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Direct-address tables 

 Direct addressing is a simple technique that works well when 

the universe U of keys is reasonably small.  

 No two elements have the same key. 

 We use an array, or direct-address table, T[0,…,m-1]. Each 

position, or slot, corresponds to a key. 



Direct-address tables 

Find Insert Delete 

Unsorted array N 1 N 

Sorted array log N N N 

Linked list N 1 1 

File N N N 

Direct-address table 1 1 1 



Hash tables 

 If universe U is large then direct-address tables take a huge 

memory. 

 The set of actually stored keys, say K, could be rather small. 

 Reduce the storage requirement to m=O(|K|), T[m]. 

 Hash function: h: K→{0,…,m-1} 

 



Hash tables 

 Collision: two keys hash to the same slot. 

 Good hash function – random, to minimize the number of 

collisions. 

 Solutions? 



Hash tables 

 Collision resolution by chaining 

 Elements hashing the same slot are placed in a linked list. 

 



Hash tables 

 T: m slots, n elements 

 Load factor: α=n/m (the average number of elements stored at 

one slot) 

 Worst case: all elements are in the same slot (terrible) 

 Average case: depends on the hash function 

 Simple uniform hashing: any given element is equally likely 

to hash into any of the m slots, independently of where any 

other element has hashed to. 

 nj – the number of elements in slot j   

 N=n1+…+nm 



Hash tables 

 Theorem 

 In a hash table in which collisions are resolved by chaining, an 

unsuccessful search takes average-case time O(1+α), under the 

assumption of simple uniform hashing 

 Theorem 

 In a hash table in which collisions are resolved by chaining, an 

unsuccessful search takes average-case time O(1+α), under the 

assumption of simple uniform hashing. 

 

 Α is an average length of a list, 1 – to compute the hash 

function. 



Hash functions 

 What makes a good hash function? 

 A good hash function satisfies (approximately) the assumption 

of simple uniform hashing. 

 Unfortunately, we typically have no way to check this 

condition, since we rarely know the probability distribution 

from which the keys are drawn. Moreover, the keys might not 

be drawn independently. 

 

 Example. U – integers, h(x) = x mod m. 

 Challenge: a good hash function for identifiers? 



Hash functions 

 The division method 

 h(x) = x mod m. 

 How to choose m? 

 Bad choice: m=2p (h(x)= lowest p bits, it’s better when a hash 

function depends on all bits) 

 Good choice (usually) a prime not to close to 2p 

 Example: N=2000, we don’t mind α=3; so, m=701. 

 

 



Hash functions 

 The multiplication method 

 First, we multiply the key k by a constant A in the range 0<A<1 

and extract the fractional part of kA. 

 Then, we multiply this value by m and take the floor of the 

result. 

 The value of m is not critical (2p) 

 𝐴 = 5 − 1 /2 (Donald Knuth) 

 Example. k=103, m=23 

 A=0.037 kA=3.811, kA mod 1 = 0.811 

 m(kA mod 1) = 18.653, floor(18.653)=18 

 

 

 



Hash functions 

 The multiplication method 

 

 

 



Hash function 

 Universal hashing 

 The worst case: all n keys share the same slot. It can be for 

any fixed hash function. 

 Idea: to choose the hash function randomly and independent 

on the keys, which are going to be stored.  

 Example. ℎ𝑎𝑏 𝑘 = 𝑎𝑘 + 𝑏  𝑚𝑜𝑑 𝑝  𝑚𝑜𝑑 𝑚 

 Number p is prime and large enough, p>m 

 If  𝑘 ≠ 𝑙 then 𝑎𝑘 + 𝑏  𝑚𝑜𝑑 𝑝 ≠ 𝑎𝑙 + 𝑏  𝑚𝑜𝑑 𝑝 

 𝑃𝑅 𝑎𝑘 + 𝑏  𝑚𝑜𝑑 𝑝 = 𝑎𝑙 + 𝑏  𝑚𝑜𝑑 𝑝  𝑚𝑜𝑑 𝑚 ≤
1

𝑚
 

 



Hash function 

 Universal hashing 



Open addressing 

 Each table entry contains either an element of the dynamic set 

or NIL, no linked lists. 

 When searching for an element, we systematically examine 

table slots until either we find the desired element or we have 

ascertained that the element is not in the table. 

 To perform insertion using open addressing, we successively 

examine, or probe, the hash table until we find an empty slot in 

which to put the key.  

 In open addressing, the hash table can “fill up” so that no 

further insertions can be made; one consequence is that the 

load factor α can never exceed 1. 



Open addressing 

 To determine which slots to probe, we extend the hash function 

to include the probe number (starting from 0) as a second input 

 ℎ: 𝑈 × 0, … , 𝑚 − 1 → 0, … , 𝑚 − 1  

 The probe sequence is a permutation of 0, … , 𝑚 − 1  (no 

repetitions!) 

 ℎ 𝑘, 0 , … , ℎ 𝑘, 𝑚 − 1  



Open addressing 



Open addressing 

 Linear probing 

 ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑖 𝑚𝑜𝑑 𝑚 

 Example: m=7. 5, 6, 7, 0,…,4 

 Good: easy to implement 

 Bad: primary clustering (long sequences of occupied slots) 

 



Open addressing 

 Quadratic probing 

 ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑐1𝑖 + 𝑐2𝑖2 𝑚𝑜𝑑 𝑚 

 ℎ′ 𝑘 + 𝑐1 + 𝑐2 𝑚𝑜𝑑 𝑚, ℎ′ 𝑘 + 2𝑐1 + 4𝑐2 𝑚𝑜𝑑 𝑚, … 

 Good: better then linear 

 Bad: secondary clustering (two elements with the same initial 

slot have the same probe sequence), limitations for constants. 

 



Open addressing 

 Double hashing 

 ℎ 𝑘, 𝑖 = ℎ1 𝑘 + 𝑖ℎ2 𝑘 𝑚𝑜𝑑 𝑚 

 Example: ℎ1 𝑘 = 𝑘 𝑚𝑜𝑑 𝑚, ℎ2 𝑘 = 1 + 𝑘 𝑚𝑜𝑑 𝑚′ 

 Good: the probe sequences depends in two ways on k; so, two 

elements with the same initial slot can have different probe 

sequences 

 ℎ2 𝑘  should be relatively prime to m 

 



Open addressing 

 Double hashing 

 Example: insert 14 

 ℎ1 𝑘 = 𝑘 𝑚𝑜𝑑 13,  

 ℎ2 𝑘 = 1 + 𝑘 𝑚𝑜𝑑 11 

 



Open addressing 

 Analysis of open addressing 


