
1

Graph theory: trees

Yulia Burkatovskaya

Department of Information

Technologies

Associate professor

2

5. Trees

 Trees

 Minimum spanning tree

 Fundamental circuits and fundamental cuts

 Rooted trees

 Maximum branching

 Search trees

3

5.1. Trees

 A connected acyclic graph is called a tree.
In other words, a connected graph with no
cycles is called a tree.

 An acyclic graph is called a forest.

4

Application of trees

 Chemistry (saturated hydrocarbons)

 Compilers (parsing)

 if E1 then if E2 then E3 else E4

5

Application of trees

 Physics (electrical circuits)

 Programming (search trees)

6

Six different characterizations of a
tree

 (1) T is a tree.

 (2) Any two vertices of T are connected by exactly one path.

 (3) T is connected, and every edge is a cut-edge.

 (4) T is connected and has n − 1 edges.

 (5) T contains no cycles and has n − 1 edges.

 (6) T contains no cycles, and for any new edge e, the graph
T+e has exactly one cycle.

7

Six different characterizations of a
tree

(1)→(2)

 (1) T is a tree.

 (2) Any two vertices of T are connected by exactly one path.

 T is connected → any two vertices of T are connected.

 If there are two paths <x,y> then there is a cycle.

8

Six different characterizations of a
tree

(2)→(3)

 (2) Any two vertices of T are connected by exactly one path.

 (3) T is connected, and every edge is a cut-edge.

 Any two vertices of T are connected → T is connected.

 If e=(x,y) is not a cut-edge then G\(x,y) is connected; hence,
there is a path <x,y> which does not include e. So, there are
two different paths <x,y> in G.

9

Six different characterizations of a
tree

(3)→(4)

 (3) T is connected, and every edge is a cut-edge.

 (4) T is connected and has m=n − 1 edges.

Mathematical induction method.

 Base: for n=1 one has m=0.

 Inductive step: Let for graphs with 1,…,n − 1 vertices the statement
is true. Consider graph T with n vertices. Delete any edge e from T.
As e is a cut-edge, T\e=T1UT2. They are connected, every edge is a
cut-edge and the numbers of vertices is less than n; so, m1=n1 − 1
and m2=n2 − 1. The number of edges in T is the sum of the numbers
of edges in T1 and T2 plus the deleted edge; consequently

m = m1+m2 −1 = n1 −1+n2 −1+1 = n − 1.

10

Six different characterizations of a
tree

(4)→(5)

 (4) T is connected and has n − 1 edges.

 (5) T contains no cycles and has n − 1 edges.

 Let T contain a cycle with s vertices and edges; then, to join
other n −s vertices to the cycle one needs at least n −s
edges. So, the total number of edges is

m ≥ s+n −s = n > n −1.

11

Six different characterizations of a
tree

(5)→(6)

 (5) T contains no cycles and has n − 1 edges.

 (6) T contains no cycles, and for any new edge e, the graph
T+e has exactly one cycle.

 As T is acyclic than it is a forest with k trees. For a tree,

m=n − 1.

The total number of edges in T is

m1+…+mk = n1 − 1+…+nk − 1= n − k.

Hence; k=1 and T is a tree. Every two vertices of a tree are joined by
the only path; so, adding a new edge produces exactly one cycle.

12

Six different characterizations of a
tree

(6)→(1)

 (6) T contains no cycles, and for any new edge e, the graph
T+e has exactly one cycle.

 (1) T is a tree.

 If after adding any new edge a cycle appears then any two
vertices are joined by a path; so, T is connected. This
together with absence of cycles gives a tree.

13

5.2. Minimum spanning tree

 How to join all houses and to
minimize the length of the
communications?

 In a weighted graph, the
minimum spanning tree is
the set of edges with the
minimum total weight such
that they connect all of the
nodes.

 Applications of MST
problem:
https://www.geeksforgeeks.or
g/?p=11110 .

http://computationaltales.blogspot.ru/20
11/08/minimum-spanning-trees-prims-
algorithm.html

https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
https://www.geeksforgeeks.org/?p=11110
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html
http://computationaltales.blogspot.ru/2011/08/minimum-spanning-trees-prims-algorithm.html

14

Greedy algorithms

 A greedy algorithm is an algorithmic
paradigm that follows the problem
solving heuristic of making the locally
optimal choice at each stage with the
hope of finding a global optimum.

 In many problems, a greedy strategy
does not in general produce an
optimal solution.

 But for the minimum spanning tree
problem, greedy algorithms produce a
global optimum.

15

Kruskal’s algorithm

 Sort all the edges from low weight to high

 Take the edge with the lowest weight and add it to the

spanning tree. If adding the edge created a cycle, then

reject this edge.

 Keep adding edges until we have p−1 edges.

 https://www.programiz.com/dsa/kruskal-algorithm

 https://youtu.be/71UQH7Pr9kU

https://www.programiz.com/dsa/kruskal-algorithm
https://www.programiz.com/dsa/kruskal-algorithm
https://www.programiz.com/dsa/kruskal-algorithm
https://www.programiz.com/dsa/kruskal-algorithm
https://www.programiz.com/dsa/kruskal-algorithm
https://www.programiz.com/dsa/kruskal-algorithm
https://www.programiz.com/dsa/kruskal-algorithm
https://www.programiz.com/dsa/kruskal-algorithm
https://www.programiz.com/dsa/kruskal-algorithm
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU
https://youtu.be/71UQH7Pr9kU

16

Kruskal’s algorithm

Example.

 http://nadide.github.io/assets/img/algo-image/MST/kruskal.png

http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png
http://nadide.github.io/assets/img/algo-image/MST/kruskal.png

17

Prim’s algorithm

 Initialize the minimum spanning tree with a vertex chosen

at random.

 Find all the edges that connect the tree to new vertices,

find the minimum and add it to the tree

 Keep adding edges until we have p−1 edges.

 https://www.programiz.com/dsa/prim-algorithm

 https://youtu.be/cplfcGZmX7I

https://www.programiz.com/dsa/prim-algorithm
https://www.programiz.com/dsa/prim-algorithm
https://www.programiz.com/dsa/prim-algorithm
https://www.programiz.com/dsa/prim-algorithm
https://www.programiz.com/dsa/prim-algorithm
https://www.programiz.com/dsa/prim-algorithm
https://www.programiz.com/dsa/prim-algorithm
https://www.programiz.com/dsa/prim-algorithm
https://www.programiz.com/dsa/prim-algorithm
https://youtu.be/cplfcGZmX7I
https://youtu.be/cplfcGZmX7I
https://youtu.be/cplfcGZmX7I
https://youtu.be/cplfcGZmX7I
https://youtu.be/cplfcGZmX7I
https://youtu.be/cplfcGZmX7I
https://youtu.be/cplfcGZmX7I

18

Prim’s algorithm

Example.

 https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&

stc=1&d=1148396387

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387
https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387
https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

19

5.3. Fundamental circuits and
fundamental cut sets

Let G(V,E) be a multigraph with n vertices, m edges and k

connected components.

 Cocyclomatic number of the graph G(V,E) is ρ(G)=n−k.

It is the total number of edges in spanning trees of all

connected components of the graph.

 Cyclomatic number of the graph G(V,E) is ν(G)=m−n+k.

It indicates ho many edges need to be removed in order to the
graph became a forest with k connected components.

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

20

Cyclomatic and cocyclomatic
numbers

Example. ρ(G) = n−k = 9−3 = 6;

 ν(G) = m−n+k = 8−9+3 = 2.

21

Cyclomatic and cocyclomatic
numbers

In the theory of electrical circuits, the

numbers have a definite physical

meaning.

 The cyclomatic number is equal to

the largest number of independent

circuits in the electric circuit graph,

i.e. the largest number of

independent circular currents that

can flow in the circuit.

 The cocyclomatic number is equal

to the number of independent

potential differences between the

nodes of the circuit.

22

Fundamental circuits

Any circuit or cycle can be represented by the set of its edges.

 Modulo 2 addition (XOR):

 Conjunction (AND):

 Linear combination:

23

Fundamental circuits

Example.

24

Fundamental circuits

A set of circuits is independent if any circuit is not a linear

combination of others; otherwise, the set is dependent.

Example. Set {μ1, μ2, μ3, μ4} is dependent as μ4 =μ2 +μ3; set {μ1,

μ2, μ4} is independent

25

Fundamental circuits

An independent set of circuits is a system of fundamental

circuits if it contains the greatest possible number of circuits;

the circuits of this set are fundamental.

Example. Set {μ1, μ2, μ3, μ4} is independent; any circuits is a

linear combination of the circuits from the set.

26

Fundamental circuits theorem

Theorem. For a simple connected graph, the number of

fundamental circuits is equal to ν(G)=m−n+1.

Example. Here n=7, m=10; there are 4=10−7+1 independent

circuits.

27

Fundamental cycles construction

Algorithm

 Start. There is graph G(V,E).

 Step 1. Construct any spanning tree T(V,E’). Set j=0.

 Step 2. If j= m−n+1 then go to End; else set j=j+1.

 Step 3. Choose the next edge ej=(vj,uj) not included into the

spanning tree.

 Step 4. Find the path < vj,uj > in the spanning tree; together

with the edge (vj,uj), it gives cycle Zj. Go to Step 2.

 End. {Zj} is a system of fundamental cycles.

28

Fundamental cycles construction

Example.

29

Matrix of fundamental circuits

 Rows correspond to fundamental circuits, columns

correspond to edges; an element is equal to 1 iff the edge

belongs to the circuit.

Example.

30

Matrix of fundamental circuits

 Module 2 product of matrices A:n×k and B:k×m is matrix

C:n×m calculated as follows

 Theorem. If I(G) is the incidence matrix of graph G(V,E),

Φ(G) is its matrix of fundamental circuits, then

31

Fundamental cuts

Consider graph G(V,E) and two subsets

Cut (cocycle) P(V1,V2) is the set of edges joining vertices from

V1 with vertices from V2, i.e.

A cut is proper if after removal of any its subset the graph is

connected.

Example. Non-proper cut P is union of proper cuts P1 and P2.

32

Fundamental cuts

Lemma. Any non-proper cut is a union of disjoint proper cuts.

A set of cuts is independent if any cut is not a linear

combination of others; otherwise, the set is dependent.

Example. Set {ψ1, ψ 2, ψ 3, ψ 4} is dependent as ψ3 = ψ1 + ψ 2;

set {ψ1, ψ2, ψ4} is independent

33

Fundamental cuts

An independent set of cuts is a system of fundamental cuts if

it contains the greatest possible number of cuts; the cuts of this

set are fundamental.

Example. Set is independent; any cut is a linear combination of

the cuts from the set.

34

Fundamental cuts theorem

Theorem. For a simple connected graph, the number of

fundamental cuts is equal to ρ(G)=n − 1.

Example. Here n=7; there are 6=7−1 independent cuts.

35

Fundamental cuts construction

Algorithm

 Start. There is graph G(V,E).

 Step 1. Construct any spanning tree T(V,E’). Set j=0.

 Step 2. If j= n−1 then go to End; else set j=j+1.

 Step 3. Choose the next edge ej=(wj,uj) included into the

spanning tree. Remove it from the tree and obtain a forest

from two trees with the sets of vertices Wj and Uj.

 Step 4. Find the cut Yj=P(Wj ,Uj). Go to Step 2.

 End. {Yj} is a system of fundamental cuts.

36

Fundamental cuts construction

Example.

37

Matrix of fundamental cuts

 Rows correspond to fundamental cuts, columns correspond

to edges; an element is equal to 1 iff the edge belongs to the

cut.

Example.

38

Matrix of fundamental cuts

 Theorem. If Ψ(G) is the matrix of fundamental cuts of graph

G(V,E), Φ(G) is its matrix of fundamental circuits, then

 Kirchhoff's voltage law: The algebraic sum of the products

of the resistances of the conductors and the currents in them

in a closed loop is equal to the total emf available in that

loop.

39

5.4. Rooted trees

Rooted tree is a digraph with the following properties:

 there is a single node v with in-degree equal to 0 (it is

called root);

 the in-degrees of all other nodes are equal to 1;

 each node is reachable from the root.

Example. All rooted trees with four vertices.

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

40

Properties of rooted trees

Underlying graph of a digraph D(V,E) is the graph obtained

after cancelling of edge directions in E.

41

Properties of rooted trees

Theorem. Any directed tree has the following properties:

 m=n−1;

 the underlying graph of a rooted tree is a tree;

 any rooted tree does not have circuits;

 for every vertex v, there is the only path from the root to v;

 a subgraph induced by vertices reachable from vertex v is

a rooted tree with the root v (it is called subtree of v);

 any undirected tree can be transformed into a rooted tree,

and any vertex can be the root.

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

42

Properties of rooted trees

Proof.

 m=Σd–(v)=n−1;

 the underlying graph is connected and m=n−1; so, it is a

tree;

 any rooted tree does not have circuits because elsewhere

the underlying graph has a circuit; so, is not a tree;

 for vertex v, if there are two paths from the root to v then

the underlying graph has a circuit;

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

43

Properties of rooted trees

Proof.

 a subgraph induced by vertices reachable from vertex v is

a rooted tree with the root v:

 d–(v)=0; elsewhere, there is a circuit;

 every vertex w is reachable from v; so, d–(w)=1;

 any undirected tree can be transformed into a rooted tree,

and any vertex can be the root.

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

44

Terminology

 In a rooted tree, the depth or level of a vertex v is its

distance from the root, i.e., the length of the unique path

from the root to v. Thus, the root has depth 0.

 The height of a rooted tree is the length of a longest path

from the root (or the greatest depth in the tree).

 If vertex v immediately precedes vertex w on the path from

the root to w, then v is parent of w and w is child of v.

 Vertices having the same parent are called siblings.

45

Terminology

 A vertex w is called a descendant of a vertex v (and v is

called an ancestor of w), if v is on the unique path from the

root to w. If, in addition, w≠v, then w is a proper

descendant of v (and v is a proper ancestor of w).

 A leaf in a rooted tree is any vertex having no children.

 An internal vertex in a rooted tree is any vertex that has at

least one child. The root is internal, unless the tree is trivial

(i.e., a single vertex).

46

Terminology

47

Ordered trees

Ordered tree is a rooted tree with the fixed order of subtrees.

Example. These trees are isomorphic as rooted trees but they

are not isomorphic as ordered trees.

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

48

Binary trees

Binary tree is an ordered tree where every vertex is a parent

of exactly two siblings: left and right (can be empty).

Example. These trees are isomorphic as rooted trees and as

ordered trees but they are not isomorphic as binary trees.

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

49

Tree traversal

 The preorder traversal (root-left-right): visit the root;

then, visit all subtrees from left to right.

 The inorder traversal (left-root-right): visit the leftmost

subtree; then, visit the root; after that, visit all other

subtrees from left to right.

 The postorder traversal (left-right-root): visit all subtrees

from left to right; then, visit the root.

50

Tree traversal

Example.

 The preorder traversal: abefcdghi.

 The inorder traversal: ebfacdhgi.

 The postorder traversal: efbchigda.

51

Tree traversal

Application: arithmetic expressions (in

compilers).

Example. (a+b)*c−(a+d)2/4

 The preorder traversal:

 − * + a b c / ↑ + a d 2 4 gives the prefix

form or Polish notation.

 The inorder traversal:

((a+b)*c)−(((a+d)2)/4) gives the infix

form.

 The postorder traversal:

 a b + c * a d + 2 ↑ 4 / − gives the postfix

form or reverse Polish notation.

52

5.5. Maximum branching

 Branching in a digraph is its subgraph where connected

components are rooted trees.

 Spanning branching is a branching containing all vertices

of the graph.

 Maximum branching in a weighted digraph is a

branching of the maximum total weight of edges.

Example. Spanning branching {ab, cd}.

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

53

Edmonds algorithm (1958)

 Start. Graph G0=G(V,E); buckets V0, V1,... and A0, A1,…

are empty. Set i=0.

 Step 1. If all vertices of Gi, are in bucket Vi, go to step 3.

Otherwise, select any vertex ν in Gi, that is not in bucket Vi.

Place vertex ν into bucket Vi. Select an arc у with the

greatest positive weight that is directed into v. If no such

arc exists, repeat step 1; otherwise, place arc  into bucket

Ai. If the arcs in Ai still form a branching repeat step 1;

otherwise (if there is a cycle), go to step 2.

54

Edmonds algorithm

Example. Step 1. Cycle ecde. Go to Step 2.

55

Edmonds algorithm

 Step 2. Arc  forms a cycle with some of the arcs in Ai.

Call this cycle Ci.

 Shrink all the arcs and vertices in Ci, into a single vertex

called vi. Call this new graph Gi+1. Thus, any arc in Gi, that

was incident to exactly one vertex in Ci, will be incident to

vertex vi, in graph Gi+1.

 Add all vertices from Vi\Ci to Vi+1. Add all arcs from Ai\Ci to

Ai+1.

56

Edmonds algorithm

 Let the weight of each arc in Gi+1 be the same as its weight in Gi

except for the arcs in that are directed into vi. For each arc (x, y)

in Gi that transforms into an arc (x, vi) in Gi+1, let

W (x,vi) = W (x,y)  W (t,y) + W (s,r) .

where (s,r) is the minimum weight arc in cycle Ci, and where (t,y) is

the unique arc in cycle, whose tail is vertex y. Remove arcs with

non-positive weights.

 Increase i by one, and return to step 1.

57

Edmonds algorithm

58

Edmonds algorithm

Example. Step 2. Shrink cycle

ecde and obtain pseudovertex

v0. Update the weights of the

arcs going into the cycle.

Remove arcs with negative

weights. Go to Step 1.

59

Edmonds algorithm

Example. Step 1. Sycle fghf.

Go to Step 2.

60

Edmonds algorithm

Example. Step 2. Shrink cycle

fghf and obtain pseudovertex

v1. Update the weights of the

arcs going into the cycle.

Remove arcs with negative and

zero weights. Go to Step 1.

61

Edmonds algorithm

 Step 3. This step is reached only when all vertices of Gi

are in Vi, and the arcs in Ai, form a branching for Gi. If i = 0,

stop because the arcs in A0 form a maximum branching for

G0. Otherwise, two cases are possible:

 (a) Vertex vi is the root of some tree in branching Ai, go to

step 4.

 (b) Vertex vi is not the root of some tree in branching Ai, go

to step 5.

62

Edmonds algorithm

 Step 4. Restore cycle Ci and remove arc (s,r) with the

minimum weight from Ci. Decrease i by 1 and go to step 3.

 Step 5. Restore cycle Ci. There is vertex y having two arcs

going into y; remove arc (t,y) from Ci. Decrease i by 1 and

go to step 3.

63

Edmonds algorithm

Example.

Step 1. All vertices are in the

bucket, go to Step 3.

Step 3. As i=2 and v1 is a root,

go to Step 4.

64

Edmonds algorithm

Example.

Step 4. Remove the arc of the minimum

weight from fghf; it is (f,g). The others

arcs from fghf together with E2 give E1.
Set i=1 and go to Step 3.

Step 3. As i=1 and v0 is not a root, go to

Step 5.

65

Edmonds algorithm

Example.

Step 5. In E1, there is arc (b,v0) corresponding

to arc (b,d). Remove arc (c,d) from cycle cdec.

The others arcs from cdec together with E1
give E0. Set i=0 and go to Step 3.

Step 3. As i=0, the maximum branching is

constructed. Go to End.

66

Related problems

 Minimum branching

 Maximum spanning tree

 Minimum spanning tree

 Maximum / minimum forest / spanning tree with the

root in a specific vertex.

67

5.6. Search trees

 Binary search tree (BST) (also sorted binary tree) is a

binary tree whose nodes each store a key. The tree

additionally satisfies the binary search property: the key

in each node must be greater than any key stored in the

left subtree, and less than any key stored in the right

subtree

Example.

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

68

BST operations

 Find a key

 Add a key

 Delete a key

https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387
https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387
https://www.thestudentroom.co.uk/attachment.php?attachmentid=23572&stc=1&d=1148396387

69

Find a key

T is a tree, k is a key to find

TreeSearch(T,k)

 x ← root(T)

 if x = NULL or k = key(x) then return x

 if k < key(x) then return TreeSearch(left(T),k)

 else return TreeSearch(right(T),k)

70

Insert a key

T is a tree, k is a key to insert

TreeInsert(T,k)

 x ← root(T)

 if x = NULL then
– x ← k

– return x

 if k = key(x) then return x

 if k < key(x) then return TreeInsert(left(T),k)

 else return TreeSearch(right(T),k)

71

Insert a key

Example. Add 4, 2, 8, 9, 6, 1, 5, 3, 7.

72

Insert a key

Example. Add 4, 2, 8, 9, 6, 1, 5, 3, 7.

73

Delete a key

Case 1. The right subtree of the deleting node a is empty.

The left subtree of node a is connected to the parent of node

a, instead of node a.

Example. Delete 7.

74

Delete a key

Case 2. The right subtree of the deleting node a is not empty.

The right child of a is c; the left subtree of c is empty.

The left subtree of node a becomes the left subtree of node

c. Then, node c is connected to the parent of node a instead

of node a.

75

Delete a key

Example. Delete 2.

76

Delete a key

Case 3. The right subtree of the deleting node a is not empty.

The right child of node a is node c; the left subtree of node c is

not empty.

Find the leftmost node f in the right subtree of node a. Put

node f instead of node a. Connect the right subtree of node f

to the previous parent of node f instead of node f.

77

Delete a key

Example. Delete 4.

And three symmetric cases.

78

Computational complexity

h(n) − the height of a tree with n nodes.

Challenge: to decrease the height of a tree (h(n)=O(log(n))).

Find Insert Delete

Unordered array n 1 n

Ordered array log(n) n n

Linked list n 1 1

Tree h(n) 1 h(n)

79

Balanced trees

BST is a balanced tree (AVL-tree) if:

 The left and right subtrees' heights differ by at most one;

 The left subtree is balanced;

 The right subtree is balanced.

AVL goes from Adelson-Velskii and Landis.

Example. Maximal asymmetric balanced tree.

80

Balanced trees

Theorem. For a balanced tree, h(p) < 2log2p.

Proof. Let Ph be the number of vertices in the maximal asymmetric

balanced tree.

81

Balancing

LL-rotation (RR-rotation is symmetric).

LR-rotation (RL-rotation is symmetric).

82

Balancing

Example. Insert 4, 5, 6; after adding 6, do RR-rotation. Insert

3, 1; after that, do LL-rotation.

83

Balancing

Example. Insert 9, 7; node 6 is not balanced. Node 7

lengthens the left right subtree of the left subtree of node 6;

hence, do RL-rotation.

84

Balancing

Example. Insert 8 and 2. The tree is balanced.

85

Red-black trees

BST is a red-black tree if:

 Each node is either red or black.

 The root is black. This rule is sometimes omitted. Since the root

can always be changed from red to black, but not necessarily vice

versa, this rule has little effect on analysis.

 All leaves (NULL) are black.

 If a node is red, then both its children are black.

 Every path from a given node to any of its descendant NIL nodes

contains the same number of black nodes.

86

Red-black trees

 The number of black nodes from the root to a node is the node's

black depth.

 The uniform number of black nodes in all paths from root to the
leaves is called the black height of the red–black tree.

Example. NULL leaves are omitted. The black height is 2. The black

depth of 11 and 2 is 1; other nodes have the black height 2.

87

Red-black trees

Visualization

 https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Application

 GNU libstdc++ (/usr/include/c++/bits)

 std::map, std::multimap, std::set, std::multiset

 LLVM libc++

 std::map, std::set

 Java

 java.util.TreeMap, java.util.TreeSet

 Microsoft .NET 4.5 Framework Class Library

 SortedDictionary, SortedSet

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

88

Red-black trees

Operations

 https://www.youtube.com/watch?v=axa2g5oOzCE

 https://www.youtube.com/watch?v=PhY56LpCtP4

 https://www.youtube.com/watch?v=5IBxA-bZZH8

 https://www.youtube.com/watch?v=95s3ndZRGbk

 https://www.youtube.com/watch?v=7CesCbbVxqc

https://www.youtube.com/watch?v=axa2g5oOzCE
https://www.youtube.com/watch?v=PhY56LpCtP4
https://www.youtube.com/watch?v=5IBxA-bZZH8
https://www.youtube.com/watch?v=5IBxA-bZZH8
https://www.youtube.com/watch?v=5IBxA-bZZH8
https://www.youtube.com/watch?v=95s3ndZRGbk
https://www.youtube.com/watch?v=7CesCbbVxqc

