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Topics 

 Basics 

 Connectivity 

 Paths 
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1. Basics 

 Graphs and related objects 

 Adjacency and incidence 

 Isomorphism 

 Types of graphs 

 Subgraphs 
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1.1. Graphs and related objects 

Graphs are mathematical structures used to model pairwise 

relations between objects.  

 

 



5 

Undirected graph (simple graph) 

A simple graph G(V,E) is a pair of sets: 

 V – the set of “vertices" or "nodes“; 

 E –  the set of “edges” or “arcs” that connect pairs of nodes. 

An edge (an undirected edge) is an unordered pair of different 
vertices. 

An edge e=(a,b) joins vertices a and b. The vertices a and b are 
the end vertices or the ends of the edge e. 
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Undirected graph (simple graph) 

Example G(V,E) 

 

V={a,b,c,d,e,f} 

E={(a,b),(a,d),(b,e),(b,c), 

      (b,f),(c,f),(e,f)} 

 

 It is possible to write ab 
instead of (a,b); 

 ab=ba. 
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Directed graph (digraph) 

If edges are ordered pairs of different nodes, then edges are called 
directed edges and a graph is called directed graph or 
digraph. 

For an edge e=(a,b) the vertex a is its head and the vertex b is its 
tail.  

Example 
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Mixed graph 

If both undirected and directed edges are allowed, then a graph is 
called mixed graph. 

 

Example 
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Multigraph 

Edges with the same ends (or with the same head and tail) are 
multiple edges. 

If multiple edges are allowed, then a graph is called multigraph. 

Example 
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Pseudograph 

A loop is an edge whose endpoints are the same vertex (e=vv).  

If loops are allowed, then a graph is called pseudograph. 

Example 
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Combinations 
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Graph invariants 

A graph invariant is a property of graphs that depends only on 
the abstract structure, not on graph representations such as 
particular labellings or drawings of the graph.  

The number of vertices of a graph is its order (notation p=|V|). 

The number of edges of a graph is its size (notation q=|E|). 

Example 

p=6 

q=7 
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1.2. Adjacency and incidence 

Consider an edge e=ab of a graph (directed or undirected). 

The vertices a and b are incident with the edge e. The edge e is 

incident with the vertices a and b.  

The vertices a and b are adjacent. 

Edges incident with the same vertex are adjacent. 
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Adjacency and incidence 

Examples The vertices a and b are 
adjacent. 

The vertices a and e are not 
adjacent.  

The edges ab and ad are not 
adjacent. 

The edges be and ad are not 
adjacent. 

The vertex a and the edge ab 
are incident. 

The vertex c and the edge ab 
are not incident. 
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Neighbours 

Consider an undirected graph G(V,E) and a vertex aV. 

The set N(a)={b: abE} is the set of neighbors of the vertex a.  

Example 

a b c

d e f

N(a)={b,d}
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Neighbours 

Consider a directed graph G(V,E) and a vertex aV. 

The set N+(a)={b: abE} is the set of out-neighbors of the vertex a.  

The set N–(a)={b: baE} is the set of in-neighbors of the vertex a.  

Example 
a b c

d e f

N
+
(a)={b}, N–(a)={d}
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The degree of a vertex 

For an undirected graph the degree of a vertex v (notation d(v)) is 

the number of edges incident with v. 

Examples 

  

d(a)=2, d(b)=4, d(f)=3

a b c

d e f

a b c

d e f

d(a)=3, d(b)=5, d(f)=5
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The degree of a vertex 

A loop vv adds 2 to the degree of a vertex v. 

Example 

  
a b c

d e f

d(a)=2, d(b)=6, d(f)=5
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The degree of a vertex 

For a directed graph there are three characteristics: 

● the out-degree of a vertex v (notation d+(v)) is the number of 
edges with the tail in v: 

d+(v)=|{vu: uV, vuE}|; 

● the in-degree of a vertex v (notation d–(v)) is the number of 
edges with the head in v: 

d-(v)=|{uv: uV, uvE}|; 

● the degree of a vertex v (notation d(v)) is the sum of the out-
degree and the in-degree of v: 

 d(v)= d+(v)+d-(v). 
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The degree of a vertex 

Examples 

a b c

d e f

d
+
(a)=1, d–(a)=1, d(a)=2;

d
+
(f)=2, d–(f)=1, d(f)=3

d
+
(a)=1, d–(a)=1, d(a)=2;

d
+
(f)=4, d–(f)=1, d(f)=5

a b c

d e f
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The degree of a vertex 

Examples 

a b c

d e f

d
+
(a)=1, d–(a)=1, d(a)=2;

d
+
(f)=2, d–(f)=1, d(f)=3

d
+
(a)=1, d–(a)=1, d(a)=2;

d
+
(f)=4, d–(f)=1, d(f)=5

a b c

d e f
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Graph invariants 

Minimum degree 

 

 
Maximum degree 

 

Example  

δ(G)=1 

Δ(G)=4 
   vdG

Vv
min

   vdG
Vv

 max
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Particular cases 

 A vertex with degree 0 is called an isolated vertex.  

 A vertex with degree 1 is called a leaf vertex or end vertex. This 

terminology is common in the study of trees in graph theory.  

 A vertex with degree n − 1 in a graph on n vertices is called a 

dominating vertex.  
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Handshaking lemma (Leonhard Euler) 

Lemma 1. The doubled number of edges of a finite undirected 

graph is equal to the sum of the degrees of vertices: 

 

 

Lemma 2. Every finite undirected graph has an even number of 

vertices with odd degree.  

  .2
1

qvd
p

v



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1.3. Isomorphism 

Graphs G(V,E) and G’(V’,E’) are isomorphic if there exists a 
bijection φ:V→V’ such as for all x,yV:  

xyE if and only if φ(x)φ(y)E’.  

 

Isomorphic graphs are not distinguished. 

To prove that graphs are isomorphic it is necessary to find a 
bijection φ. 

To prove that graphs are not isomorphic it is sufficient to prove that 
one graph has a certain property and another graph has not the 
property. 
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Example: isomorphic graphs 

a b c

d e f

a

b

cd

e

f

a b

c

d e

f
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Example: nonisomorphic graphs 

All the vertices 1, 3 and 5 (and 2, 4 and 6 ) of the graph on the left 

are pairwise adjacent.  There are no such three vertices in the 

graph on the right. 

1

4

65

3

2 a

b

cd

e

f
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1.4. Types of graphs 

A graph is complete if all its vertices are pairwise adjacent. 

A complete graph with p vertices is denoted as Kp. 

The number of the edges of Kp is equal to p(p–1)/2. 

K4 K5
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Types of graphs 

A graph is empty if any pair of 

its vertices are not adjacent 

(E=Ø).  

 

 

 

A graph is k-regular (regular) 

if all its vertices have the 

same degree k. 
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Types of graphs 

A graph is two-partite (bipartite, bigraph) if the set of its vertices 

can be divide into two subsets V1 and V2 so that every edge 

connect vertices from different subsets, i.e. 

V= V1UV2, V1∩V2 =Ø, for all xyE: x  V1, y  V2. 
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Types of graphs 

A graph is complete two-partite (bipartite, bigraph) if every 

vertex from V1 is adjacent with every vertex from V2, i.e. 

V= V1UV2, V1∩V2 =Ø, for all x  V1, y  V2.: xyE. 

 

 

A complete bigraph  

where |V1|=n, |V2|=m  

is denoted as Knm. 

 

 
K3,3
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Types of graphs 

A graph is trivial if |V|=1, |E|=0. 
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1.5. Subgraphs 

Consider two graphs: G(V,E) and G’(V’,E’). 

If V’V and E’E then G’ is a subgraph of G (less formally, G 

contains G, notation G’G). 

Example. 

 

 

 

a b c

d e f

G(V,E)

a b

d e f

G’(V’,E’)
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Subgraphs 

If G’G and E’ contains all the edges xyE: x,yV’,  then G’ is an 

induced subgraph of G.  

We say that V’ induces G’ in G and write G’=G[V’]. 

Example. 

 
a b c

d e f

G(V,E)

a b

e f

G’=G[{a,b,e,f}]
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Subgraphs 

If V’=V then G’ is a spanning subgraph of G.  

Example. 

 

 a b c

d e f

G(V,E)

a b c

d e f

G’(V,E’)
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Subgraphs 

If V’≠V and E’≠E then G’ is a proper subgraph of G.  

 

 

 

a b c

d e f

G(V,E)

a b c

e f

G’(V’,E’)
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2. Connectivity 

 Walks 

 Distances 

 Connectivity of simple graphs 

 Connectivity of directed graphs 
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2.1. Walks 

A walk is a sequence of vertices and edges 

<v0, vn>=v0e1v1…vi–1eivi…vn–1envn, 

 where ei=vi–1vi. A walk is closed if its first and last vertices are the 

same, and open if they are different.  

If there are no multiple edges then it is possible to omit edges 

Examples. 

 

 

a b c

d e f

α β

γ δ ε ζ η θ κ

λ

<a,f> = a α b ζ f η c θ f κ c β b ζ f

a b c

d e f

<a,f> = a b f c f c b f



39 

Trail and tour 

A trail is an open walk in which all the edges are different.  

A  tour (or a circuit) is a closed walk in which all the edges are 

different.  

Examples. 

a b c

d e f

Trail <a,f> = a b f c b e f

Tour <a,a> = a b f c b e a



40 

Path and cycle 

A path (or a chain) is an open walk in which all the vertices (and 

hence the edges) are different.  

A  cycle (or a circuit) is a closed walk in which all the vertices 

are distinct.  

Examples. 

a b c

d e f

Path <a,f> = a b e f

Cycle <a,a> = a b f e a
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2.2. Distances 

The length of a walk is the number of edges that it uses.  

The shortest path <u,v> is a path of minimal length  | <u,v> |. 

The distance between two vertices d(u,v) is the length of a 

shortest path <u,v>, if one exists, and otherwise the distance 

is infinity.  

Examples. 

 

 

a b c

d e f

α β

γ δ ε ζ η θ κ

λ

<a,f> = a α b ζ f η c θ f κ c β b ζ f

|<a,f>| = 7

Shortest path <a,f> = a α b ζ f 

d(a,f) =  2
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Distances 

The eccentricity ε(v) of a vertex v is the maximum distance from 
v to any other vertex.  

 

 

The diameter D(G) of a graph G is the maximum distance 
between two vertices in a graph or the maximum eccentricity 
over all vertices in a graph.  

  
 

The radius R(G) is the minimum eccentricity over all vertices in a 
graph.   

. 
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Distances 

Vertices with maximum eccentricity are called peripheral 

vertices.  

Vertices of minimum eccentricity form the center.  

Examples. 

 a b c

d e f

ε(a)=ε(b)=2

ε(c)=ε(d)=ε(e)=ε(f)=3

R(G)=2

D(G)=3

Peripheral vertices c, d, e, f

Centre a, b
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2.3. Connectivity of simple graphs 

If it is possible to establish a path <u,v> from vertex u to other 

vertex v, the vertices u and v are connected.  

If all the pairs of vertices are connected, the graph is said to be 

connected; otherwise, the graph is disconnected.  

Examples. 

 a b c

d e f

Connected graph

a b c

d e f

Disconnected graph
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Connected component 

A connected component of a graph G(V,E) is any its maximally 

connected subgraph, i.e. an induced subgraph which is not a 

proper subgraph of any other connected subgraph of G(V,E) . 

 Examples. 

 a b c

d e f

Graph with two components

b c

e f

Component

b c

e f

Not a component
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Articulation point and bridge 

An articulation point (or separating vertex) of a graph is a 

vertex whose removal from the graph increases its number of 

connected components.   
A bridge, or (cut edge) is an analogous edge.  

 

Examples. 

de – bridge 

d, e, h – articulation  

points  
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Cuts 

A vertex cut, (or separating set) of a connected graph G is a set 

of vertices whose removal makes G disconnected or trivial.  

Analogous concept can be defined for edges.  

Examples. 

 
a b c

d e f

{ b, e } – vertex cut 

{ ab, be, ef } – edge cut
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Graph invariants 

k(G) – the number of connected components 

The vertex connectivity κ(G) is the size of a minimal vertex cut.  

The edge connectivity λ(G) is the size of a smallest edge cut.  

A graph is called n-vertex-connected (n-edge-connected) if its 

vertex (edge) connectivity is n or greater. 

κ(G) ≤ λ(G) ≤ δ(G) 

Examples. 

 

 

a b c

d e f

κ = 2 (vertices d, e)

λ = 2  (edges ad, de)
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Cuts for a pair of vertices 

A vertex cut S(u,v), (or separating set) for two connected 

vertices u and v is a set of vertices whose removal mekes the 

vertices u and v disconnected. 

Analogous concept can be defined for edges.  

Examples. 

 

a b c

d e f

Vertex cut S(a,f)={b,d,e}

Edge cut S(a,f)={ab,ae,ef}
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Menger theorem 
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2.4. Connectivity of directed graphs 

If it is possible to establish a path <u,v> and a path <v,u> in a 

digraph, the vertices u and v are strongly connected.  

If it there exists either a path <u,v> or a path <v,u> in a digraph, 

the vertices u and v are unilaterally connected.  

If it there exists a path <u,v> in a graph obtained from a digraph 

by canceling of edges direction, the vertices u and v are 

weakly connected. 

Examples. 

 u v u v u v

Strongly connected Unilaterally connected Weakly connected
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Connectivity of directed graphs 

If all the pairs of vertices of a digraph are strongly / unilaterally / 

weakly connected, the digraph is strongly / unilaterally / 

weakly connected. 

Examples. 

 

Strongly connected Unilaterally connected Weakly connected
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Strongly connected component 

A strongly connected component of a digraph G(V,E) is any its 

maximally strongly connected subgraph, i.e. an induced 

subgraph which is not a proper subgraph of any other strongly 

connected subgraph of G(V,E) . 

 Example. 
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Quotient graph 

The quotient graph of a digraph D(V,E) with k strongly 
connected components induced by sets of vertices V1,…,Vk  is 
a graph D’(V’,E’) where V’={v1,…,vk}, vivjE’ if there is an edge 
uiuj E: ui Vi, uj Vj. 

 Example. 

                     

 

 

 

 

 

             

                       Digraph                                             Quotient graph   
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3. Paths 

 Graph traversal 

 Shortest path 
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3.1. Graph traversal 

Graph traversal is the problem of visiting all the vertices in a 
graph, updating and/or checking their values along the way. 

Breadth-first search (BFS) is a graph traversal algorithm that 
begins at a start vertex and explores all its neighbors (out-
neighbors for a digraph). Then for each of those nearest 
vertices, it explores their unexplored neighbors, and so on, 

until all the vertices are visited.  
Depth-first search (DFS) is a graph traversal algorithm that 

begins at a start vertex, explores its not visited neighbor and 
then considers that neighbor as a start vertex. If all the 
neighbors are visited then “backtracking” is used, i.e. the 
previous vertex is considered as a start vertex.    
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Graph traversal examples 

                 BFS                                                DFS 
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3.2. Shortest path 

The shortest path <u,v> is a path of minimal length  | <u,v> |. 

Lee algorithm (based on the DFS) is usually used to find the 
shortest path. 

Example. 
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Shortest path 

A weighted graph associates a label (weight) with every edge in 

the graph.  

The weight of a path W(<u,v>) is the sum of weights of the 

edges included in the path. 

The shortest path <u,v> in a weighted graph is a path of minimal 

weight W(<u,v>) . 

Example. 
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Shortest paths problems 

 The single-pair shortest path problem, in which we have to 
find shortest paths from a source vertex v to a single 
destination vertex u.  

 The single-source shortest path problem, in which we have 
to find shortest paths from a source vertex v to all other vertices 
in the graph.  

 The single-destination shortest path problem, in which we 
have to find shortest paths from all vertices in the directed 
graph to a single destination vertex v.  

 The all-pairs shortest path problem, in which we have to find 
shortest paths between every pair of vertices v, u in the graph.  
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Shortest paths algorithms 

 Dijkstra's algorithm solves the single-source shortest path 

problem.  

 Bellman–Ford algorithm solves the single-source problem if 

edge weights may be negative.  

 Floyd–Warshall algorithm solves all pairs shortest paths.  
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4. Location problems 

 Distances in a weighted graph 

 Centre 

 Median 

 Extencions 

 Absolute P-centre 

 P-median 
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4.1. Distances in a weighted graph 

 Vertex-vertex distance 

 Point-vertex distance 

 Vertex-point distance 

 Vertex-edge distance 
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Vertex-vertex distance 

The vertex-vertex distance between vertices i and j 

(notation d(i,j)) is the weight of the shortest path <i,j>. 

It can be found by the Floyd–Warshall algorithm. 

Example. 
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F-point 

Consider an edge e=(i,j) with the weight cij>0 and a 
parameter f : 0≤f ≤1.  

The point at the edge which divide the edge in 
proportion f : (1–f) is called the f-point (notation f(i,j)).   

 

 

The weight of the edge part if is equal to fcij, the weight 
of the part fj is equal to (1–f)cij. 

The vertex i is 0-point, the vertex j is 1-point. 

The other points are interior. 
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Point-vertex distance 

The point-vertex distance between a point f(i,j) and a 

vertex k (notation d(f(i,j),k)) is the weight of the 

minimal path < f(i,j),k>. 

For an undirected edge (i,j): 
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Point-vertex distance 

The dependence d(f(i,j),k)) of f can be one of three types. 
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Point-vertex distance 

The maximum point f* is the point of the lines intersection:  

= 

 

 

      

     Since 

 

     so f*[0,1]. 
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Point-vertex distance 

Example:     
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Point-vertex distance 

Example:     
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Point-vertex distance 

For a directed edge (i,j): 
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Point-vertex distance 

Example:     



73 

Point-vertex distance 

Example:     
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Vertex-point distance 

The vertex-point distance between a vertex k and a point 
f(i,j) (notation d(k, f(i,j))) is  the weight of the minimal path 
<k, f(i,j)>. 

 

For an undirected edge ij: 

 

 

For a directed edge ij: 
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Vertex-point distance 

Example (undirected edges): 
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Vertex-point distance 

Example (directed edges): 
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Vertex-edge distance 

The vertex-edge distance between a vertex k and an edge ij 

(notation d(k,(i,j))) is  the maximum vertex-point distance 

d(k, f(i,j)): 

 

 

For a directed edge (i,j) the maximum point f*=1 and the 

vertex-edge distance  
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Vertex-edge distance 

Example 

(directed 

edges): 
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Vertex-edge distance 

For an undirected edge (i,j) the dependence d(k,f(i,j)) of f can 

be one of three types. 
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Vertex-edge distance 

Example 

(undirected 

edges): 
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Point-edge distance 

The point-point distance between a point f(i,j) and a point 

g(k,l) (notation d(f(i,j),g(k,l))) is  the weight of the minimal 

path <f(i,j),g(k,l)>. 

The point-edge distance between a point f(i,j) and an edge 

(k,l) (notation d(f(i,j),(k,l))) is  the maximum point-point 

distance d(f(i,j),g(k,l)): 
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Point-edge distance 

For an undirected edge (i,j)≠(k,l) the minimal path can pass 

through the vertex i or the vertex j: 
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Point-edge distance 

Example (undirected edge): 
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Point-edge distance 

For a directed edge (i,j)≠(k,l) the minimal path can pass only 

through the vertex j: 
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Point-edge distance 

Example (directed edge): 
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Point-edge distance 

For an undirected edge (i,j)=(k,l) and f<1/2 the most distant 

points g are close to the vertex j. If d(i,j)<ci,j then the 

minimal path <f(i,j),g(i,j)> can pass through the vertex i:  
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Point-edge distance 

The maximum point g* is the point of the lines intersection: 

 

 

 

Hence 
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Point-edge distance 

If the minimal path <f(i,j),g(i,j)> passes only through the edge 

(i,j) then: 

 

 

The maximum point g*=1. 
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Point-edge distance 

Hence the point-edge distance for f<1/2 

 

 

 

This distance is maximum for f=0 and minimum for f=1/2. 

The minimum distance is equal to ci,j/2. 
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Point-edge distance 

For an undirected edge (i,j)=(k,l) and f>1/2 the most distant 

points g are close to the vertex i. If d(j,i)<cj,i then the 

minimal path <f(i,j),g(i,j)> can pass through the vertex j:  
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Point-edge distance 

The maximum point g* is the point of the lines intersection: 

 

 

 

Hence 
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Point-edge distance 

If the minimal path <f(i,j),g(i,j)> passes only through the edge 

(i,j) then: 

 

 

The maximum point g*=0. 
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Point-edge distance 

Hence the point-edge distance for f>1/2 

 

 

 

This distance is maximum for f=1 and minimum for f=1/2. 

The minimum distance is equal to ci,j/2. 
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Point-edge distance 

Finally, the point-edge distance is 
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Point-edge distance 

Example 

(undirected 

edges): 
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Point-edge distance 

Example (undirected edges): 
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Point-edge distance 

For a directed edge (i,j)=(k,l) the most distant points g are 

situated between the vertex i and the point f close to the 

point f .  

fgi j

d(j,i)
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Point-edge distance 

Example 

(directed 

edges): 
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Maximum distances 

 

Maximum vertex-vertex:  

 

Maximum point-vertex: 

 

Maximum vertex-edge: 

 

Maximum point-edge: 
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0 

Total distances 

 

Total vertex-vertex:  

 

Total point-vertex: 

 

Total vertex-edge: 

 

Total point-edge: 
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1 

4.2. Centers of a graph 

 Center 

 General center 

 Absolute center 

 General absolute center 
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2 

Center 

A center of graph G is any vertex v of graph G such that 

 

 

Example. Vertex c is the center. 
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3 

General center 

A general center of graph G is any vertex v of graph G such that 

 

 

Example. Vertex a is the general center. 
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4 

Absolute center 

An absolute center of graph G is any point g of graph G such that 

 

 

 

Theorem. No interior point of a directed edge can be an absolute 

center. 

 

Point f* of an undirected edge can be a candidate for absolute 

center if it is gives the minimal value of the upper portion of the 

point-vertex distance from point f* to all the vertices. 
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5 

Absolute center 

Example.  
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6 

Absolute center 

Example. Edge δ=(a,c).  
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7 

Absolute center 

Example. Edge α=(a,b).  
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8 

Absolute center 

Example. Edge ζ=(b,d).  
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9 

Absolute center 

Example. Plots of point-vertex distances. 
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0 

Absolute center 

Example. 

For edge δ=(a,c): 

 

 

 

For edge α=(a,b): f*=0 (vertex a). 

 

For edge ζ=(b,d): 

 

 

 

Absolute center: point 3/14 δ, MPV(3/14 δ)=5,5. 
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General absolute center 

An general absolute center of graph G is any point g of graph G 
such that 

 

 

 

Theorem. If an interior point of a directed edge is a general 
absolute center then its end is also a general absolute center. 

 

Point f* of an undirected edge can be a candidate for general 
absolute center if it is gives the minimal value of the upper 
portion of the point-edge distance from point f* to all the edges. 
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2 

General absolute center 

Example.  
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3 

General absolute center 

Example. Plots of point-edge distances. Vertex a is the general 

absolute center. 
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4 

4.3. Medians of a graph 

 Median 

 General median 

 Absolute median 

 General absolute median 
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Median 

A median of graph G is any vertex v of graph G such that 

 

 

Example. Vertex c is the median. 
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General median 

A general median of graph G is any vertex v of graph G such that 

 

 

Example. Vertex a is the general median. 
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Absolute median 

An absolute median of graph G is any point g of graph G such that 

 

 

Theorem. There is always a vertex that is an absolute median. 

Example. Vertex c is the median and the absolute median. 
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General absolute median 

A general absolute median of graph G is any point g of graph G such 

that 

 

 

Theorem. No interior point of a directed edge can be a general absolute 

median. 

Theorem. There is always a vertex or the middle point of an undirected 

edge that is a general absolute median. 
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General absolute median 
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General absolute median 

Example.  
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General absolute median 

Example.  
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General absolute median 

Example 

 

 

 

 

 

 

 

Vertex a is the general absolute median.  
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4.4. Extensions 

 Weighted location 

 Multicentres and multimedians 
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Weighted location 

Suppose that different weights W(j) (W(i,j)) are associated with vertex j 

(edge (i,j)). This weights can be considered as probabilities or 

frequencies of visiting the vertex or the edge.   

Vertex-vertex distance: 

 

 

Vertex-edge distance: 
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Multicentres and multimedians 

Let Xr be a subset of points of graph G(V,E) containing r points.  

Set-vertex distance d(Xr,j) is the minimum distance between any one of 

the points in set Xr and vertex j; i.e.  

 

 

 

Set-edge distance d(Xr,(k,l)) is the minimum distance between any one of 

the points in set Xr and edge (k,l), i.e. 
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Multicentres and multimedians 

Example. X3={c,(2/7)δ,(1/2)α} 
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Multicentres and multimedians 

Example.  
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Multicentres and multimedians 

Example.  
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Multicentres and multimedians 

Multicenter and multimedian problems arise when there is a need to 

locate a number of facilities in the best possible way. The following 

distances can be minimize: 

 Maximum set-vertex distance (MSV) 

 Maximum set-edge distance (MSE) 

 Total set-vertex distance (TSV) 

 Total set-edge distance (TSE) 
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4.5. Absolute multicentres 

Problems: 

 (a) Find the optimal location anywhere on the graph of a given 

number (say p) of centres so that the distance  required to reach the 

most remote  vertex from its nearest centre is a minimum.  

 (b) For a given "critical" distance, find the smallest number (and 

location) of centres so that all the vertices of the graph lie within this 

critical distance from at least one of the centres.  
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4.6. Multimedians 

Problems: 

 (a) Find the optimal location anywhere on the graph of a given 

number (say p) of medians so that the total distance required to reach 

all the vertices from its nearest median is a minimum.  

 (b) For a given "critical" distance, find the smallest number (and 

location) of medians so that the total distance required to reach all the 

vertices from its nearest median lie within this critical distance.  

 



13

2 

Problem statement 

Xp – multimedian (p-median) 

v Xp – median vertex 

v Xp – non-median vertex 

 

Vertex j is allocated to vertex i if vertex i is a median vertex and 

d(Xp,j)=d(i,j). 

Any median vertex i is allocated to vertex i.  

 


