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Direct-address tables 

 Direct addressing is a simple technique that works well when 

the universe U of keys is reasonably small.  

 No two elements have the same key. 

 We use an array, or direct-address table, T[0,…,m-1]. Each 

position, or slot, corresponds to a key. 



Direct-address tables 

Find Insert Delete 

Unsorted array N 1 N 

Sorted array log N N N 

Linked list N 1 1 

File N N N 

Direct-address table 1 1 1 



Hash tables 

 If universe U is large then direct-address tables take a huge 

memory. 

 The set of actually stored keys, say K, could be rather small. 

 Reduce the storage requirement to m=O(|K|), T[m]. 

 Hash function: h: K→{0,…,m-1} 

 



Hash tables 

 Collision: two keys hash to the same slot. 

 Good hash function – random, to minimize the number of 

collisions. 

 Solutions? 



Hash tables 

 Collision resolution by chaining 

 Elements hashing the same slot are placed in a linked list. 

 



Hash tables 

 T: m slots, n elements 

 Load factor: α=n/m (the average number of elements stored at 

one slot) 

 Worst case: all elements are in the same slot (terrible) 

 Average case: depends on the hash function 

 Simple uniform hashing: any given element is equally likely 

to hash into any of the m slots, independently of where any 

other element has hashed to. 

 nj – the number of elements in slot j   

 N=n1+…+nm 



Hash tables 

 Theorem 

 In a hash table in which collisions are resolved by chaining, an 

unsuccessful search takes average-case time O(1+α), under the 

assumption of simple uniform hashing 

 Theorem 

 In a hash table in which collisions are resolved by chaining, an 

unsuccessful search takes average-case time O(1+α), under the 

assumption of simple uniform hashing. 

 

 Α is an average length of a list, 1 – to compute the hash 

function. 



Hash functions 

 What makes a good hash function? 

 A good hash function satisfies (approximately) the assumption 

of simple uniform hashing. 

 Unfortunately, we typically have no way to check this 

condition, since we rarely know the probability distribution 

from which the keys are drawn. Moreover, the keys might not 

be drawn independently. 

 

 Example. U – integers, h(x) = x mod m. 

 Challenge: a good hash function for identifiers? 



Hash functions 

 The division method 

 h(x) = x mod m. 

 How to choose m? 

 Bad choice: m=2p (h(x)= lowest p bits, it’s better when a hash 

function depends on all bits) 

 Good choice (usually) a prime not to close to 2p 

 Example: N=2000, we don’t mind α=3; so, m=701. 

 

 



Hash functions 

 The multiplication method 

 First, we multiply the key k by a constant A in the range 0<A<1 

and extract the fractional part of kA. 

 Then, we multiply this value by m and take the floor of the 

result. 

 The value of m is not critical (2p) 

 𝐴 = 5 − 1 /2 (Donald Knuth) 

 Example. k=103, m=23 

 A=0.037 kA=3.811, kA mod 1 = 0.811 

 m(kA mod 1) = 18.653, floor(18.653)=18 

 

 

 



Hash functions 

 The multiplication method 

 

 

 



Hash function 

 Universal hashing 

 The worst case: all n keys share the same slot. It can be for 

any fixed hash function. 

 Idea: to choose the hash function randomly and independent 

on the keys, which are going to be stored.  

 Example. ℎ𝑎𝑏 𝑘 = 𝑎𝑘 + 𝑏  𝑚𝑜𝑑 𝑝  𝑚𝑜𝑑 𝑚 

 Number p is prime and large enough, p>m 

 If  𝑘 ≠ 𝑙 then 𝑎𝑘 + 𝑏  𝑚𝑜𝑑 𝑝 ≠ 𝑎𝑙 + 𝑏  𝑚𝑜𝑑 𝑝 

 𝑃𝑅 𝑎𝑘 + 𝑏  𝑚𝑜𝑑 𝑝 = 𝑎𝑙 + 𝑏  𝑚𝑜𝑑 𝑝  𝑚𝑜𝑑 𝑚 ≤
1

𝑚
 

 



Hash function 

 Universal hashing 



Open addressing 

 Each table entry contains either an element of the dynamic set 

or NIL, no linked lists. 

 When searching for an element, we systematically examine 

table slots until either we find the desired element or we have 

ascertained that the element is not in the table. 

 To perform insertion using open addressing, we successively 

examine, or probe, the hash table until we find an empty slot in 

which to put the key.  

 In open addressing, the hash table can “fill up” so that no 

further insertions can be made; one consequence is that the 

load factor α can never exceed 1. 



Open addressing 

 To determine which slots to probe, we extend the hash function 

to include the probe number (starting from 0) as a second input 

 ℎ: 𝑈 × 0, … , 𝑚 − 1 → 0, … , 𝑚 − 1  

 The probe sequence is a permutation of 0, … , 𝑚 − 1  (no 

repetitions!) 

 ℎ 𝑘, 0 , … , ℎ 𝑘, 𝑚 − 1  



Open addressing 



Open addressing 

 Linear probing 

 ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑖 𝑚𝑜𝑑 𝑚 

 Example: m=7. 5, 6, 7, 0,…,4 

 Good: easy to implement 

 Bad: primary clustering (long sequences of occupied slots) 

 



Open addressing 

 Quadratic probing 

 ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑐1𝑖 + 𝑐2𝑖2 𝑚𝑜𝑑 𝑚 

 ℎ′ 𝑘 + 𝑐1 + 𝑐2 𝑚𝑜𝑑 𝑚, ℎ′ 𝑘 + 2𝑐1 + 4𝑐2 𝑚𝑜𝑑 𝑚, … 

 Good: better then linear 

 Bad: secondary clustering (two elements with the same initial 

slot have the same probe sequence), limitations for constants. 

 



Open addressing 

 Double hashing 

 ℎ 𝑘, 𝑖 = ℎ1 𝑘 + 𝑖ℎ2 𝑘 𝑚𝑜𝑑 𝑚 

 Example: ℎ1 𝑘 = 𝑘 𝑚𝑜𝑑 𝑚, ℎ2 𝑘 = 1 + 𝑘 𝑚𝑜𝑑 𝑚′ 

 Good: the probe sequences depends in two ways on k; so, two 

elements with the same initial slot can have different probe 

sequences 

 ℎ2 𝑘  should be relatively prime to m 

 



Open addressing 

 Double hashing 

 Example: insert 14 

 ℎ1 𝑘 = 𝑘 𝑚𝑜𝑑 13,  

 ℎ2 𝑘 = 1 + 𝑘 𝑚𝑜𝑑 11 

 



Open addressing 

 Analysis of open addressing 


