
1

“Graph theory”
Course for the master degree program

“Geographic Information Systems”

Yulia Burkatovskaya

Department of Computer
Engineering

Associate professor

2

7. Euler graph

 Euler circuits

 Chinese Postman problem

3

Seven Bridges of Königsberg

 The problem was to find a

walk through the city that

would cross each bridge

once and only once.

 Its negative resolution by

Leonhard Euler in 1735 laid

the foundations of graph

theory.

 The first problem of graph

theory is connected with

GIS!

3

4

7.1. Euler circuits

Euler circuits is any circuits in a graph which crosses each its

edge exactly once.

Euler graph is a graph which has an Euler circuits.

Example. The numbers near edges show the order of their

crossing.

5

Euler circuits

Theorem. An undirected graph is Euler if and only if all vertices

have even degree.

Theorem. A directed graph is Euler if and only if for all vertices the

in-degree is equal to the out-degree.

6

Fleury (1883).

Start. Choose any starting vertex v.

Step 1. If there are no edges incident to vertex v then go to the
end.

Step 2. Choose the next edge (v,u) incident to vertex v which is
not a bridge. If there are no such edges, choose the remaining
edge (v,u) incident to vertex v .

Step 3. Move to vertex u and delete the chosen edge. Denote v=u.
Go to step 1.

End. The sequence from which the edges were chosen forms an
Euler circuit.

7

Hierholzer (1873)

Step 1. Choose any starting vertex v, and follow a trail of edges

from that vertex until returning to v. The tour formed in this way

may not cover all the vertices and edges of the initial graph.

Step 2. If there exists a vertex u that belongs to the current tour but

that has adjacent edges not part of the tour, start another trail

from u, following unused edges until returning to u, and join the

tour formed in this way to the previous tour. Repeat step 2 while

it is possible.

8

Edmonds and Johnson (1973).

Step 1. Begin at any vertex s and construct a cycle C. This can be
done by traversing any edge (s, x) incident to vertex s and
marking this edge "used." Next traverse any unused edge
incident to vertex x. Repeat this process of traversing unused
edges until you return to vertex s.

Step 2. If С contains all the edges of G, stop. If not, then the
subgraph G’ in which all edges of С are removed must be Euler
since each vertex of С must have an even number of incident
edges. Since G’ is connected, there must be at least one vertex
ν in common with C.

Step 3. Starting at v, construct a cycle in G’ say C’.

Step 4. Splice together the cycles С and C’, calling the combined
cycle C. Return to step 2.

9

7.2. The Chinese Postman problem

Before starting his or her route, a postal carrier must pick up the

mail at the post office, then deliver the mail along each block on

the route, and finally return to the post office. To make the job

easier and more productive, every postal carrier would like to

cover the route with as little walking as possible. Thus, the

problem is to determine how to cover all the streets assigned

and return to the starting point in the shortest total distance.

10

The Chinese Postman problem

Consider graph G(V,E) in which each edge represents a street on

which mail must be delivered and each vertex represents an

intersection.

Problem: finding a cycle in G which traverses each edge at least

once in minimum total distance.

This problem was first discovered by a Chinese mathematician,

Kwan Mei-Ko, and is popularly known as the Chinese postman

problem (CPP).

11

7.2.1. The postman problem for
undirected graphs

Consider graph G(V,E).

Case 1. Graph G is even, i.e. all vertices have even degrees. A
postman route is an Euler circuit in graph G.

Case 2. Graph G is not even. It can be transformed to even by
repeating some edges.

Let f(i, j)≥0 denote the number of times that edge (i, j) is repeated
by the postman. Edge (i, j) is traversed f(i, j) + 1 times by the
postman.

Let w(i, j) be the weight of edge (i, j).

12

The postman problem for undirected
graphs

Construct a new graph G* = (V, E*) that contains f(i, j) + 1 copies

of each edge (i, j) in graph G. An Euler tour of graph G*

corresponds to a postman route in graph G.

The postman wishes to select values for the f(i, j) variables so that:

a) the degrees of all vertices in G* are even;

b)

13

The postman problem for undirected
graphs

 If vertex χ is an odd-degree vertex in graph G, an odd number
of edges incident to vertex χ must be repeated by the
postman, so that in graph G* vertex χ has even degree.

 If vertex χ is an even-degree vertex in graph G, an even
number of edges (zero is an even number) incident to vertex χ
must be repeated by the postman, so that in graph G* vertex χ
has even degree.

 Graph G contains an even number of vertices with odd
degree.

 Every path of repeated edges starts from an odd-degree
vertex and ends at another odd-degree vertex.

14

The postman problem for undirected
graphs

The postman must decide

 (a) which odd-degree vertices will be joined together by a path

of repeated edges and

 (b) the precise composition of each such path.

15

The postman problem for undirected
graphs

Theorem. A feasible solution to the postman problem is optimal if

and only if

 (i) no more than one duplicate edge is added to any original

edge and

 (ii) the length of the added edges in any cycle does not exceed

one-half the length of the cycle.
Lemma. If two feasible solutions satisfy (i) and (ii), then the

lengths of their added edges are equal.

Lemma. Optimal solutions always exist.

16

Algorithm

 Determine a shortest path between each pair of odd-degree

vertices in graph G (Floyd algorithm).

 Construct a complete graph G' = (V, Ε') whose vertex set

consists of all odd-degree vertices in G. Let the weight of each

edge equal a very large number minus the length of a shortest

path between the corresponding two vertices in graph G.

 Find a maximum-weight matching for graph G' using the

maximum-weight matching algorithm.

17

Algorithm

18

Algorithm

19

Algorithm

20

7.2.2. The postman problem for
directed graphs

Consider graph G(V,E).

Case 1. Graph G is symmetric, i.e. for all vertices d–(v)=d+(v). A
postman route is an Euler circuit in graph G.

Case 2. Graph G is not symmetric. It can be transformed to
symmetric by repeating some edges.

Let f(i, j)≥0 denote the number of times that edge (i, j) is repeated
by the postman. Edge (i, j) is traversed f(i, j) + 1 times by the
postman.

Let w(i, j) be the weight of edge (i, j).

21

The postman problem for directed
graphs

The postman wishes to select values for the f(i, j) variables so that:

22

The postman problem for directed
graphs

Rewrite the last condition:

• D(v)<0: sinks with demand –D(v);

• D(v)>0: sources with supply D(v);

• D(v)=0: transshipment vertices.

All edge capacities are infinite. The task is to find a minimum-cost

flow. It will produce optimal values for f(i, j).

23

Algorithm

• Calculate D(v) for all vertices and find sinks, sources and

transshipment vertices.

• Find any minimal-cost flow satisfying all the demands of sinks

and all the supplies of sources. It gives the optimal integer

values for the f(i, j) variables.

• Create a graph G* with f(i, j) + 1 copies of arc (i,j) for all (i,j).

Graph G* is symmetric. An Euler tour of graph G* corresponds

to an optimal postman route in graph G.

24

Algorithm

25

Algorithm

26

No postman route

27

7.2.3. The postman problem for mixed
graphs

Consider graph G(V,A,B), where A is the set of undirected edges,
B is the set of directed edges.

Case 1. Graph G is even and symmetric. A postman route is a
combination of Euler circuits in G(V,A) and G(V,B).

Case 2. Graph G is neither even no symmetric. The total
enumeration or heuristic methods.

Case 3. Graph G is even but not symmetric. It can be transformed
to symmetric digraph by directing and repeating some edges.

28

Algorithm

Select a direction for every edge from A and construct graph

GD(V,E).

Case 1. GD(V,E) is symmetric. A postman route in graph GD gives

an Euler circuit in graph G.

Case 2. GD(V,E) is not symmetric.

29

Algorithm

30

Algorithm

31

The postman problem for mixed
graphs

Construct graph G’(V,E’) as follows.

 (a) For each arc (i, j) B, place an edge (i,j) in B' with infinite
capacity and cost equal to the length of (i,j).

 (b) For each arc (i, j) A, create two directed arcs (i, j) and (j,
i) in A'. Let each of these edges have infinite capacity and cost
equal to the length of (i, j).

 (c) For each edge (i, j) A, create a directed edge (j, i), in A'
whose direction is the reverse of the direction assigned this
edge in GD. These edges are called artificial edges. Assign
each artificial edge a zero cost and a capacity equal to two.

32

Algorithm

33

The postman problem for mixed
graphs

Using the source supplies and sink demands defined above for

graph GD, find a minimum-cost flow in graph G' that satisfies

all sink demands.

If no such flow exists, then no postman route exists. Otherwise, let

f(i, j) denote the number of flow units sent through edge (i, j) in

G’ in the minimum-cost flow produced by the minimum-cost

flow algorithm.

34

The postman problem for mixed
graphs

Create a graph G* as follows:

 (a) For each nonartificial edge (i, j) in G' place f(i, j) + 1 copies
of edge (i, j) in graph G*.

 (b) If the flow in an artificial edge is two units, place one copy
of this edge in graph G*.

 (c) If the flow in an artificial edge is zero, reverse the direction
of this edge and place one copy of this edge in graph G*.
(Thus, if no units traverse an artificial edge, the tentative
direction assigned to this edge in GD is retained; if two flow
units traverse an artificial edge, the tentative direction
assigned to this arc in GD is reversed.)

35

Algorithm

36

The postman problem for mixed
graphs

Graph G* is an even, symmetric, directed graph. An Euler tour of

graph G* corresponds to an optimal postman route of the

original graph G.

37

8. Hamiltonian graph

 Hamiltonian cycles

 Traveling Salesman problem

38

Icosian game

Hamiltonian graphs are named after Sir William Hamilton, an Irish
Mathematician (1805−1865), who invented a puzzle, called the
Icosian game, which he sold for 25 guineas to a game
manufacturer in Dublin. The puzzle involved a dodecahedron on
which each of the 20 vertices was labelled by the name of some
capital city in the world. The aim of the game was to construct,
using the edges of the dodecahedron a closed walk of all the cities
which traversed each city exactly once, beginning and ending at
the same city.

39

8.1. Hamiltonian cycle

Hamiltonian cycle is any cycle in a graph which visits each its

vertex exactly once.

Hamiltonian graph is a graph which has a Hamiltonian cycle.

Example.

40

Theorems

 Dirac (1952)

A simple graph with n vertices (n ≥ 3) is Hamiltonian if every

vertex has degree n / 2 or greater.

 Ore (1960)

A graph with n vertices (n ≥ 3) is Hamiltonian if, for every pair

of non-adjacent vertices, the sum of their degrees is n or

greater.

http://en.wikipedia.org/wiki/Simple_graph

41

Theorems

 Ghouila-Houiri (1960)

A strongly connected simple directed graph with n vertices is

Hamiltonian if every vertex has a full degree greater than or

equal to n.

 Meyniel (1973)

A strongly connected simple directed graph with n vertices is

Hamiltonian if the sum of full degrees of every pair of

distinct non-adjacent vertices is greater than or equal

to 2n − 1.

42

Theorems

 Ghouila-Houiri (1960)

A strongly connected simple directed graph with n vertices is

Hamiltonian if every vertex has a full degree greater than or

equal to n.

 Meyniel (1973)

A strongly connected simple directed graph with n vertices is

Hamiltonian if the sum of full degrees of every pair of

distinct non-adjacent vertices is greater than or equal

to 2n − 1.

43

The enumeration method of Roberts
and Flores

The method starts by forming a k×n matrix M = [mij] where

element mij is the i-th vertex (xq say) for which an edge

(xj,xq) exists in the graph G(V,E). The vertices x in the set

Γ(xj) can be arbitrarily arranged to form the entries of the j-th

column of the M matrix. The number of rows k of the matrix

M is then the largest out-degree of a vertex.

44

The enumeration method of Roberts
and Flores

An initial vertex (say x1) is chosen as the starting vertex and

forms the first entry of the set S which will store the search

path at any one time. The first vertex, (say vertex a) in

column x1 is added to S. Then the first feasible vertex (say

vertex b) in column a is added to S, then the first feasible

vertex (say vertex c) in column b is added to S and so on,

where by "feasible" we mean a vertex which is not already

in S.

45

The enumeration method of Roberts
and Flores

Two possibilities now exist which will prevent any vertex being
entered into S = {x1,a,b,c,…,xr–1,xr} at some stage r:

A) No vertex in column xr is feasible,

B) The path represented by the sequence of vertices in S is of
cardinality n–1, i.e. it forms a Hamiltonian path.

In case B) either:

(i) edge (xr,xj) exists in G and a Hamiltonian circuit is therefore
found, or

(ii) edge (xr,xj) does not exist and no Hamiltonian circuit can be
obtained.

In cases A and B(ii) backtracking must occur, whereas in case
B(i) the search can either be stopped and the result printed.

46

The enumeration method of Roberts
and Flores

Backtracking involves the removal of the last-entered vertex xr

from S to produce the set S = {x1,a,b,c,…,xr–1} and the

addition into S of the first feasible vertex following vertex xr

in column xr–1 of the M matrix. If no such feasible vertex

exists a further backtracking step is taken and so on.

The end of the search occurs when the set S consists of the

vertex x1 only and no feasible vertex exists for adding into S

so that a backtracking step would leave S empty. The

Hamiltonian circuits found up to that time are then all the

Hamiltonian circuits that exist in the graph.

47

Algorithm

48

Algorithm

49

Algorithm

50

8.2. Traveling Salesman Problem

The travelling salesman

problem (TSP) asks the

following question:

Given a list of cities and the

distances between each pair

of cities, what is the shortest

possible route that visits

each city exactly once and

returns to the origin city?

51

Traveling Salesman Problem

52

Traveling Salesman Problem

Consider graph G(V,E) in which each

vertex represents a city and each

edge represents a road

connecting two cities, and d(x,y) is

the weight of the edge (x,y)

standing by the distance between

cities x and y.

Problem: finding a cycle in G which

visits each vertex once in

minimum total distance.

This problem is NP-hard.

53

8.2.1. Some heuristic methods

 Cycle construction heuristics

 Cycle improvement heuristics

54

Nearest neighbor method

This is essentially a greedy algorithm.

Begin with any vertex x and find the vertex у so that d(x,y) is

the smallest among all y.

Next, find the closest vertex to у that is not already in the tour,

say vertex z, and add edge (y, z) to the tour. Repeat this

process until the last vertex is added and then join the first

and last vertices by the unique edge between them.

55

Algorithm

Example.

The final cycle is

1–4–5–3–2–1.

56

Nearest insertion method

Select one vertex to start, say vertex i. Choose the nearest

vertex, say j, and form the subtour i – j – i.

At each iteration, find the vertex к not in the subtour that is

closest to any vertex in the subtour. Find the edge (i,j) in

the subtour which minimizes d(i,k) + d(k,j) – d(i,j). Insert

vertex к between i and j.

Repeat this process until a tour is constructed. Note that in the

iterative step, we try to add the least amount of distance to

the current subtour by removing edge (i,j) and adding

edges (i,k) and (k, j).

57

Algorithm

Example.

1–4–1

1–4–5–1

1–4–3–5–1

For the vertex 2

1–4–2–3–5–1

58

Christofides' Heuristic

1. Construct the minimum spanning tree of the graph.

2. Find the minimum-cost matching of the odd-degree vertices

in the spanning tree. Add the edges from the optimal

matching to the tree to create an Euler graph.

3. Find an Euler circuits in this graph.

4. Transform the Euler circuits into a Hamiltonian cycle

deleting repeated vertices.

59

Algorithm

60

Algorithm

The odd-degree vertices are 1, 2, 5, and 6. The matching

problem on these vertices follows. The optimal matching is

(1, 2) and (5, 6). Adding these edges to the minimal

spanning tree creates the Euler graph

61

Algorithm

An Euler tour in this graph is

1-2-1-4-5-6-3-1.

When vertex 1 is repeated, we

replace the path 2-1-4 by

the edge (2, 4) to create the

Hamiltonian cycle

1-2-4-5-6-3-1.

62

k-opt Heuristics

A k-change of a tour consists of deleting k edges and

replacing them by k other edges to form a new tour.

The heuristic procedure begins with any feasible tour. From

this tour, all possible k-changes are examined, if a tour is

found that has a lower cost than the current solution, it

becomes the new solution. The process is repeated until no

further k-change results in a better solution.

63

Algorithm

All 2-changes

(1-2-3-5-4-1 minimal)

64

8.2.2. Branch-and-bound method

 Low bound

 Branching

 Cutting branches

65

Low bound

Consider a graph G(V,E) with the matrix of weights W.

The minimum element of the row i gives us the minimum distance

from i to another vertex. It can be understood as the minimum

price we pay to leave the city i.

Example.

The minimum element

are written on the right.

66

Low bound

Then we subtract the minimum elements from the elements of the
corresponding rows.

The minimum element of the column j gives us the minimum
distance from another vertex to j. It can be understood as the
minimum price we pay to come to the city j.

Example.

The minimum element

are written underneath.

67

Low bound

Then we subtract the minimum elements from the elements of the
corresponding columns. This process is called reduction of the
matrix. The obtained matrix is called reduced matrix.

Example.

68

Low bound

The low bound of the TSP solution is the sum of the minimum
elements found during reducing of the weight matrix.

Example.

69

Branching

A problem M is divided into two subproblems:

1) we include the edge (i,j) to the tour; then we delete the row i
and the column j from the matrix M. The obtained matrix M’ is
reduced and the sum of the minimum elements of its rows and
columns is added to the low bound of the problem M, the
result is the low bound of the problem M’;

2) we don’t include the edge (i,j) to the tour; then we replace the
element (i,j) of the matrix M by infinity. The obtained matrix M’’
is reduced: the minimum elements of the row i and of the
column j are subtracted from the row and the column
respectively and added to the low bound of the problem M, the
result is the low bound of the problem M”.

70

Branching

How to choose the edge of the branching?

1) M(i,j)=0.

2) The edge (i,j) cannot close a cycle with other edges included in the
tour except of the last edge.

3) The index of the edge (i,j) is the sum of the minimum elements of
the row i and the column j except of M(i,j):

4) We choose the edge with the maximun index to obtain the maximum
value of the low bound of the subproblem M”. If the edge closes a
cycle with other edges included in the tour then we replace it by
infinity and reduce the matrix.

71

Branching

Example. Calculate the indexes of the elements of the matrix M.

The edge (b,e) has the maximun index.

72

Branching

Example. Include the edge (b,e). into the tour.

73

Branching

Example. Don’t include (b,e) into the tour.

74

Branching

Example. The decision tree.

75

Cutting branches

To cut brunches we need the upper bound of the TSP solution. For

example, it can be the distance of any tour. A branch is cut if

its lower bound is not less then the upper bound.

Example.

76

Cutting branches

Example. Subproblems B and C have the lower bounds les then

55 so we don’t cut the branches.

77

Cutting branches

If a new tour is obtained and its lower bound is less then the upper

bound then we change the upper bound.

Example.

