Hash tables

Yulia Burkatovskaya

Outline

» Direct-address tables
» Hash tables

» Hash functions

» Open addressing

Direct-address tables

» Direct addressing is a simple technigue that works well when
the universe U of keys is reasonably small.

» No two elements have the same key.

» We use an array, or direct-address table, T[0,...,m-1]. Each
position, or slot, corresponds to a key.

U

T
/ 0
/ key satellite data
(universe of keys) —
[]

v
RN

Direct-address tables

_

Unsorted array

Sorted array Iog N N N
Linked list N 1 1
File N N N
Direct-address table 1 1 1

Hash tables

» If universe U is large then direct-address tables take a huge
memory.

» The set of actually stored keys, say K, could be rather small.
» Reduce the storage requirement to m=0(|K]), T[m].
» Hash function: h: K—{0,...,m-1}

u
(universe of keys)

Hash tables

» Collision: two keys hash to the same slot.

» Good hash function — random, to minimize the number of
collisions.

» Solutions?

hik;)

m—1

Hash tables

» Collision resolution by chaining
» Elements hashing the same slot are placed in a linked list.

/K| /]
— 1/ k| T (k| 7]

Hash tables

<
<

T: m slots, n elements

Load factor: a=n/m (the average number of elements stored at
one slot)

Worst case: all elements are in the same slot (terrible)
Average case: depends on the hash function

Simple uniform hashing: any given element is equally likely
to hash into any of the m slots, independently of where any
other element has hashed to.

n; — the number of elements in slot
N=n,+...+n

Hash tables

» Theorem

» In a hash table in which collisions are resolved by chaining, an
unsuccessful search takes average-case time O(1+a), under the
assumption of simple uniform hashing

» Theorem

» In a hash table in which collisions are resolved by chaining, an
unsuccessful search takes average-case time O(1+a), under the
assumption of simple uniform hashing.

» A'ls an average length of a list, 1 — to compute the hash
function.

Hash functions

» What makes a good hash function?

» A good hash function satisfies (approximately) the assumption
of simple uniform hashing.

» Unfortunately, we typically have no way to check this
condition, since we rarely know the probability distribution
from which the keys are drawn. Moreover, the keys might not
be drawn independently.

» Example. U — integers, h(x) = x mod m.
» Challenge: a good hash function for identifiers?

Hash functions

» The division method
» h(X) =x mod m.
» How to choose m?

» Bad choice: m=2P (h(x)= lowest p bits, it’s better when a hash
function depends on all bits)

» Good choice (usually) a prime not to close to 2P
Example: N=2000, we don’t mind a=3; so, m=701.

Hash functions

» The multiplication method

» First, we multiply the key k by a constant A in the range 0<A<1
and extract the fractional part of kKA.

» Then, we multiply this value by m and take the floor of the
result.

» The value of m is not critical (2P)
» A =(V5-1)/2 (Donald Knuth)

» Example. k=103, m=23
A=0.037 kA=3.811, kAmod 1 =0.811
m(kA mod 1) = 18.653, floor(18.653)=18

Hash functions

» The multiplication method

———— extract p bits
h(k)

Hash function

» Universal hashing

» The worst case: all n keys share the same slot. It can be for
any fixed hash function.

» ldea: to choose the hash function randomly and independent
on the keys, which are going to be stored.

» Example. hyy, (k) = ((ak + b) mod p) mod m
» Number p is prime and large enough, p>m
» If k + [then (ak + b) mod p # (al + b) mod p

1
> PR{((ak + b) mod p = (al + b) mod p) mod m} <—

Hash function

» Universal hashing

Suppose that a hash function 7 is chosen randomly from a universal collection of
hash functions and has been used to hash n keys into a table T" of size m, us-
ing chaining to resolve collisions. If key k is not in the table, then the expected
length E [njx)] of the list that key k hashes to is at most the load factor « = n/m.
If key k is in the table, then the expected length E [11;,)] of the list containing key k

is at most 1 + «.

Open addressing

4

Each table entry contains either an element of the dynamic set
or NIL, no linked lists.

When searching for an element, we systematically examine
table slots until either we find the desired element or we have
ascertained that the element is not in the table.

To perform insertion using open addressing, we successively
examine, or probe, the hash table until we find an empty slot in
which to put the key.

In open addressing, the hash table can “fill up” so that no
further insertions can be made; one conseguence is that the
load factor o can never exceed 1.

Open addressing

» To determine which slots to probe, we extend the hash function
to include the probe number (starting from 0) as a second input

» h:U x{0,...,m—1}-{0,...,m —1}

» The probe sequence is a permutation of {0, ...,m — 1} (no
repetitions!)

» h(k,0),...,h(k,m—1)

Open addressing

HASH-INSERT(T, k)
i =0
repeat
J = h(k,i)
if T'[j] == NIL
rijl =k
return j
elsei =i + 1
until 7 ==m
error “hash table overflow”

O 00 1 O B W=

HASH-SEARCH(T, k)

1
2
3

4
5
6
7
8

I =0
repeat
J = hik.i)
if T[j] ==
return j
I =1+1

until 7[j] ==NIL ori ==m
return NIL

Open addressing

» Linear probing

» h(k,i) = (h'(k) + i)mod m

» Example: m=7.5,6,7,0,...,4

» Good: easy to implement

» Bad: primary clustering (long sequences of occupied slots)

Open addressing

» Quadratic probing

» h(k,i) = (h' (k) + cqi + c,i*)mod m

» (W'(k) + ¢y +c,)modm, (h'(k) + 2¢y + 4c,)mod m, ...
» Good: better then linear

» Bad: secondary clustering (two elements with the same initial
slot have the same probe sequence), limitations for constants.

Open addressing

» Double hashing
» h(k,i) = (hy{(k) +ih,(k))mod m
» Example: hy(k) = k mod m, hy(k) =1+ k mod m’

» Good: the probe sequences depends in two ways on K; so, two
elements with the same initial slot can have different probe
sequences

» h, (k) should be relatively prime to m

Open addressing

» Double hashing

» Example: insert 14
» hi(k) = kmod 13,
» hy(k) =1+ kmod 11

o e 1 N B W = O

Open addressing

» Analysis of open addressing

Given an open-address hash table with load factor « = n/m < 1, the expected
number of probes in an unsuccessful search is at most 1/(1 —«), assuming uniform
hashing.

Given an open-address hash table with load factor o < 1, the expected number of
probes in a successful search is at most
1 1

—In
o |-«

*

assuming uniform hashing and assuming that each key in the table is equally likely
to be searched for.

