from the vertex x. The shortest 

paths have been constructed. 
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Lee algorithm 

Example. Here numbers near the 

vertices are labels. For the 

vertices {b,f} labeled by 2, the 

preceding vertex in the shortest 

path should be labeled by 1. 

There is the only vertex h labeled 

by 1, and there are edges (h,b) 

and (h,f). We add b and f to path 

<a,h> and obtain the shortest 

paths 

 <a,b>=ahb; 

 <a,f>=ahf. 
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Lee algorithm 

Example. We can demonstrate 

the execution of the algorithm at 

the diagram. Vertices with the 

same wave number are in the 

same vertical line; the wave 

number increases from left to 

right. The diagram also shows the 

shortest paths. 
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Single-source shortest path 
problem in weighted graphs 

A weighted graph associates a label (weight) with every edge in 

the graph.  

The weight of a path W(<u,v>) is the sum of weights of the 

edges included in the path. 

The shortest path <u,v> in a weighted graph is a path of minimal 

weight W(<u,v>) . 

Example. 
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Dijkstra algorithm 

Dijkstra's algorithm, conceived by 

Dutch computer scientist Edsger 

Dijkstra in 1956 and published in 

1959, is a graph search algorithm 

that solves the single-source 

shortest path problem for a graph 

with nonnegative edge path 

weights.   This algorithm is often 

used in routing and as a subroutine 

in other graph algorithms. 
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Dijkstra algorithm 

 Start. Given a graph 𝐺 𝑉, 𝐸  with the weight matrix W and start the 

vertex 𝑥, find the shortest path 𝑥, 𝑣  for every vertex 𝑣 reachable 

from 𝑥. 

 Step 1. Label the vertex 𝑥 by 0 and other vertices by infinity. Put all 

the vertices into the priority queue Q and mark them as unvisited. 

 Step 2. If the priority queue is empty go to Step 5. 

 Step 3. Extract the vertex t with the minimum label from the queue Q 

(the vertex leaves the queue). Mark it as visited. 

 Step 4. For all unvisited out-neighbors of the vertex t, update the 

labels: 

𝜆 𝑣 = 𝑚𝑖𝑛 𝜆 𝑣 , 𝜆 𝑡 + 𝑤𝑡,𝑣 . 

     Then go to Step 2. 
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Dijkstra algorithm 

 Step 5. For the vertices with finite labels, construct the shortest 

paths. Vertex 𝑦 precedes vertex 𝑣 in the shortest path if 

𝜆 𝑦 + 𝑤𝑦,𝑣 = 𝜆 𝑣 . 

     The process is finished if 𝑦 = 𝑥. 

 End. All the vertices reachable from x are labeled by finite values; the 

label is the weight of the shortest path from the vertex x. The shortest 

paths have been constructed. 
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Dijkstra algorithm 

Example. http://theoryofprogramming.com/2015/01/11/dijkstras-
algorithm/ 
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Dijkstra algorithm 

Example.  
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Dijkstra algorithm 

Example.  
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Dijkstra algorithm 

Example.  
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Dijkstra algorithm 

Example. Proceeding similarly… 
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Table implementation 

Example. Here 𝑣 is the vertex extracted from the priority queue, 
𝜆 𝑣   is its label, columns 𝑎 − ℎ contain current labels of the 
corresponding unvisited vertices. 
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Negative weights? 

For graphs with negative weights of edges, Dijkstra algorithm 
does not work. 

Example. Starting with vertex 𝑎, we mark it as visited. The labels 
𝜆 𝑏 = 1 and 𝜆 𝑐 = 3. Then we extract the vertex 𝑏 from the 
queue and mark it as visited. At the next iteration, we extract 
the vertex 𝑐. As we do not update labels for visited vertices, 
the label of the vertex 𝑏 remains 𝜆 𝑏 = 1, in spite of 

 𝑊 𝑎𝑐𝑓 = 3 − 4 = −1. 
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Modified Dijkstra algorithm 

Step 4 is changed. 

 Step 4. For all out-neighbors of the vertex 𝑡, update the labels: 

𝜆 𝑣 = 𝑚𝑖𝑛 𝜆 𝑣 , 𝜆 𝑡 + 𝑤𝑡,𝑣 . 

 If for a visited vertex, the new label is less than the old one mark 

the vertex as unvisited and put it in the priority queue. Then go to 

Step 2. 
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Modified Dijkstra algorithm 

Example. Here the visited vertices are written in italic, the vertex 

with the minimum weight from the queue is written in bold. 



Bellman-Ford algorithm 

Bellman-Ford algorithm is an example of the dynamic 

programming method. DP can be used: 

 If the given problem can be broken up in to smaller subproblems 

and these smaller subproblems are in turn divided in to smaller 

ones, and in this process, if you observe some overlapping 

subproblems;  

 If the optimal solutions to the subproblems contribute to the 

optimal solution of the given problem.  
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Bellman-Ford algorithm 

In the shortest path problem: 

 Any shortest path consists of shortest paths; i.e., if 

< 𝑥, 𝑦 > = 𝑥 … 𝑧 … 𝑦 

then it contains the shortest paths < 𝑥, 𝑧 > and < 𝑧, 𝑦 >. 

 The weight of the shortest paths it the sum of the weightf of its 

subpaths; i.e. 

𝑊 𝑥, 𝑦 = 𝑊 𝑥, 𝑧 + 𝑊 𝑧, 𝑦 .   
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Bellman-Ford algorithm 

 The algorithm first calculates the shortest distances which have at-most 

one edge in the path.  

 Then, it calculates the weights of the shortest paths with at-most 2 

edges, and so on. After the 𝑘-th iteration of outer loop, the weights of 

the shortest paths with at most 𝑘 edges are calculated.  

 Assuming that there is no negative weight cycle, if we have calculated 

shortest paths with at most 𝑘 edges, then an iteration over all edges 

guarantees to give shortest path with at-most 𝑘 + 1 edges. 

 There can be maximum 𝑝 − 1 edges in any simple path, that is if after 

the (𝑝 − 1)-th iteration the weight of the paths still change then the 

graph contains a negative-weight cycle.  
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Bellman-Ford algorithm 

 Start. Given a graph 𝐺 𝑉, 𝐸  with the weight matrix 𝑊 and 

start the vertex 𝑥, find the shortest path 𝑥, 𝑣  for every vertex 

𝑣 reachable from 𝑥. 

 Step 1. Label the vertex 𝑥 by 0 and other vertices by infinity. 

Set the iteration number 𝑘 = 0. 

 Step 2. If 𝑘 = 𝑝 then the graph contains a negative-weight 

cycle, go to the end. Else increase the iteration number 

𝑘 = 𝑘 + 1. 

 Step 3. For all edges 𝑢, 𝑣  update the label 𝜆 𝑣 : 

𝜆 𝑣 = 𝑚𝑖𝑛 𝜆 𝑣 , 𝜆 𝑢 + 𝑤𝑢,𝑣 . 

 



32 

Bellman-Ford algorithm 

 Step 4. If some labels were changed  then go to Step 2. 

 Step 5. All the vertices reachable from 𝑥 are labeled by finite 

values; the label is the weight of the shortest path from the 

vertex 𝑥 . For these vertices, construct the shortest paths. 

Vertex 𝑦 precedes vertex 𝑣 in the shortest path if 

𝜆 𝑦 + 𝑤𝑦,𝑣 = 𝜆 𝑣 . 

     The process is finished if 𝑦 = 𝑥. 

 End.  
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Bellman-Ford algorithm 

Example.  

http://www.programming-

algorithms.net/article/47389/Bell

man-Ford-algorithm 

https://image.slideserve.com/473

818/bellman-ford-example-l.jpg 
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K shortest paths 

 What if we need more than one 

path? 

 Yen's algorithm computes single-

source K-shortest loopless paths 

for a graph with non-negative edge 

cost.  

 The algorithm was published by Jin 

Y. Yen in 1971 and employs any 

shortest path algorithm to find the 

best path, then proceeds to find 

K − 1 deviations of the best path. 
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Yen’s algorithm 

 What if we need more than one path? 

 Yen's algorithm computes single-source K-shortest loopless 

paths for a graph with non-negative edge cost.  

 The algorithm was published by Jin Y. Yen in 1971 and 

employs any shortest path algorithm to find the best path, then 

proceeds to find K − 1 deviations of the best path. 

 

35 


