Integer Linear

 ProgrammingYulia Burkatovskaya

Outline

- Integer linear programming
- Augmenting path
- Maximum-cardinality matching
- Shortest cover
- Maximum flow

Linear programming

- Linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.
- Its feasible region is a convex polytope, which is a set defined as the intersection of finitely many half spaces.
- A linear programming algorithm finds a point in the polyhedron where this function has the smallest (or largest) value if such a point exists.

Linear programming

- George Bernard Dantzig
- Leonid Cantorovich

Integer linear programming

- $L(x)=C X \rightarrow \max$
- $A X \leq B$
- $X \geq 0$
- $L(x)=\sum_{i=1}^{n} c_{i} x_{i} \rightarrow \max$
- $\sum_{i=1}^{m} a_{j, i} x_{i} \leq b_{j}, j=1, \ldots, m$;
- $x_{i} \geq 0$.

Augmenting path

- Augmenting path - a pats in a graph, which improves a current solution of an integer linear programming problem

Maximum-cardinality matching

- A vertex (edge) independent set is a set of vertices (edges) of G so that no two vertices (edges) of the set are adjacent.
- The edge independence number β_{1} of a graph G is the maximum number of independent edges.

Example.

$\{b, e\}$ - independent vertex set.
$\{a b, c d, f g\}$ - independent edge set.

$$
\beta_{1}=3
$$

Maximum-cardinality matching

- Matching is an independent set of edges.

Let M be a matching in $G(V, E)$.

- Two ends of an edge in M are matched under M.
- A matching M saturates a vertex v (and the vertex vis M-saturated) some edge of M is incident with v; otherwise, the vertex v is \mathbf{M} unsaturated.

Maximum-cardinality matching

- If every vertex of G is M-saturated, the matching M is perfect.
- M is a maximum-cardinality matching in G, if $|M|=\beta_{1}$.
- Every perfect matching is a maximum one. A perfect matching does not always exist.

Example.

- A maximum-cardinality matching (not a perfect matching).

Maximum-cardinality matching

- $\xi_{i}=1$ if and only if the edge j belongs to the matching;
- c_{j} is the weight of the edge j;
- l is the incidence matrix.

The problem can be stated as a discrete linear programming problem.

$$
\begin{gathered}
\sum_{j=1}^{q} c_{j} \xi_{j} \rightarrow \max ; \\
\sum_{j=1}^{q} I_{k j} \xi_{j} \leq 1, \quad \forall k=1, \ldots, p ; \\
\xi_{j} \in\{0,1\}
\end{gathered}
$$

Maximum-cardinality matching

- Given a matching M in graph G, an alternating path is a path in which the edges are alternately in and out of matching M.

Maximum-cardinality matching

- An augmenting path is an alternating path whose first and last vertices are M -unsaturated.

Maximum-cardinality matching

A matching is a maximum-cardinality matching if, and only if, it does not contain an augmenting path.
If an augmenting path is found, the roles in the matching of the edges in this path are reversed. This creates a matching with greater cardinality.

Maximum-cardinality matching

An alternating tree relative to a given matching M is a tree T for which:

- One vertex of T is M-unsaturated and is called the root of T.
- All paths starting at the root are alternating paths.
- All maximal paths from the root of T are of even cardinality, i.e. contain an even number of edges.

Root

Maximum-cardinality matching

Starting from the root of the tree and labeling it outer the vertices along any path starting from the root are labeled alternately inner and outer.
The degree of all inner vertices is exactly 2 whereas the degree of an outer vertex can be any integer greater than or equal to 1 .

Maximum-cardinality matching

An augmenting tree is an alternating tree relative to a given matching M whenever an edge exists from an outer vertex x of the tree to a M -saturated vertex y not in the tree.

- The unique path from the root of the tree to x plus link (x, y) is then an augmenting path.

Maximum-cardinality matching

Maximum-cardinality matching

- A blossom with respect to a matching M is an augmenting path for which the initial and final exposed vertices are identical-i.e. the path forms a circuit-and the number of edges (or vertices) of the circuit is odd.

Maximum-cardinality matching

- Blossoms are shrunk to derive a new simpler graph. The shrinking of a blossom B implies the replacement of all vertices of B (say X_{b}) by a single new pseudovertex x_{b}.

Maximum-cardinality matching

- In the simpler graph resulting from such a shrinking, vertex x_{b} may form a new blossom which is shrunk again and so on.
- The final blossom BO which is not contained in any other blossom is called an outermost blossom.

Maximum-cardinality matching

- A blossomed tree is an alternating tree relative to a given matching whenever a link exists between two outer vertices of the tree.

Maximum-cardinality matching

- Whenever a blossom B is shrunk, the resulting pseudovertex x_{b} is labelled an outer vertex.

Maximum-cardinality matching

- If B is a blossom based on the odd vertex set X_{b}, and if x is any vertex in X_{b}, then there exists a maximum cardinality matching in the subgraph induced by X_{b} which leaves x unsaturated.

Maximum-cardinality matching

- A hungarian tree is an alternating tree in a graph in which all links having an outer vertex of the tree as one end, have an inner vertex also in the tree as the other end.

Maximum-cardinality matching

- Let H be a Hungarian tree in a graph $G=(V, E)$ and
- $G_{0}=\left(V \backslash V_{H}, Y\right)$ be the subgraph of G excluding the set V_{H} of vertices of H.
- Then, if M_{H} is the matching in the tree H and M_{0} is any maximumcardinality matching in G_{0}, the set of edge ($M_{H} \cup M_{0}$) is a maximumcardinality matching in G.

Maximum-cardinality matching

Maximum-cardinality matching

An alternating tree is rooted at an exposed (unsaturated) vertex and grown by alternately adding links which are in and not in the matching until:

- either (i) The tree becomes augmenting,
- or (ii) The tree blossoms,
- or (iii) The tree becomes Hungarian.

Maximum-cardinality matching

- In case (i) the cardinality of the matching can be increased by one simply by tracing the augmenting path back to the root of the tree and then interchanging those edges of the path that belong to the matching with the ones that do not. After augmentation the tree is discarded, and a new tree is rooted at some remaining unsaturated vertex, if one exists.

Maximum-cardinality matching

- In case (ii), the resulting blossom is identified, shrunk, and the growing of the tree continued in search for an augmenting path. As far as the computing is concerned, the shrinking of a vertex need not be done explicitly. All that is required is to mark all the vertices of the blossom as outer and set up labels on the vertices to indicate that they all belong to this blossom.
- The order in which these blossoms have been "shrunk" is important since at the end of the procedure the blossoms must be "expanded" in reverse order.

Maximum-cardinality matching

- In case (iii) the vertices of the Hungarian tree and their incident links are removed from the graph and the algorithm is reapplied to the remaining subgraph.

Maximum-cardinality matching

Maximum-cardinality matching

Maximum-cardinality matching

Maximum-cardinality matching

Shortest cover

An edge covers a vertex if they are incident.
An edge covering set (edge cover) is a set of edges of G covering all vertices of G.

Example.

The edge $a b$ covers the vertices a and b.
\{ab,cd,de,fe,fg\} - an edge cover.

Shortest cover

A cover is called shortest when it contains the smallest possible number of edges.

Example.

$\{\mathrm{ab}, \mathrm{cd}, \mathrm{de}, \mathrm{fe}, \mathrm{fg}\}$ is not a shortest cover \{ab,cd,ef,eg\} is a shortest cover.

Shortest cover

The edge cover number α_{1} of a graph G is the size of a shortest edge cover in a graph, i.e., the minimum number of edges covering all vertices.

Example. $\alpha_{1}=4,\{a b, c d, e g, e f\}-$ shortest edge cover.

Shortest cover

- $\xi_{j}=1$ if and only if the edge j belongs to the cover;
- c_{j} is the weight of the edge j ;
- l is the incidence matrix.

The problem can be stated as a discrete linear programming problem (the shortest cover of the transposed incidence matrix).

$$
\begin{gathered}
\sum_{j=1}^{q} c_{j} \xi_{j} \rightarrow \min ; \\
\sum_{j=1}^{q} I_{k j} \xi_{j} \geq 1, \quad \forall k=1, \ldots, p ; \\
\xi_{j} \in\{0,1\} .
\end{gathered}
$$

Shortest cover

- A solution of the maximum-cardinality matching problem provides a solution of the shortest cover problem.
-

From matching to cover: let M be a matching. Choose vertex v that is not covered by M. Add to M an edge incident to v. Repeat until there are no non-covered vertices, as a result get a cover C.

Shortest cover

If M is a maximum matching then C is a minimum cover.

- $\quad \mathrm{M}$ covers $2|\mathrm{M}|$ vertices.
- $\quad|C|=|M|+(p-2|M|)$, because if M is a maximum matching then there are no edges connecting vertices non-covered by M ; hence, to cover the vertices we need $\mathrm{V}-2|\mathrm{M}|$ edges.
If $|M|=\beta_{1}$ then $|C|=\beta_{1}+\left(p-2 \beta_{1}\right)=p-\beta_{1}=\alpha_{1}$.

Shortest cover

A solution of the shortest cover problem provides a solution of the maximum-cardinality matching problem.
From cover to matching: let C be a cover. Choose vertex v that is incident to more then one edge of C. Remove from C any edge incident to v. Repeat until there are no vertices covered by several edges, as a result get a matching M.

Shortest cover

If C is a minimum cover then M is a maximum matching.

- If C were a matching it would cover $2|\mathrm{C}|$ vertices.

We remove $2|\mathrm{C}|-\mathrm{p}$ edges
If $|C|=\alpha_{1}$ then $|M|=\alpha_{1}-\left(2 \alpha_{1}-p\right)=p-\alpha_{1}=\beta_{1}$.

