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7. Euler graph 

 Euler circuits 

 Chinese Postman problem 
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Seven Bridges of Königsberg 

 The problem was to find a 

walk through the city that 

would cross each bridge 

once and only once. 

 Its negative resolution by 

Leonhard Euler in 1735 laid 

the foundations of graph 

theory. 

 The first problem of graph 

theory is connected with 

GIS! 
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7.1. Euler circuits 

Euler circuits is any circuits in a graph which crosses each its 

edge exactly once. 

Euler graph is a graph which  has an Euler circuits. 

Example. The numbers near edges show the order of their 

crossing. 
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Euler circuits 

Theorem. An undirected graph is Euler if and only if all vertices 

have even degree.  

 

Theorem. A directed graph is Euler if and only if for all vertices the 

in-degree is equal to the out-degree. 
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Fleury (1883). 

Start. Choose any starting vertex v. 

Step 1. If there are no edges incident to vertex v then go to the 
end. 

Step 2. Choose the next edge (v,u) incident to vertex v which is 
not a bridge. If there are no such edges, choose the remaining 
edge (v,u) incident to vertex v .  

Step 3. Move to vertex u and delete the chosen edge. Denote v=u. 
Go to step 1.  

End. The sequence from which the edges were chosen forms an 
Euler circuit. 
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Hierholzer (1873) 

Step 1. Choose any starting vertex v, and follow a trail of edges 

from that vertex until returning to v. The tour formed in this way 

may not cover all the vertices and edges of the initial graph.  

Step 2. If there exists a vertex u that belongs to the current tour but 

that has adjacent edges not part of the tour, start another trail 

from u, following unused edges until returning to u, and join the 

tour formed in this way to the previous tour. Repeat step 2 while 

it is possible. 
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Edmonds and Johnson (1973).  

Step 1. Begin at any vertex s and construct a cycle C. This can be 
done by traversing any edge (s, x) incident to vertex s and 
marking this edge "used." Next traverse any unused edge 
incident to vertex x. Repeat this process of traversing unused 
edges until you return to vertex s.  

Step 2. If С contains all the edges of G, stop. If not, then the 
subgraph G’ in which all edges of С are removed must be Euler 
since each vertex of С must have an even number of incident 
edges. Since G’ is connected, there must be at least one vertex 
ν in common with C.  

Step 3. Starting at v, construct a cycle in G’ say C’.  

Step 4. Splice together the cycles С and C’, calling the combined 
cycle C. Return to step 2.  
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7.2. The Chinese Postman problem  

Before starting his or her route, a postal carrier must pick up the 

mail at the post office, then deliver the mail along each block on 

the route, and finally return to the post office. To make the job 

easier and more productive, every postal carrier would like to 

cover the route with as little walking as possible. Thus, the 

problem is to determine how to cover all the streets assigned 

and return to the starting point in the shortest total distance.  
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The Chinese Postman problem  

Consider graph G(V,E) in which each edge represents a street on 

which mail must be delivered and each vertex represents an 

intersection.  
 

Problem: finding a cycle in G which traverses each edge at least 

once in minimum total distance. 

  

This problem was first discovered by a Chinese mathematician, 

Kwan Mei-Ko, and is popularly known as the Chinese postman 

problem (CPP).   
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7.2.1. The postman problem for 
undirected graphs  

Consider graph G(V,E). 

 

Case 1. Graph G is even, i.e. all vertices have even degrees. A 
postman route is an Euler circuit in graph G. 

 

Case 2. Graph G is not even. It can be transformed to even by 
repeating some edges. 

Let f(i, j)≥0 denote the number of times that edge (i, j) is repeated 
by the postman. Edge (i, j) is traversed f(i, j) + 1 times by the 
postman.  

Let w(i, j) be the weight of edge (i, j). 
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The postman problem for undirected 
graphs  

Construct a new graph G* = (V, E*) that contains f(i, j) + 1 copies 

of each edge (i, j) in graph G. An Euler tour of graph G* 

corresponds to a postman route in graph G.  

 

The postman wishes to select values for the f(i, j) variables so that: 

a) the degrees of all vertices in G* are even; 

b) 
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The postman problem for undirected 
graphs  

 If vertex χ is an odd-degree vertex in graph G, an odd number 
of edges incident to vertex χ must be repeated by the 
postman, so that in graph G* vertex χ has even degree.  

 If vertex χ is an even-degree vertex in graph G, an even 
number of edges (zero is an even number) incident to vertex χ 
must be repeated by the postman, so that in graph G* vertex χ 
has even degree.  

 Graph G contains an even number of vertices with odd 
degree.  

 Every path of repeated edges starts from an odd-degree 
vertex and ends at another odd-degree vertex.  
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The postman problem for undirected 
graphs  

The postman must decide  

 (a) which odd-degree vertices will be joined together by a path 

of repeated edges and  

 (b) the precise composition of each such path.  
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The postman problem for undirected 
graphs  

Theorem. A feasible solution to the postman problem is optimal if 

and only if  

 (i) no more than one duplicate edge is added to any original 

edge and  

 (ii) the length of the added edges in any cycle does not exceed 

one-half the length of the cycle.  
Lemma. If two feasible solutions satisfy (i) and (ii), then the 

lengths of their added edges are equal.  

Lemma. Optimal solutions always exist.  
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Algorithm  

 
 Determine a shortest path between each pair of odd-degree 

vertices in graph G (Floyd algorithm). 

 Construct a complete graph G' = (V, Ε') whose vertex set 

consists of all odd-degree vertices in G. Let the weight of each 

edge equal a very large number minus the length of a shortest 

path between the corresponding two vertices in graph G.  

 Find a maximum-weight matching for graph G' using the 

maximum-weight matching algorithm.  
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Algorithm  
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Algorithm  
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Algorithm  
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7.2.2. The postman problem for 
directed graphs  

Consider graph G(V,E). 

 

Case 1. Graph G is symmetric, i.e. for all vertices d–(v)=d+(v). A 
postman route is an Euler circuit in graph G. 

 

Case 2. Graph G is not symmetric. It can be transformed to 
symmetric by repeating some edges. 

Let f(i, j)≥0 denote the number of times that edge (i, j) is repeated 
by the postman. Edge (i, j) is traversed f(i, j) + 1 times by the 
postman.  

Let w(i, j) be the weight of edge (i, j). 
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The postman problem for directed 
graphs  

 

The postman wishes to select values for the f(i, j) variables so that: 
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The postman problem for directed 
graphs  

Rewrite the last condition: 

 

 

 

• D(v)<0: sinks with demand –D(v); 

• D(v)>0: sources with supply D(v); 

• D(v)=0: transshipment vertices. 

All edge capacities are infinite. The task is to find a minimum-cost 

flow. It will produce optimal values for f(i, j).  
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Algorithm  

• Calculate D(v) for all vertices and find sinks, sources and 

transshipment vertices. 

• Find any minimal-cost flow satisfying all the demands of sinks 

and all the supplies of sources. It gives the optimal integer 

values for the f(i, j) variables.  

• Create a graph G* with f(i, j) + 1 copies of arc (i,j) for all (i,j). 

Graph G* is symmetric. An Euler tour of graph G* corresponds 

to an optimal postman route in graph G.  
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Algorithm  
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Algorithm  
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No postman route 
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7.2.3. The postman problem for mixed 
graphs  

Consider graph G(V,A,B), where A is the set of undirected edges, 
B is the set of directed edges. 

 

Case 1. Graph G is even and symmetric. A postman route is a 
combination of Euler circuits in G(V,A) and G(V,B). 

 

Case 2. Graph G is neither even no symmetric. The total 
enumeration or heuristic methods.  

 

Case 3. Graph G is even but not symmetric. It can be transformed 
to symmetric digraph by directing and repeating some edges. 
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Algorithm  

Select a direction for every edge from A and construct graph 

GD(V,E). 

Case 1. GD(V,E) is symmetric. A postman route in graph GD gives 

an Euler circuit in graph G. 

Case 2. GD(V,E) is not symmetric. 
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Algorithm  
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Algorithm  
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The postman problem for mixed 
graphs  

Construct graph G’(V,E’) as follows. 

 (a) For each arc (i, j)  B, place an edge (i,j) in B' with infinite 
capacity and cost equal to the length of (i,j).  

 (b) For each arc (i, j)  A, create two directed arcs (i, j) and (j, 
i) in A'. Let each of these edges have infinite capacity and cost 
equal to the length of (i, j).  

 (c) For each edge (i, j)  A, create a directed edge (j, i), in A' 
whose direction is the reverse of the direction assigned this 
edge in GD. These edges are called artificial edges. Assign 
each artificial edge a zero cost and a capacity equal to two.  
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Algorithm  
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The postman problem for mixed 
graphs  

Using the source supplies and sink demands defined above for 

graph GD,  find a minimum-cost flow in graph G' that satisfies 

all sink demands.  

If no such flow exists, then no postman route exists. Otherwise, let 

f(i, j) denote the number of flow units sent through edge (i, j) in 

G’ in the minimum-cost flow produced by the minimum-cost 

flow algorithm.  
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The postman problem for mixed 
graphs  

Create a graph G* as follows:  

 (a) For each nonartificial edge (i, j) in G' place f(i, j) + 1 copies 
of edge (i, j) in graph G*.  

 (b) If the flow in an artificial edge is two units, place one copy 
of this edge in graph G*.  

 (c) If the flow in an artificial edge is zero, reverse the direction 
of this edge and place one copy of this edge in graph G*. 
(Thus, if no units traverse an artificial edge, the tentative 
direction assigned to this edge in GD is retained; if two flow 
units traverse an artificial edge, the tentative direction 
assigned to this arc in GD is reversed.)  



35 

Algorithm  
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The postman problem for mixed 
graphs  

Graph G* is an even, symmetric, directed graph. An Euler tour of 

graph G* corresponds to an optimal postman route of the 

original graph G.  
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8. Hamiltonian graph 

 Hamiltonian cycles 

 Traveling Salesman problem 
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Icosian game 

Hamiltonian graphs are named after Sir William Hamilton, an Irish 
Mathematician (1805−1865), who invented a puzzle, called the 
Icosian game, which he sold for 25 guineas to a game 
manufacturer in Dublin. The puzzle involved a dodecahedron on 
which each of the 20 vertices was labelled by the name of some 
capital city in the world. The aim of the game was to construct, 
using the edges of the dodecahedron a closed walk of all the cities 
which traversed each city exactly once, beginning and ending at 
the same city.  
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8.1. Hamiltonian cycle 

Hamiltonian cycle is any cycle in a graph which visits each its 

vertex exactly once. 

Hamiltonian graph is a graph which  has a Hamiltonian cycle. 

Example.  
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Theorems 

 Dirac (1952) 

A simple graph with n vertices (n ≥ 3) is Hamiltonian if every 

vertex has degree n / 2 or greater. 

 Ore (1960) 

A graph with n vertices (n ≥ 3) is Hamiltonian if, for every pair 

of non-adjacent vertices, the sum of their degrees is n or 

greater. 

 

 

  

http://en.wikipedia.org/wiki/Simple_graph
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Theorems 

 Ghouila-Houiri (1960) 

A strongly connected simple directed graph with n vertices is 

Hamiltonian if every vertex has a full degree greater than or 

equal to n. 

 Meyniel (1973) 

A strongly connected simple directed graph with n vertices is 

Hamiltonian if the sum of full degrees of every pair of 

distinct non-adjacent vertices is greater than or equal 

to 2n − 1. 
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Theorems 

 Ghouila-Houiri (1960) 

A strongly connected simple directed graph with n vertices is 

Hamiltonian if every vertex has a full degree greater than or 

equal to n. 

 Meyniel (1973) 

A strongly connected simple directed graph with n vertices is 

Hamiltonian if the sum of full degrees of every pair of 

distinct non-adjacent vertices is greater than or equal 

to 2n − 1. 
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The enumeration method of Roberts 
and Flores  

The method starts by forming a k×n matrix M = [mij] where 

element mij is the i-th vertex (xq say) for which an edge 

(xj,xq) exists in the graph G(V,E). The vertices x in the set 

Γ(xj) can be arbitrarily arranged to form the entries of the j-th 

column of the M matrix. The number of rows k of the matrix 

M is then the largest out-degree of a vertex.   
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The enumeration method of Roberts 
and Flores  

An initial vertex (say x1) is chosen as the starting vertex and 

forms the first entry of the set S which will store the search 

path at any one time. The first vertex, (say vertex a) in 

column x1 is added to S. Then the first feasible vertex (say 

vertex b) in column a is added to S, then the first feasible 

vertex (say vertex c) in column b is added to S and so on, 

where by "feasible" we mean a vertex which is not already 

in S. 
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The enumeration method of Roberts 
and Flores  

Two possibilities now exist which will prevent any vertex being 
entered into S = {x1,a,b,c,…,xr–1,xr} at some stage r: 

A) No vertex in column xr is feasible,  

B) The path represented by the sequence of vertices in S is of 
cardinality n–1, i.e. it forms a Hamiltonian path.  

In case B) either:  

(i) edge (xr,xj) exists in G and a Hamiltonian circuit is therefore 
found, or 

(ii) edge (xr,xj) does not exist and no Hamiltonian circuit can be 
obtained.  

In cases A and B(ii) backtracking must occur, whereas in case 
B(i) the search can either be stopped and the result printed.  
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The enumeration method of Roberts 
and Flores  

Backtracking involves the removal of the last-entered vertex xr 

from S to produce the set S = {x1,a,b,c,…,xr–1} and the 

addition into S of the first feasible vertex following vertex xr 

in column xr–1 of the M matrix. If no such feasible vertex 

exists a further backtracking step is taken and so on.  

The end of the search occurs when the set S consists of the 

vertex x1 only and no feasible vertex exists for adding into S 

so that a backtracking step would leave S empty. The 

Hamiltonian circuits found up to that time are then all the 

Hamiltonian circuits that exist in the graph.  
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Algorithm  
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Algorithm  
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Algorithm  
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8.2. Traveling Salesman Problem 

 

  

The travelling salesman 

problem (TSP) asks the 

following question:  

 

Given a list of cities and the 

distances between each pair 

of cities, what is the shortest 

possible route that visits 

each city exactly once and 

returns to the origin city?  
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Traveling Salesman Problem 
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Traveling Salesman Problem 

Consider graph G(V,E) in which each 

vertex represents a city and each 

edge represents a road 

connecting two cities, and d(x,y) is 

the weight of the edge (x,y) 

standing by the distance between 

cities x and y.  

Problem: finding a cycle in G which 

visits each vertex once in 

minimum total distance. 

This problem is NP-hard. 
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8.2.1. Some heuristic methods 

 Cycle construction heuristics 

 Cycle improvement heuristics 
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Nearest neighbor method  

This is essentially a greedy algorithm.  

 

Begin with any vertex x and find the vertex у so that d(x,y) is 

the smallest among all y.  

Next, find the closest vertex to у that is not already in the tour, 

say vertex z, and add edge (y, z) to the tour. Repeat this 

process until the last vertex is added and then join the first 

and last vertices by the unique edge between them.  
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Algorithm  

Example.  

The final cycle is  

1–4–5–3–2–1.  
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Nearest insertion method  

Select one vertex to start, say vertex i. Choose the nearest 

vertex, say j, and form the subtour i – j – i.  

At each iteration, find the vertex к not in the subtour that is 

closest to any vertex in the subtour. Find the edge (i,j) in 

the subtour which minimizes d(i,k) + d(k,j) – d(i,j). Insert 

vertex к between i and j.  

Repeat this process until a tour is constructed. Note that in the 

iterative step, we try to add the least amount of distance to 

the current subtour by removing edge (i,j) and adding 

edges (i,k) and (k, j).  
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Algorithm  

Example.  

1–4–1 

1–4–5–1 

1–4–3–5–1 

For the vertex 2 

 

 

 

 

 

1–4–2–3–5–1 
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Christofides' Heuristic  

1. Construct the minimum spanning tree of the graph.  

2. Find the minimum-cost matching of the odd-degree vertices 

in the spanning tree. Add the edges from the optimal 

matching to the tree to create an Euler graph.  

3. Find an Euler circuits in this graph.  

4. Transform the Euler circuits into a Hamiltonian cycle 

deleting repeated vertices. 
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Algorithm  
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Algorithm  

The odd-degree vertices are 1, 2, 5, and 6. The matching 

problem on these vertices follows. The optimal matching is 

(1, 2) and (5, 6). Adding these edges to the minimal 

spanning tree creates the Euler graph  
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Algorithm  

An Euler tour in this graph is  

1-2-1-4-5-6-3-1.  

When vertex 1 is repeated, we 

replace the path 2-1-4 by 

the edge (2, 4) to create the 

Hamiltonian cycle  

1-2-4-5-6-3-1.  
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k-opt Heuristics  

A k-change of a tour consists of deleting k edges and 

replacing them by k other edges to form a new tour.  

The heuristic procedure begins with any feasible tour. From 

this tour, all possible k-changes are examined, if a tour is 

found that has a lower cost than the current solution, it 

becomes the new solution. The process is repeated until no 

further k-change results in a better solution.  
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Algorithm  

All 2-changes 

(1-2-3-5-4-1 minimal) 
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8.2.2. Branch-and-bound method 

 Low bound 

 Branching 

 Cutting branches 



65 

Low bound 

Consider a graph G(V,E) with the matrix of weights W.  

The minimum element of the row i gives us the minimum  distance 

from i to another vertex. It can be understood as the minimum 

price we pay to leave the city i. 

Example. 

The minimum element  

are written on the right. 
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Low bound 

Then we subtract the minimum elements from the elements of the 
corresponding rows.  

The minimum element of the column j gives us the minimum  
distance from another vertex to j. It can be understood as the 
minimum price we pay to come to the city j. 

Example. 

The minimum element  

are written underneath.  
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Low bound 

Then we subtract the minimum elements from the elements of the 
corresponding columns. This process is called reduction of the 
matrix. The obtained matrix is called reduced matrix. 

Example. 
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Low bound 

The low bound of the TSP solution is the sum of the minimum 
elements found during reducing of the weight matrix. 

Example. 
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Branching 

A problem M is divided into two subproblems: 

1) we include the edge (i,j) to the tour; then we delete the row i 
and the column j from the matrix M. The obtained matrix M’ is 
reduced and the sum of the minimum elements of its rows and 
columns is added to the low bound of the problem M, the 
result is the low bound of the problem M’; 

2) we don’t include the edge (i,j) to the tour; then we replace the 
element (i,j) of the matrix M by infinity. The obtained matrix M’’ 
is reduced: the minimum elements of the row i and of the 
column j are subtracted from the row and the column 
respectively and added to the low bound of the problem M, the 
result is the low bound of the problem M”. 
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Branching 

How to choose the edge of the branching? 

1) M(i,j)=0. 

2) The edge (i,j) cannot close a cycle with other edges included in the 
tour except of the last edge.  

3) The index of the edge (i,j) is the sum of the minimum elements of 
the row i and the column j except of M(i,j): 

 

 

 

4) We choose the edge with the maximun index to obtain the maximum 
value of the low bound of the subproblem M”. If the edge closes a 
cycle with other edges included in the tour then we replace it by 
infinity and reduce the matrix. 
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Branching 

Example. Calculate the indexes of the elements of the matrix M. 

The edge (b,e) has the maximun index. 
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Branching 

Example. Include the edge (b,e). into the tour. 
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Branching 

Example. Don’t include (b,e) into the tour. 

 



74 

Branching 

Example. The decision tree. 
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Cutting branches 

To cut brunches we need the upper bound of the TSP solution. For 

example, it can be the distance of any tour. A branch is cut if 

its lower bound is not less then the upper bound. 

Example.  
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Cutting branches 

Example. Subproblems B and C have the lower bounds les then 

55 so we don’t cut the branches. 
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Cutting branches 

If a new tour is obtained and its lower bound is less then the upper 

bound then we change the upper bound. 

Example. 

 


