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4. Location problems 

 Distances in a weighted graph 

 Centre 

 Median 

 Extencions 

 Absolute P-centre 

 P-median 
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4.1. Distances in a weighted graph 

 Vertex-vertex distance 

 Point-vertex distance 

 Vertex-point distance 

 Vertex-edge distance 
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Vertex-vertex distance 

The vertex-vertex distance between vertices i and j 

(notation d(i,j)) is the weight of the shortest path <i,j>. 

It can be found by the Floyd–Warshall algorithm. 

Example. 
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F-point 

Consider an edge e=(i,j) with the weight cij>0 and a 
parameter f : 0≤f ≤1.  

The point at the edge which divide the edge in 
proportion f : (1–f) is called the f-point (notation f(i,j)).   

 

 

The weight of the edge part if is equal to fcij, the weight 
of the part fj is equal to (1–f)cij. 

The vertex i is 0-point, the vertex j is 1-point. 

The other points are interior. 
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Point-vertex distance 

The point-vertex distance between a point f(i,j) and a 

vertex k (notation d(f(i,j),k)) is the weight of the 

minimal path < f(i,j),k>. 

For an undirected edge (i,j): 
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Point-vertex distance 

The dependence d(f(i,j),k)) of f can be one of three types. 
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Point-vertex distance 

The maximum point f* is the point of the lines intersection:  

= 

 

 

      

     Since 

 

     so f*[0,1]. 
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Point-vertex distance 

Example:     



10 

Point-vertex distance 

Example:     
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Point-vertex distance 

For a directed edge (i,j): 
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Point-vertex distance 

Example:     
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Point-vertex distance 

Example:     
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Vertex-point distance 

The vertex-point distance between a vertex k and a point 
f(i,j) (notation d(k, f(i,j))) is  the weight of the minimal path 
<k, f(i,j)>. 

 

For an undirected edge ij: 

 

 

For a directed edge ij: 

 

     



15 

Vertex-point distance 

Example (undirected edges): 
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Vertex-point distance 

Example (directed edges): 
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Vertex-edge distance 

The vertex-edge distance between a vertex k and an edge ij 

(notation d(k,(i,j))) is  the maximum vertex-point distance 

d(k, f(i,j)): 

 

 

For a directed edge (i,j) the maximum point f*=1 and the 

vertex-edge distance  
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Vertex-edge distance 

Example 

(directed 

edges): 
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Vertex-edge distance 

For an undirected edge (i,j) the dependence d(k,f(i,j)) of f can 

be one of three types. 
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Vertex-edge distance 

Example 

(undirected 

edges): 
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Point-edge distance 

The point-point distance between a point f(i,j) and a point 

g(k,l) (notation d(f(i,j),g(k,l))) is  the weight of the minimal 

path <f(i,j),g(k,l)>. 

The point-edge distance between a point f(i,j) and an edge 

(k,l) (notation d(f(i,j),(k,l))) is  the maximum point-point 

distance d(f(i,j),g(k,l)): 
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Point-edge distance 

For an undirected edge (i,j)≠(k,l) the minimal path can pass 

through the vertex i or the vertex j: 
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Point-edge distance 

Example (undirected edge): 
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Point-edge distance 

For a directed edge (i,j)≠(k,l) the minimal path can pass only 

through the vertex j: 
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Point-edge distance 

Example (directed edge): 
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Point-edge distance 

For an undirected edge (i,j)=(k,l) and f<1/2 the most distant 

points g are close to the vertex j. If d(i,j)<ci,j then the 

minimal path <f(i,j),g(i,j)> can pass through the vertex i:  
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Point-edge distance 

The maximum point g* is the point of the lines intersection: 

 

 

 

Hence 
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Point-edge distance 

If the minimal path <f(i,j),g(i,j)> passes only through the edge 

(i,j) then: 

 

 

The maximum point g*=1. 
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Point-edge distance 

Hence the point-edge distance for f<1/2 

 

 

 

This distance is maximum for f=0 and minimum for f=1/2. 

The minimum distance is equal to ci,j/2. 
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Point-edge distance 

For an undirected edge (i,j)=(k,l) and f>1/2 the most distant 

points g are close to the vertex i. If d(j,i)<cj,i then the 

minimal path <f(i,j),g(i,j)> can pass through the vertex j:  
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Point-edge distance 

The maximum point g* is the point of the lines intersection: 

 

 

 

Hence 
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Point-edge distance 

If the minimal path <f(i,j),g(i,j)> passes only through the edge 

(i,j) then: 

 

 

The maximum point g*=0. 
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Point-edge distance 

Hence the point-edge distance for f>1/2 

 

 

 

This distance is maximum for f=1 and minimum for f=1/2. 

The minimum distance is equal to ci,j/2. 
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Point-edge distance 

Finally, the point-edge distance is 
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Point-edge distance 

Example 

(undirected 

edges): 



36 

Point-edge distance 

Example (undirected edges): 
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Point-edge distance 

For a directed edge (i,j)=(k,l) the most distant points g are 

situated between the vertex i and the point f close to the 

point f .  

fgi j

d(j,i)
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Point-edge distance 

Example 

(directed 

edges): 
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Maximum distances 

 

Maximum vertex-vertex:  

 

Maximum point-vertex: 

 

Maximum vertex-edge: 

 

Maximum point-edge: 
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Total distances 

 

Total vertex-vertex:  

 

Total point-vertex: 

 

Total vertex-edge: 

 

Total point-edge: 
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4.2. Centers of a graph 

 Center 

 General center 

 Absolute center 

 General absolute center 
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Center 

A center of graph G is any vertex v of graph G such that 

 

 

Example. Vertex c is the center. 
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General center 

A general center of graph G is any vertex v of graph G such that 

 

 

Example. Vertex a is the general center. 
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Absolute center 

An absolute center of graph G is any point g of graph G such that 

 

 

 

Theorem. No interior point of a directed edge can be an absolute 

center. 

 

Point f* of an undirected edge can be a candidate for absolute 

center if it is gives the minimal value of the upper portion of the 

point-vertex distance from point f* to all the vertices. 
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Absolute center 

Example.  
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Absolute center 

Example. Edge δ=(a,c).  
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Absolute center 

Example. Edge α=(a,b).  
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Absolute center 

Example. Edge ζ=(b,d).  
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Absolute center 

Example. Plots of point-vertex distances. 
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Absolute center 

Example. 

For edge δ=(a,c): 

 

 

 

For edge α=(a,b): f*=0 (vertex a). 

 

For edge ζ=(b,d): 

 

 

 

Absolute center: point 3/14 δ, MPV(3/14 δ)=5,5. 
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General absolute center 

An general absolute center of graph G is any point g of graph G 
such that 

 

 

 

Theorem. If an interior point of a directed edge is a general 
absolute center then its end is also a general absolute center. 

 

Point f* of an undirected edge can be a candidate for general 
absolute center if it is gives the minimal value of the upper 
portion of the point-edge distance from point f* to all the edges. 
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General absolute center 

Example.  
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General absolute center 

Example. Plots of point-edge distances. Vertex a is the general 

absolute center. 



54 

4.3. Medians of a graph 

 Median 

 General median 

 Absolute median 

 General absolute median 
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Median 

A median of graph G is any vertex v of graph G such that 

 

 

Example. Vertex c is the median. 

 



56 

General median 

A general median of graph G is any vertex v of graph G such that 

 

 

Example. Vertex a is the general median. 
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Absolute median 

An absolute median of graph G is any point g of graph G such that 

 

 

Theorem. There is always a vertex that is an absolute median. 

Example. Vertex c is the median and the absolute median. 
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General absolute median 

A general absolute median of graph G is any point g of graph G such 

that 

 

 

Theorem. No interior point of a directed edge can be a general absolute 

median. 

Theorem. There is always a vertex or the middle point of an undirected 

edge that is a general absolute median. 
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General absolute median 
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General absolute median 

Example.  
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General absolute median 

Example.  
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General absolute median 

Example 

 

 

 

 

 

 

 

Vertex a is the general absolute median.  
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4.4. Extensions 

 Weighted location 

 Multicentres and multimedians 
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Weighted location 

Suppose that different weights W(j) (W(i,j)) are associated with vertex j 

(edge (i,j)). This weights can be considered as probabilities or 

frequencies of visiting the vertex or the edge.   

Vertex-vertex distance: 

 

 

Vertex-edge distance: 
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Multicentres and multimedians 

Let Xr be a subset of points of graph G(V,E) containing r points.  

Set-vertex distance d(Xr,j) is the minimum distance between any one of 

the points in set Xr and vertex j; i.e.  

 

 

 

Set-edge distance d(Xr,(k,l)) is the minimum distance between any one of 

the points in set Xr and edge (k,l), i.e. 
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Multicentres and multimedians 

Example. X3={c,(2/7)δ,(1/2)α} 
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Multicentres and multimedians 

Example.  
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Multicentres and multimedians 

Example.  
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Multicentres and multimedians 

Multicenter and multimedian problems arise when there is a need to 

locate a number of facilities in the best possible way. The following 

distances can be minimize: 

 Maximum set-vertex distance (MSV) 

 Maximum set-edge distance (MSE) 

 Total set-vertex distance (TSV) 

 Total set-edge distance (TSE) 
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4.5. Absolute p-centre 

Problems: 

 (a) Find the optimal location anywhere on the graph of a given 

number (say p) of centres so that the distance  required to reach the 

most remote  vertex from its nearest centre is a minimum.  

 (b) For a given "critical" distance, find the smallest number (and 

location) of centres so that all the vertices of the graph lie within this 

critical distance from at least one of the centres.  
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Δ-matrix 

Vertex k is reachable from point f(i,j) within distance Δ if 

 

 

Any set of points of the graph is called a region. 

Vertex k is reachable from a region within distance Δ if it is reachable 

from any point of the region within distance Δ. 

 



72 

Δ-matrix 

Example. Edge δ=(a,c). 
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Δ-matrix 

Let Δ-matrix be a Boolean matrix where rows correspond to regions and 

columns correspond to vertices. Element Δij=1 if vertex j is reachable 

from region i within distance Δ. 

The shortest cover of Δ-matrix gives us an absolute p-center of the 

minimum cardinal number p. 
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Δ-matrix 

Example. Δ=2. 
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Δ-matrix 

Example.  
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Δ-matrix 

Example.  
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Shortest cover of a Boolean matrix 

Consider Boolean matrix Q. 

Row i covers column j if qij=1, i.e. if row i contains 1 in column j. 

A cover of a Boolean matrix is any set of its rows covering all its 

columns. 

The length of a cover is the number of rows in the cover. 

A shortest cover is a cover of the minimal length. 
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Shortest cover of a Boolean matrix 

Example.  

Row H covers columns 2, 3, 6, 8. 
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Shortest cover of a Boolean matrix 

Example.  

Covers: {A,B,C,D,E,F}, {A,B,C,E,G,H}… 

Shortest cover: {A,B,C,D,E} 
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Essential row rule 

An essential row is a row covering a column contained one and only one 

1. 

 

Essential row rule. If a Boolean matrix has an essential row hence this 

row is contained in any cover. An essential row is deleted from the 

matrix with all the columns covered by the row. 
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Essential row rule 

Example.  

Essential rows: A, B. 
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Essential row rule 

Example.  

After applying the essential row rule. 
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Petrick's method 

Column cover function is the disjunction of variables corresponding to 

rows covering the column. 

Matrix cover function is the conjunction of all the column cover 

functions, i.e., conjunctive normal form (CNF). 

If the CNF of the matrix cover function is transformed to the disjunctive 

normal form (DNF) then every conjunction of the DNF gives us a 

cover of the matrix. The shortest disjunction gives us the shortest 

cover. 
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Petrick's method 

Example.  
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Predecessor row rule and successor column 
rule 

Boolean vector α=a1a2…an precedes Boolean vector β =b1b2…bn if for 
every i=1,…, n: 

ai≤bi. 

Here vector α is the predecessor, vector β is the successor. 

 

Predecessor row rule. If in a Boolean matrix row α precedes row β then 
predecessor row α is deleted from the matrix. The shortest cover does 
not lost because in every cover row α can be replaced by row β. 

Successor column rule. If in a Boolean matrix column γ precedes 
column δ then successor column δ is deleted from the matrix. The 
shortest cover does not lost because every cover of column γ also 
covers column δ.. 
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Predecessor row rule and successor column 
rule 

Example.  

 



87 

Predecessor row rule and successor column 
rule 

Example. 4≤1. 
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Algorithm 

Step 1. If there is a row covering all columns then add this row to the 
shortest cover and go to the end. 

Step 2. Apply the essential row rule. If there were core rows then go to 
step 1. 

Step 3. Apply the predecessor row rule. If there were predecessor rows 
then go to step 2. 

Step 4. Apply the successor column rule. If there were successor columns 
then go to step 3. 

Step 5. Write the CNF of the matrix cover function and transform it into 
DNF. 

Step 6. Choose the shortest conjunction of the DNF and add core rows to 
the rows from this conjunction. The shortest cover is obtained. 
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Algorithm 

Example. 8=5. 

 

 

 

 

 

 

 

The shortest cover {B,C,G}. 
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Direct tree search 

Consider Boolean matrix M and row X. 

X=1: row X is included into a cover. Delete row X and all columns 

covered by it, hence obtain matrix M’.  

X=0: row X is not included into a cover. Delete row X, hence obtain 

matrix M’.  
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Direct tree search 

Example. A, B – essential rows. 
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Direct tree search 

Example. Choose row C. Matrix N: C=1, matrix P: C=0. 
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Direct tree search 

Example. Choose row C. Matrix N: C=1, matrix P: C=0. 
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Direct tree search 

Example. Consider matrix N. 
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Direct tree search 

Example. E – an essential row. 

 

 

 

 

 

Row D covers all columns. We obtain a cover {A,B,C,D,E}. 
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Direct tree search 

Example. Consider matrix P. F, H – essential rows. 

 

 

 

 

 

 

 

Row G covers all columns. We obtain a cover {A,B,F,G,H}. 
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4.6. P-median 

Problems: 

 (a) Find the optimal location anywhere on the graph of a given 

number (say p) of medians so that the total distance required to reach 

all the vertices from its nearest median is a minimum.  

 (b) For a given "critical" distance, find the smallest number (and 

location) of medians so that the total distance required to reach all the 

vertices from its nearest median lie within this critical distance.  
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Problem statement 

Xp – multimedian (p-median) 

v Xp – median vertex 

v Xp – non-median vertex 

 

Vertex j is allocated to vertex i if vertex i is a median vertex and 

d(Xp,j)=d(i,j). 

Any median vertex i is allocated to vertex i itself.  
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Problem statement 
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Direct tree search 

Set up a matrix M:n×n the j-th column of which contains all 

the vertices of the graph G arranged in ascending order of 

their distance to vertex j. Thus, if mij = k, then there are i–

1 vertices, such that the distance from them to vertex j 

does not exceed d(k,j) and n–i vertices, such that the 

distance from them to vertex j is not less than d(k,j) .  

Obviously, the nearest vertex to vertex j is itself, i.e. m1j =j.  
 

 



10
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Direct tree search 

Example. 
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Direct tree search 

For every vertex j we define index kj as a number of a row of matrix M. 

 

 

At the subproblem under consideration,  vertex xj is the best variant for 

vertex j to be allocated to. 

A lower bound of the cost of the optimal solution 
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Direct tree search 

For the start problem for every vertex jV  

 

 

An upper bound of the cost of the optimal solution  

 

                                           C*= 

 

Two new subproblems are generated from the current subproblem 

choosing variable ij and setting ij =1 and ij = 0. 
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Direct tree search 

S+ – set of median vertices; 

S– – set of non-median vertices; 

F – set of non-allocated vertices. 

Every median vertex is allocated to itself, thus, S+∩F=. 
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Direct tree search 

Example. Start problem A (p=2). 
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Direct tree search 

S+(A)=; 

S–(A)= ; 

F(A)={a,b,c,d}; 

C(A)=0. 

 

 

Choose variable aa. 
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Direct tree search 
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Direct tree search 

 

 


