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6. Matchings and Covers  

 Independent and covering sets 

 Independent and covering sets of vertices 
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6.1. Independent and covering sets 

 Covering sets 

 Cover numbers 

 Independent sets 

 Independence numbers 

 Cover and independence numbers theorem 



4 

Covering sets 

A vertex covers an edge if they are incident.  

An edge covers a vertex if they are incident. 

Example. 

The vertex b covers the edges ab, bc, bd, bf 

The edge ab covers the vertices a and b 
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Covering sets 

A vertex covering set (vertex cover) is a set of vertices of G 

covering all edges of G. 

Example. 

{a,b,d,e,f} – a vertex covering set. 
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Covering sets 

An edge covering set (edge cover) is a set of edges of G 

covering all vertices of G. 

Example. 

{ab,ac,de,fg} – an edge covering set. 
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Minimum covering sets 

A cover is called minimum when it contains the smallest possible 

number of vertices (edges). 

Example. 

{a,b,c,d,e,f} is not a minimum vertex cover 

{b,c,e,g} is a minimum vertex cover. 
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Cover numbers 

The vertex cover number α0 of a graph G is the size of 

a minimum vertex cover in a graph, i.e., the minimum number 

of vertices covering all edges. 

Example. α0 =4, {b,c,e,f} – minimum vertex cover. 
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Cover numbers 

The edge cover number α1 of a graph G is the size of a minimum 

edge cover in a graph, i.e., the minimum number of edges 

covering all vertices. 

Example. α1 =4, {ab,cd,eg,ef} – minimum edge cover. 
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Independent sets 

A vertex (edge) independent set is a set of vertices (edges) of G 

so that no two vertices (edges) of the set are adjacent.  

Example. 

{b,e} – independent vertex set. 

{ab,cd,fg} – independent edge set. 
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Maximum independent sets 

An independent set is called maximum when it contains the 

greatest number of vertices (edges). 

Example. 

{b,e} is not a maximum vertex independent set. 

{a,d,f} is a maximum vertex independent set. 

 



12 

Independence numbers 

The vertex independence number 0 of a graph G is the 

maximum number of independent vertices.  

Example. 0 =3, {a,d,f} – independent vertex set. 
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Independence numbers 

The edge independence number 1 of a graph G is the 

maximum number of independent edges.  
Example. 1 =3, {ab,cd,ef} – independent edge set. 
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Cover and independence numbers 

α0 α1 0 1 

Kp 

Km,n 

Cp 

Empty 
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Cover and independence numbers 

α0 α1 0 1 

Kp p-1 p/2 (p–even), 

(p+1)/2 (p–odd) 

1 p/2 (p–even), 

(p-1)/2 (p–odd) 

Km,n min(m,n) max(m,n) max(m,n) min(m,n) 

Cp p/2 (p–even), 

(p+1)/2 (p–odd) 

p/2 (p–even), 

(p+1)/2 (p–odd) 

p/2 (p–even), 

(p-1)/2 (p–odd) 

p/2 (p–even), 

(p-1)/2 (p–odd) 

Empty 0 no p 0 
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Cover and independence number theorem 

For every connected non-trivial graph 
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6.2. Independent and covering sets of 
vertices 

 Construction of independent sets 

 Construction of covering sets 

 Independent and covering sets 

 Dominating sets 

 Dominating and independent sets 
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Construction of independent sets 

The eight queens puzzle is the 

problem of placing 

eight chess queens on an 

8×8 chessboard so that no 

two queens threaten each 

other.  
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Construction of independent sets 

An independent set is maximal if it is not a subset of any other 

independent set.  

In other words, there is no vertex outside the independent set 

that may join it.  

Example. {a,d} is not a maximal independent set, {a,d,f} is a 

maximal independent set. 
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Construction of independent sets 

 Backtracking is a general algorithm for finding all (or some) 
solutions to some computational problems, notably constraint 
satisfaction problems, that incrementally builds candidates to 
the solutions, and abandons a partial candidate ("backtracks") 
as soon as it determines that it cannot possibly be completed 
to a valid solution. 

 

 https://www.youtube.com/watch?v=kX5frmc6B7c  

 https://www.youtube.com/watch?v=xouin83ebxE 
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Construction of independent sets 

Generalized Algorithm: 

 Pick a starting point.  

 While(Problem is not solved)  

 For each path from the starting point.  

– check if selected path is safe,  

– if yes select it and make recursive call to rest of the problem  

– If recursive calls returns true, then return true. else undo the 

current move and return false.  

 End For 

  If none of the move works out, return false, NO SOLUTON.  
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Construction of independent sets 

 Sk – obtained independent set of the cardinality k; 

 Qk – set of vertices that can be added to Sk (Γ(Sk)∩Qk=Ø); 

 Qk 
– – vertices that have been used already to expand Sk; 

 Qk
+ – vertices that have not been used yet to expand Sk; 

 

 Start: k=0, Sk=Ø, Qk 
+

 = Ø, Qk 
–

 =Ø. 

 End:  

– if Qk 
+

 =V, Qk 
–

 =Ø then the set can not be expand;  

– if there exists u Qk 
–

  such as Γ(u)∩ Qk
+ =Ø then the obtaining set 

is not maximal as u can not be removed. 
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Construction of independent sets 

 Going ahead (from k to k+1): 

 

 

 

 

 Going back (from k+1 to k): 
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Construction of independent sets 

k Sk Qk
+ Qk 

– 

0 Ø abcdefg Ø 

1 a defg Ø 

2 ad fg Ø 

3 adf Ø Ø 

2 ad g f 

3 adg Ø Ø 

2 ad Ø fg 

1 a efg d 

2 ae Ø Ø 
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Construction of independent sets 

k Sk Qk
+ Qk 

– 

2 ae Ø Ø 

1 a fg ed 

0 Ø bcdefg a 

1 b eg Ø 

2 be Ø Ø 

1 b g e 

2 bg Ø Ø 

1 b Ø eg 

0 Ø cdefg ab 
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Construction of covering sets 

 ξj = 1 if and only if the vertex j belongs to the covering set; 

 I is the incidence matrix; 

The problem can be converted to the search of the shortest cover 

for the incidence matrix. 
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Construction of covering sets 

a 1 1 

b 1 1 1 1 

c 1 1 1 

d 1 1 1 

e 1 1 1 

f 1 1 1 

g 1 1 
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Construction of covering sets 

a 1 1 

c 1 1 1 

d 1 1 1 

e 1 1 1 

f 1 1 1 

g 1 1 
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Construction of covering sets 

e 1 

g 1 
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Construction of covering sets 

 Cover: acdef 

 

 

 

 

 



31 

Construction of covering sets 

a 1 1 

b 1 1 1 1 

c 1 1 1 

d 1 1 1 

e 1 1 1 

f 1 1 1 

g 1 1 
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Construction of covering sets 

a 1 

c 1 1 

d 1 1 

e 1 1 1 

f 1 1 

g 1 1 
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Construction of covering sets 

a 1 

c 1 1 

d 1 

f 1 

g 1 
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Construction of covering sets 

c 1 1 

f 1 
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Construction of covering sets 

 Cover: bcef 
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Construction of covering sets 

a 1 

c 1 1 

d 1 1 

f 1 1 

g 1 1 
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Construction of covering sets 

a 1 

c 1 
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Construction of covering sets 

 Cover: abdfg 

 

 

 

 

 



39 

Construction of covering sets 

 Shortest cover: bcef 
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Construction of covering sets 

a 1 1 

b 1 1 1 1 

c 1 1 1 

d 1 1 1 

e 1 1 1 

f 1 1 1 

g 1 1 
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Construction of covering sets 

 Shortest cover: bcef 
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Independent and covering sets 

A set is independent if and only 

if its complement is a vertex 

cover.  

A set is covering if and only if 

its complement is an 

independent set. 

Example. Red – independent, 

blue – covering. 
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Independent and covering sets 

The complement of a maximum 

independent set is a 

minimum vertex cover. 

The complement of a minimum 

vertex cover is a maximum 

independent set. 

 

A solution of one problem gives 

a solution of another 

problem. 
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Dominating sets 

A dominating set for a graph G = (V, E) is a subset D of V such 

that every vertex not in D is adjacent to at least one member 

of D.  

Example. {a,d,f} – dominating set. 
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Dominating sets 

The domination number (G) is the number of vertices in a 

smallest dominating set for G. The set is called as minimum 

dominating set. 

Example. {b,f} –  a minimum dominating set, (G)=2. 
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Dominating sets 

The five queens puzzle is 

the problem of placing 

five chess queens on an 

8×8 chessboard so that 

the queens can attack all 

the board. 
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Dominating sets 

The domination matrix for a 

graph G(V,E) is its 

adjacency matrix where all 

elements of the main 

diagonal are equal to unity. 

 

a b c d e f g 

a 1 1 1 

b 1 1 1 1 1 

c 1 1 1 1 

d 1 1 1 1 

e 1 1 1 1 

f 1 1 1 1 

g 1 1 1 
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Dominating sets 

The minimum dominating 

set correspond to the 

shortest cover of the 

domination matrix. 

a≤b, a≤b, g≤f 
 

 

a b c d e f g 

a 1 1 1 

b 1 1 1 1 1 

c 1 1 1 1 

d 1 1 1 1 

e 1 1 1 1 

f 1 1 1 1 

g 1 1 1 
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Dominating sets 

The row b is an essential row. 

 

 

a b c d e f g 

b 1 1 1 1 1 

d 1 1 1 1 

e 1 1 1 1 

f 1 1 1 1 
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Dominating sets 

The row f covers all columns. 

 

 

e g 

d 1 

e 1 1 

f 1 1 
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Dominating sets 

The rows {b,e} form the 

shortest cover of the 

domination matrix. 

 

a b c d e f g 

a 1 1 1 

b 1 1 1 1 1 

c 1 1 1 1 

d 1 1 1 1 

e 1 1 1 1 

f 1 1 1 1 

g 1 1 1 
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Dominating sets 

The minimal dominating set is a dominating set that does 

not contain any other dominating set. 

Example. {b,e,f} is not a minimal dominating set, {b,f} is a 

minimal dominating set. 
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Dominating and independent sets 

An independent set is also a dominating set if and only if it is 

a maximal independent set, so any maximal independent 

set in a graph is also a minimal dominating set.  
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Dominating and independent sets 

A dominating set is not necessary an independent set.  
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6.3. Independent and covering sets of edges 

 Matching problem statement  

 Cover problem statement 

 Matchings and covering sets 
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Matching problem statement 

Matching is an independent set of edges. 

Let M be a matching in G(V,E). 

Two ends of an edge in M are matched under M. 

A matching M saturates a vertex v (and v is M-saturated) if some 

edge of M is incident with v; otherwise, v is M-unsaturated. 
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Matching problem statement 

If every vertex of G is M-saturated, the matching M is perfect. 

M is a maximum matching in G, if |M|= 1. 

Every perfect matching is a maximum one. A perfect matching 

does not always exist. 
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Matching problem statement 

 ξj = 1 if and only if the edge j belongs to the matching; 

 cj is the weight of the edge j; 

 I is the incidence matrix. 

The problem can be stated as a discrete linear programming 

problem. 
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Covering set problem statement 

 ξj = 1 if and only if the edge j belongs to the cover; 

 cj is the weight of the edge j; 

 I is the incidence matrix. 

The problem can be stated as a discrete linear programming 

problem (the shortest cover of the transposed incidence 

matrix). 
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Matchings and covering sets 

 A solution of the minimum cover problem provides a solution 

of the maximum matching problem. 

 From matching to cover: 


