Graph theory: flows and networks

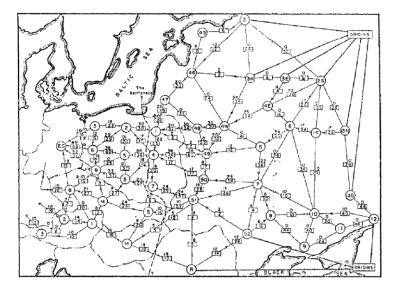
Yulia Burkatovskaya Department of Information Technologies Associate professor

6. Flows and networks

- Network and flow
- Ford-Fulkerson theorem
- Maximum flow
- Minimum-cost flow

Flows and networks

Soviet Rail Network, 1955

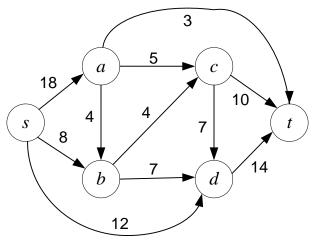


Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

6.1. Network and flow

- A flow network (network) G(V, E, C) is a directed graph, where each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$.
- If $(u, v) \notin E$, we assume that c(u, v)=0.
- There are two distinct vertices: a source s with d⁺(s)=0 and a sink t with d⁺(t)=0.

Example.



- A flow in G: a real-valued function $f: E \rightarrow R$ satisfying the following two properties:
- Capacity constraint: For all $(u, v) \in E$, we require $f(u, v) \leq c(u, v)$.
- Flow conservation: For all $v \in V \{s, t\}$,

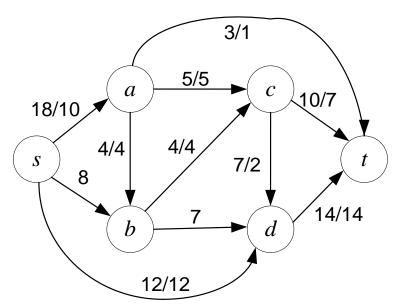
we require div(f, u)=0.

$$\operatorname{div}(f, v) = \sum_{v:\{u,v\}\in E} f(u, v) - \sum_{v:\{v,u\}\in E} f(v, u).$$

• The source divergence is the value of the flow

$$w(f) = \operatorname{div}(f,s)$$

Example. A flow with the value 22.



Problem: to find a flow with the maximum value.

Let S and T be two disjoint subsets of V;

- $s \in S, t \in T;$
- $S \cup T = V$.

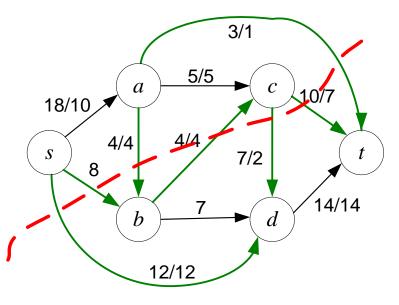
Then the **cut** P(S,T) is the set of edges joining vertices from S and vertices from T;

- $P^+(S,T) = \{(u,v): u \in S, t \in T\};$
- $P^{-}(S,T) = \{(u,v): u \in S, t \in T\}.$

$$F(P) = \sum_{e \in P} f(e),$$
$$C(P) = \sum_{e \in P^+} C(e).$$

Example.

- S={*s*,*a*,*c*};
- *P*={*b*,*d*,*t*};
- *P*⁺={*sd*, *sb*,*ab*,*at*,*cd*,*ct*};
- $P^{-}=\{bc\};$
- *C*(*P*)=12+8+4+3+7+10=44.



6.2. Ford-Fulkerson theorem

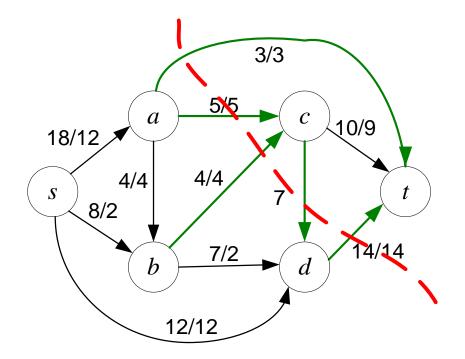
- **Theorem.** In any s-t network there exists a feasible flow *f** and an s-t cut *P* such that
- (1) the flow equals the capacity of the cut,
- (2) on any arc belonging to P⁺, this flow equals the capacity of the arc, and
- (3) on any arc, that would belong to P^- , the flow equals zero.

Also known as max-flow min-cut theorem.

$$w(f^*) = \max_f w(f) = \min_P C(P).$$

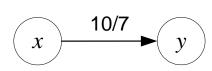
Ford-Fulkerson theorem

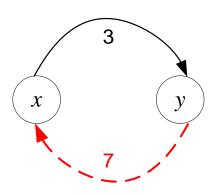
Example. The maximum flow with the value 26.



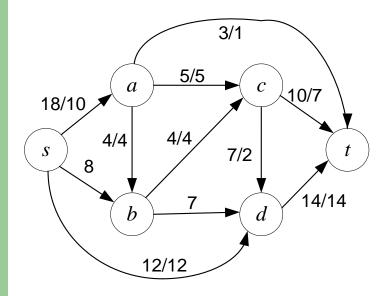
6.3. Maximum flow

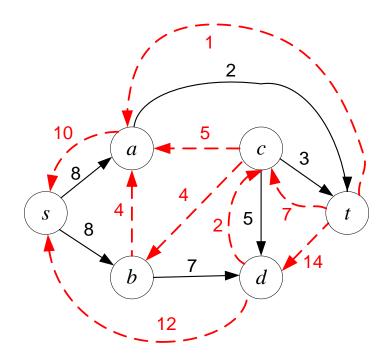
- **Residual network.** Given a graph G and a flow f in it, we form a new flow network G_f that has the same vertex set of G and that has two arcs for each arc of G:
- An arc e = (x,y) of G that carries non-zero flow f(e) and has capacity C(e) spawns a "forward arc" of G_f with capacity C(e)-f(e) (the room remaining), if C(e)-f(e)>0; else the "forward arc" does not exist;
- and a "**backward arc**" (y, x) of G_f with capacity f(e) (the amount of previously routed flow that can be undone).





Example.

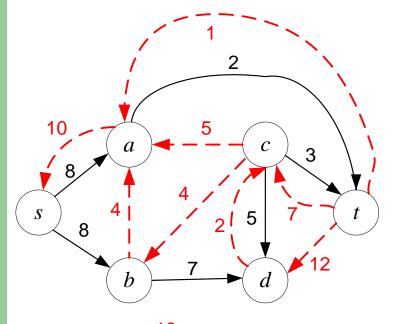




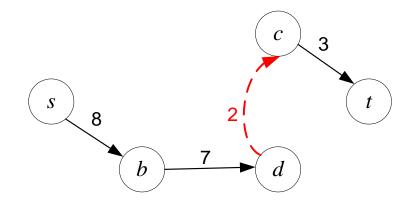
Ford-Fulkerson algorithm.

- Start. Given a network G(V, E, C), set f(e)=0 for all arcs; $G_f=G$.
- Step 1. Find a path <s,t> in Gf. If there are no such paths then go to the End.
- Step 2. Calculate the value δ=min{C(e)} where {e} is the set of arcs of the path. Change the flow along the path:
 - if (x,y) is a forward arc then increase the flow in (x,y) by δ ;
 - if (x,y) is a backward arc then decrease the flow in (y,x) by δ .
- Step 3. Update the residual network Gf. Go to Step 1.
- End. The current flow is the maximum flow.

Example.

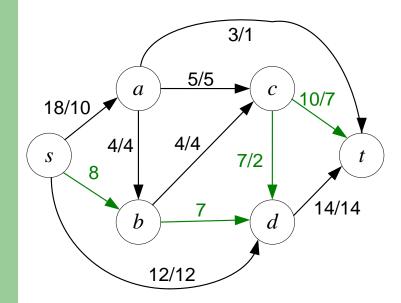


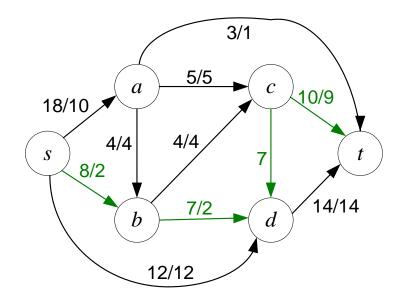
 $\delta = min\{8,7,2,3\} = 2$



12

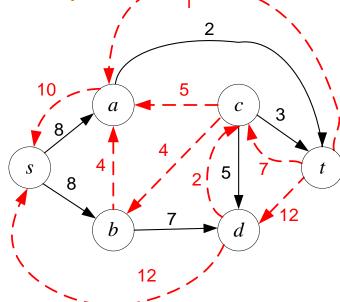
Example.

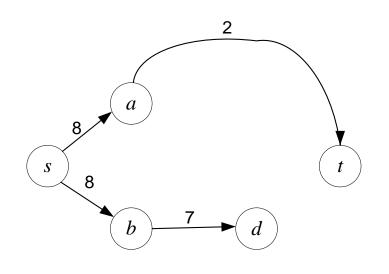




Edmond-Karp algorithm.

- Very similar to Ford-Fulkerson algorithm.
- To find an **augmenting path** <*s*,*t*> in *G*_{*f*}, use breadth-first search.





Dinic algorithm. Level graph.

- We assign **levels** to all nodes, level of a node is shortest distance (in terms of number of edges) of the node from source.
- In the level graph, we find in general more than one augmenting path $\langle s, t \rangle$ in G_f .
- We send multiply flows; so, it works better than Edmond-Karp algorithm.

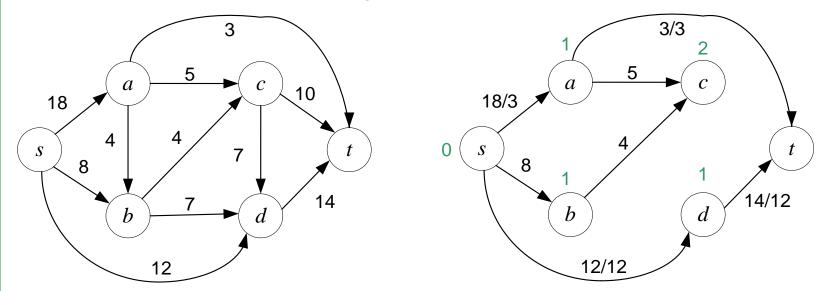
Blocking flow.

• A flow is **blocking flow** if no more flow can be sent using level graph, i.e., no more s-t path exists such that path vertices have current levels 0, 1, 2... in order.

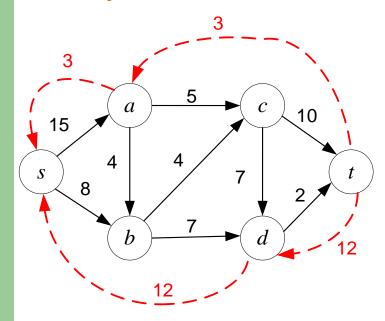
Dinic algorithm.

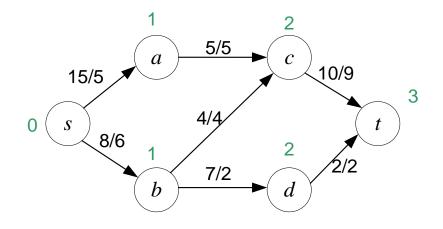
- Start. Given a network G(V, E, C), set f(e)=0 for all arcs; initialize $G_f=G$.
- Step 1. By using BFS, construct the level graph in G_{f} . If the sink t is not included into the level graph, go to the End.
- Step 2. Find the blocking flow in G_{f} . Add it to the current flow in G.
- Step 3. Update the residual network G_f . Go to Step 1.
- End. The current flow is the maximum flow.

Example. Left picture represents a network with zero flow. Right picture represents the level graph and the blocking flow. Levels are shown in green.

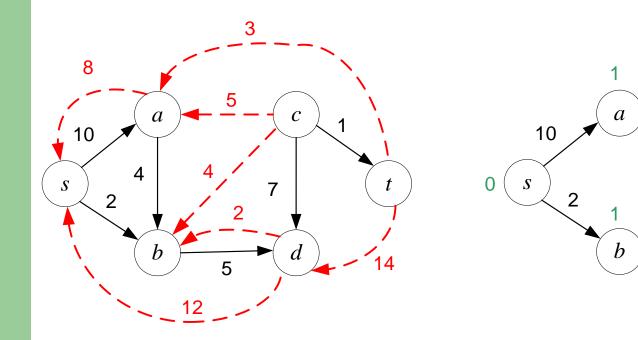


Example.





Example. The sink is not reachable.



С

2

d

5

t

21

• Computational complexity

Ford-Fulkerson	Edmond-Karp	Dinic
O(<i>nm</i> ²)	O(nm ²)	O(<i>n</i> ² <i>m</i>)

6.4. Minimum-cost flow

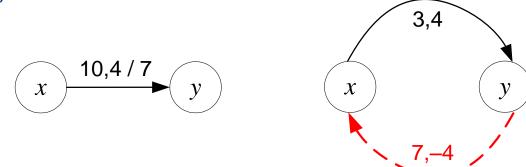
Let d(u, v) be the **cost** that must be paid per unit of flow that goes through the arc.

Minimum-cost flow problem

• Given a network and the desirable value of flow θ , to find a flow with the value θ and the minimum cost; or to decide that none exists.

🗵 Сейчас не удается отобразить рисунок.		

- **Residual network.** Given a graph *G* and a flow *f* in it, we form a new flow network G_f that has the same vertex set of G and that has two arcs for each arc of G:
- An arc e = (x,y) of G that carries non-zero flow f(e) and has capacity C(e) spawns a "forward arc" of G_f with capacity C(e)-f(e) and with the cost d(e), if C(e)-f(e)>0; else the "forward arc" does not exist;
- and a "backward arc" (y,x) of G_f with capacity f(e) and with the cost -d(e).



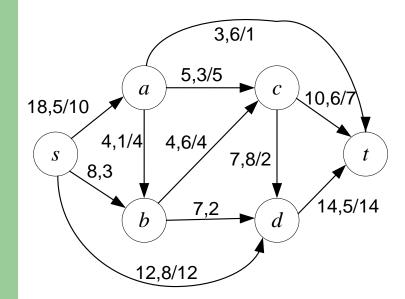
Negative-cost cycle condition.

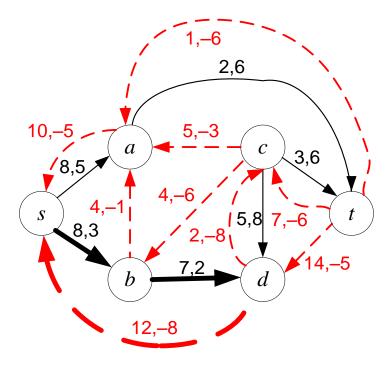
- A flow has the minimum cost, iff the residual network contains no negative-cost cycles.
- If there is a negative-cost cycle, the flow can be change along the cycle; the obtained flow has the same value and smaller cost.

Cycle-chancelling algorithm.

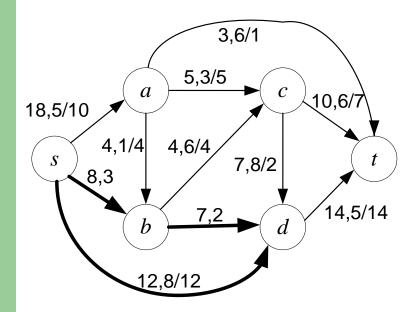
- Start. Given a network G(V, E, C, D) and the value θ .
- Step 1. Find a feasible flow of the value θ (use any maximum-flow algorithm). If there is not any, the solution does not exist, go to End.
- Step 2. Update the residual network G_{f} .
- Step 3. Find a negative-cost cycle µ. If there in not any, a minimum-cost flow is obtained, go to End.
- Step 4. Calculate the value δ=min{C(e)} where {e} is the set of arcs of the cycle. Change the flow along the cycle:
 - if (x,y) is a forward arc then increase the flow in (x,y) by δ ;
 - if (x,y) is a backward arc then decrease the flow in (y,x) by δ . Go to Step 2.
- End.

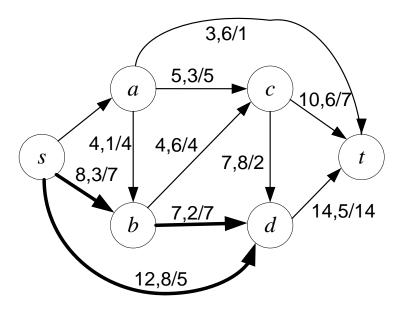
Example. μ =sbds (3+2-8=-3); δ =min{8,7,12}=7.





Example. Change the flow in the cycle.





Shortest-path algorithm.

- Start. Given a network G(V, E, C, D) and the value θ , the residual network Gf=G.
- Step 1. Find the shortest path <s,t> (path with the minimum cost) in Gf. If there is not any, the solution does not exist, go to End.
- Step 2. Calculate the value $\delta = \min\{C(e)\}$ where $\{e\}$ is the set of arcs of the cycle. If $\delta > \theta$ then set $\delta = \theta$.
- Step 3. Change the flow along the path:
 - if (x,y) is a forward arc then increase the flow in (x,y) by δ ;
 - if (x,y) is a backward arc then decrease the flow in (y,x) by δ .
- Step 4. Decrease θ by δ . If $\theta=0$ then a minimum-cost flow is constructed, go to the End.
- Step 5. Update the residual network G_{f} . Go to Step 1.
- End.

Example. The first shortest path is *sbdt*; the second is *sat*.

