
Hash tables

Yulia Burkatovskaya

Outline

 Direct-address tables

 Hash tables

 Hash functions

 Open addressing

Direct-address tables

 Direct addressing is a simple technique that works well when

the universe U of keys is reasonably small.

 No two elements have the same key.

 We use an array, or direct-address table, T[0,…,m-1]. Each

position, or slot, corresponds to a key.

Direct-address tables

Find Insert Delete

Unsorted array N 1 N

Sorted array log N N N

Linked list N 1 1

File N N N

Direct-address table 1 1 1

Hash tables

 If universe U is large then direct-address tables take a huge

memory.

 The set of actually stored keys, say K, could be rather small.

 Reduce the storage requirement to m=O(|K|), T[m].

 Hash function: h: K→{0,…,m-1}

Hash tables

 Collision: two keys hash to the same slot.

 Good hash function – random, to minimize the number of

collisions.

 Solutions?

Hash tables

 Collision resolution by chaining

 Elements hashing the same slot are placed in a linked list.

Hash tables

 T: m slots, n elements

 Load factor: α=n/m (the average number of elements stored at

one slot)

 Worst case: all elements are in the same slot (terrible)

 Average case: depends on the hash function

 Simple uniform hashing: any given element is equally likely

to hash into any of the m slots, independently of where any

other element has hashed to.

 nj – the number of elements in slot j

 N=n1+…+nm

Hash tables

 Theorem

 In a hash table in which collisions are resolved by chaining, an

unsuccessful search takes average-case time O(1+α), under the

assumption of simple uniform hashing

 Theorem

 In a hash table in which collisions are resolved by chaining, an

unsuccessful search takes average-case time O(1+α), under the

assumption of simple uniform hashing.

 Α is an average length of a list, 1 – to compute the hash

function.

Hash functions

 What makes a good hash function?

 A good hash function satisfies (approximately) the assumption

of simple uniform hashing.

 Unfortunately, we typically have no way to check this

condition, since we rarely know the probability distribution

from which the keys are drawn. Moreover, the keys might not

be drawn independently.

 Example. U – integers, h(x) = x mod m.

 Challenge: a good hash function for identifiers?

Hash functions

 The division method

 h(x) = x mod m.

 How to choose m?

 Bad choice: m=2p (h(x)= lowest p bits, it’s better when a hash

function depends on all bits)

 Good choice (usually) a prime not to close to 2p

 Example: N=2000, we don’t mind α=3; so, m=701.

Hash functions

 The multiplication method

 First, we multiply the key k by a constant A in the range 0<A<1

and extract the fractional part of kA.

 Then, we multiply this value by m and take the floor of the

result.

 The value of m is not critical (2p)

 𝐴 = 5 − 1 /2 (Donald Knuth)

 Example. k=103, m=23

 A=0.037 kA=3.811, kA mod 1 = 0.811

 m(kA mod 1) = 18.653, floor(18.653)=18

Hash functions

 The multiplication method

Hash function

 Universal hashing

 The worst case: all n keys share the same slot. It can be for

any fixed hash function.

 Idea: to choose the hash function randomly and independent

on the keys, which are going to be stored.

 Example. ℎ𝑎𝑏 𝑘 = 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚

 Number p is prime and large enough, p>m

 If 𝑘 ≠ 𝑙 then 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 ≠ 𝑎𝑙 + 𝑏 𝑚𝑜𝑑 𝑝

 𝑃𝑅 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 = 𝑎𝑙 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚 ≤
1

𝑚

Hash function

 Universal hashing

Open addressing

 Each table entry contains either an element of the dynamic set

or NIL, no linked lists.

 When searching for an element, we systematically examine

table slots until either we find the desired element or we have

ascertained that the element is not in the table.

 To perform insertion using open addressing, we successively

examine, or probe, the hash table until we find an empty slot in

which to put the key.

 In open addressing, the hash table can “fill up” so that no

further insertions can be made; one consequence is that the

load factor α can never exceed 1.

Open addressing

 To determine which slots to probe, we extend the hash function

to include the probe number (starting from 0) as a second input

 ℎ: 𝑈 × 0, … , 𝑚 − 1 → 0, … , 𝑚 − 1

 The probe sequence is a permutation of 0, … , 𝑚 − 1 (no

repetitions!)

 ℎ 𝑘, 0 , … , ℎ 𝑘, 𝑚 − 1

Open addressing

Open addressing

 Linear probing

 ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑖 𝑚𝑜𝑑 𝑚

 Example: m=7. 5, 6, 7, 0,…,4

 Good: easy to implement

 Bad: primary clustering (long sequences of occupied slots)

Open addressing

 Quadratic probing

 ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑐1𝑖 + 𝑐2𝑖2 𝑚𝑜𝑑 𝑚

 ℎ′ 𝑘 + 𝑐1 + 𝑐2 𝑚𝑜𝑑 𝑚, ℎ′ 𝑘 + 2𝑐1 + 4𝑐2 𝑚𝑜𝑑 𝑚, …

 Good: better then linear

 Bad: secondary clustering (two elements with the same initial

slot have the same probe sequence), limitations for constants.

Open addressing

 Double hashing

 ℎ 𝑘, 𝑖 = ℎ1 𝑘 + 𝑖ℎ2 𝑘 𝑚𝑜𝑑 𝑚

 Example: ℎ1 𝑘 = 𝑘 𝑚𝑜𝑑 𝑚, ℎ2 𝑘 = 1 + 𝑘 𝑚𝑜𝑑 𝑚′

 Good: the probe sequences depends in two ways on k; so, two

elements with the same initial slot can have different probe

sequences

 ℎ2 𝑘 should be relatively prime to m

Open addressing

 Double hashing

 Example: insert 14

 ℎ1 𝑘 = 𝑘 𝑚𝑜𝑑 13,

 ℎ2 𝑘 = 1 + 𝑘 𝑚𝑜𝑑 11

Open addressing

 Analysis of open addressing

