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Linear programming 

• Linear programming is a technique for the optimization of a linear 
objective function, subject to linear equality and linear inequality 
constraints.  

• Its feasible region is a convex polytope, which is a set defined as the 
intersection of finitely many half spaces.  

• A linear programming algorithm finds a point in the polyhedron 
where this function has the smallest (or largest) value if such a point 

exists.  



Linear programming 
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Integer linear programming 

• 𝐿 𝑥 = 𝐶𝑋 → 𝑚𝑎𝑥 

• 𝐴𝑋 ≤ 𝐵 

• 𝑋 ≥ 0 

 

• 𝐿 𝑥 =  𝑐𝑖𝑥𝑖 → 𝑚𝑎𝑥𝑛
𝑖=1  

•  𝑎𝑗,𝑖𝑥𝑖 ≤ 𝑏𝑗
𝑚
𝑖=1 , 𝑗 = 1,… ,𝑚; 

• 𝑥𝑖 ≥ 0. 
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Augmenting path 

• Augmenting path – a pats in a graph, which improves a current 
solution of an integer linear programming problem 



Maximum-cardinality matching 

• A vertex (edge) independent set is a set of vertices (edges) of G 
so that no two vertices (edges) of the set are adjacent. 

• The edge independence number β1 of a graph G is the maximum 
number of independent edges.  

 

Example. 

𝑏, 𝑒  – independent vertex set. 

𝑎𝑏, 𝑐𝑑, 𝑓𝑔  – independent edge set. 

β1 =3 

 



Maximum-cardinality matching 

• Matching is an independent set of edges. 

Let M be a matching in G(V,E). 

• Two ends of an edge in M are matched under M. 

• A matching M saturates a vertex v (and the vertex v is M-saturated) if 
some edge of M is incident with v; otherwise, the vertex v is M-
unsaturated. 

 



Maximum-cardinality matching 

• If every vertex of G is M-saturated, the matching M is perfect. 

• M is a maximum-cardinality matching in G, if |M|=β1. 

• Every perfect matching is a maximum one. A perfect matching 
does not always exist. 

Example. 

• A maximum-cardinality matching (not a perfect matching). 



Maximum-cardinality matching 

• 𝜉𝑖 = 1  if and only if the edge j belongs to the matching; 

• 𝑐𝑗  is the weight of the edge j; 

• I is the incidence matrix. 

The problem can be stated as a discrete linear programming problem. 

 



Maximum-cardinality matching 

• Given a matching Μ in graph G, an alternating path is a path in 
which the edges are alternately in and out of matching M.  
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Maximum-cardinality matching 

• An augmenting path is an alternating path whose first and last 
vertices are M-unsaturated.  
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Maximum-cardinality matching 

• A matching is a maximum-cardinality matching if, and only if, it 
does not contain an augmenting path.  

• If an augmenting path is found, the roles in the matching of the 
edges in this path are reversed. This creates a matching with 
greater cardinality.  
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Maximum-cardinality matching 

An alternating tree relative to a given matching M is a tree T for which:  

• One vertex of T is M-unsaturated and is called the root of T.  

• All paths starting at the root are alternating paths.  

• All maximal paths from the root of T are of even cardinality, i.e. 
contain an even number of edges.  

 

 

Root 
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Maximum-cardinality matching 
• Starting from the root of the tree and labeling it outer the vertices 

along any path starting from the root are labeled alternately inner 
and outer.  

• The degree of all inner vertices is exactly 2 whereas the degree of 
an outer vertex can be any integer greater than or equal to 1.  
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Maximum-cardinality matching 

• An augmenting tree is an alternating tree relative to a given 
matching M whenever an edge exists from an outer vertex x of the 
tree to a M-saturated vertex y not in the tree.  

• The unique path from the root of the tree to x plus link (x, y) is 
then an augmenting path.  
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Maximum-cardinality matching 

I

O

O

O

O

I

I

Root

I
O

x

y

I

O

O

O

O

I

I

Root

I
O

x

y



18 

Maximum-cardinality matching 

• A blossom with respect to a matching M is an augmenting path for 
which the initial and final exposed vertices are identical—i.e. the 
path forms a circuit—and the number of edges (or vertices) of the 
circuit is odd.  
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Maximum-cardinality matching 

• Blossoms are shrunk to derive a new simpler graph. The shrinking 
of a blossom B implies the replacement of all vertices of B (say Xb) 

by a single new pseudovertex xb.  

xb
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Maximum-cardinality matching 

• In the simpler graph resulting from such a shrinking, vertex xb 
may form a new blossom which is shrunk again and so on. 

• The final blossom B0 which is not contained in any other 

blossom is called an outermost blossom.  

xb
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x0
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Maximum-cardinality matching 

• A blossomed tree is an alternating tree relative to a given matching 
whenever a link exists between two outer vertices of the tree.  
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Maximum-cardinality matching 

• Whenever a blossom B is shrunk, the resulting pseudovertex xb is 
labelled an outer vertex.  
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Maximum-cardinality matching 

• If B is a blossom based on the odd vertex set Xb, and if x is any 
vertex in Xb, then there exists a maximum cardinality matching in 
the subgraph induced by Xb which leaves x unsaturated.  
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Maximum-cardinality matching 

• A hungarian tree is an alternating tree in a graph in which all links 
having an outer vertex of the tree as one end, have an inner vertex 
also in the tree as the other end.  
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Maximum-cardinality matching 

• Let H be a Hungarian tree in a graph G = (V, E) and  

• G0 = (V \ VH,Y) be the subgraph of G excluding the set VH of vertices 
of H.  

• Then, if MH is the matching in the tree H and M0 is any maximum- 
cardinality matching in G0, the set of edge (MH  M0) is a maximum- 
cardinality matching in G.  

 



26 

Maximum-cardinality matching 
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Maximum-cardinality matching 

An alternating tree is rooted at an exposed (unsaturated) vertex and 
grown by alternately adding links which are in and not in the 
matching until:  

• either (i) The tree becomes augmenting,  

• or (ii) The tree blossoms,  

• or (iii) The tree becomes Hungarian.  
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Maximum-cardinality matching 

• In case (i) the cardinality of the matching can be increased by one 
simply by tracing the augmenting path back to the root of the tree 
and then interchanging those edges of the path that belong to the 
matching with the ones that do not. After augmentation the tree is 
discarded, and a new tree is rooted at some remaining unsaturated 
vertex, if one exists. 
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Maximum-cardinality matching 

• In case (ii), the resulting blossom is identified, shrunk, and the 
growing of the tree continued in search for an augmenting path. As 
far as the computing is concerned, the shrinking of a vertex need not 
be done explicitly. All that is required is to mark all the vertices of the 
blossom as outer and set up labels on the vertices to indicate that 
they all belong to this blossom.  

• The order in which these blossoms have been "shrunk" is important 
since at the end of the procedure the blossoms must be "expanded" 
in reverse order.  
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Maximum-cardinality matching 

• In case (iii) the vertices of the Hungarian tree and their incident links 
are removed from the graph and the algorithm is reapplied to the 
remaining subgraph.  
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Maximum-cardinality matching 
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Maximum-cardinality matching 
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Maximum-cardinality matching 
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Maximum-cardinality matching 
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Shortest cover 

An edge covers a vertex if they are incident. 

An edge covering set (edge cover) is a set of edges of G covering all 
vertices of G. 

Example. 

The edge ab covers the vertices a and b. 

{ab,cd,de,fe,fg} – an edge cover. 
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Shortest cover 

A cover is called shortest when it contains the smallest possible 
number of edges. 

Example. 

{ab,cd,de,fe,fg} is not a shortest cover 

{ab,cd,ef,eg} is a shortest cover. 
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Shortest cover 

The edge cover number α1 of a graph G is the size of a shortest edge 
cover in a graph, i.e., the minimum number of edges covering all 
vertices. 

Example. α1 =4, {ab,cd,eg,ef} – shortest edge cover. 
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Shortest cover 

• ξj = 1 if and only if the edge j belongs to the cover; 

• cj is the weight of the edge j; 

• I is the incidence matrix. 

The problem can be stated as a discrete linear programming problem 
(the shortest cover of the transposed incidence matrix). 
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Shortest cover 

• A solution of the maximum-cardinality matching problem 
provides a solution of the shortest cover problem. 

• From matching to cover: let M be a matching. Choose vertex v that 
is not covered by M. Add to M an edge incident to v. Repeat until 
there are no non-covered vertices, as a result get a cover C. 
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Shortest cover 

If M is a maximum matching then C is a minimum cover. 

• M covers 2|M| vertices. 

• |C|=|M|+(p–2|M|), because if M is a maximum matching then 
there are no edges connecting vertices non-covered by M; hence, 
to cover the vertices we need V–2|M| edges. 

• If |M|=β1 then |C|=β1+(p-2 β1)= p–β1 = α1. 
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Shortest cover 

• A solution of the shortest cover problem provides a solution of 
the maximum-cardinality matching problem. 

• From cover to matching: let C be a cover. Choose vertex v that is 
incident to more then one edge of C. Remove from C any edge 
incident to v. Repeat until there are no vertices covered by several 
edges, as a result get a matching M. 



42 

42 

Shortest cover 

If C is a minimum cover then M is a maximum matching. 

• If C were a matching it would cover 2|C| vertices. 

• We remove 2|C|–p edges 

• If |C|= α1 then |M|= α1– (2 α1–p)= p–α1= β1. 


