
Hash tables

Yulia Burkatovskaya

Outline

 Direct-address tables

 Hash tables

 Hash functions

 Open addressing

Direct-address tables

 Direct addressing is a simple technique that works well when

the universe U of keys is reasonably small.

 No two elements have the same key.

 We use an array, or direct-address table, T[0,…,m-1]. Each

position, or slot, corresponds to a key.

Direct-address tables

Find Insert Delete

Unsorted array N 1 N

Sorted array log N N N

Linked list N 1 1

File N N N

Direct-address table 1 1 1

Hash tables

 If universe U is large then direct-address tables take a huge

memory.

 The set of actually stored keys, say K, could be rather small.

 Reduce the storage requirement to m=O(|K|), T[m].

 Hash function: h: K→{0,…,m-1}

Hash tables

 Collision: two keys hash to the same slot.

 Good hash function – random, to minimize the number of

collisions.

 Solutions?

Hash tables

 Collision resolution by chaining

 Elements hashing the same slot are placed in a linked list.

Hash tables

 T: m slots, n elements

 Load factor: α=n/m (the average number of elements stored at

one slot)

 Worst case: all elements are in the same slot (terrible)

 Average case: depends on the hash function

 Simple uniform hashing: any given element is equally likely

to hash into any of the m slots, independently of where any

other element has hashed to.

 nj – the number of elements in slot j

 N=n1+…+nm

Hash tables

 Theorem

 In a hash table in which collisions are resolved by chaining, an

unsuccessful search takes average-case time O(1+α), under the

assumption of simple uniform hashing

 Theorem

 In a hash table in which collisions are resolved by chaining, an

unsuccessful search takes average-case time O(1+α), under the

assumption of simple uniform hashing.

 Α is an average length of a list, 1 – to compute the hash

function.

Hash functions

 What makes a good hash function?

 A good hash function satisfies (approximately) the assumption

of simple uniform hashing.

 Unfortunately, we typically have no way to check this

condition, since we rarely know the probability distribution

from which the keys are drawn. Moreover, the keys might not

be drawn independently.

 Example. U – integers, h(x) = x mod m.

 Challenge: a good hash function for identifiers?

Hash functions

 The division method

 h(x) = x mod m.

 How to choose m?

 Bad choice: m=2p (h(x)= lowest p bits, it’s better when a hash

function depends on all bits)

 Good choice (usually) a prime not to close to 2p

 Example: N=2000, we don’t mind α=3; so, m=701.

Hash functions

 The multiplication method

 First, we multiply the key k by a constant A in the range 0<A<1

and extract the fractional part of kA.

 Then, we multiply this value by m and take the floor of the

result.

 The value of m is not critical (2p)

 𝐴 = 5 − 1 /2 (Donald Knuth)

 Example. k=103, m=23

 A=0.037 kA=3.811, kA mod 1 = 0.811

 m(kA mod 1) = 18.653, floor(18.653)=18

Hash functions

 The multiplication method

Hash function

 Universal hashing

 The worst case: all n keys share the same slot. It can be for

any fixed hash function.

 Idea: to choose the hash function randomly and independent

on the keys, which are going to be stored.

 Example. ℎ𝑎𝑏 𝑘 = 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚

 Number p is prime and large enough, p>m

 If 𝑘 ≠ 𝑙 then 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 ≠ 𝑎𝑙 + 𝑏 𝑚𝑜𝑑 𝑝

 𝑃𝑅 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 = 𝑎𝑙 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚 ≤
1

𝑚

Hash function

 Universal hashing

Open addressing

 Each table entry contains either an element of the dynamic set

or NIL, no linked lists.

 When searching for an element, we systematically examine

table slots until either we find the desired element or we have

ascertained that the element is not in the table.

 To perform insertion using open addressing, we successively

examine, or probe, the hash table until we find an empty slot in

which to put the key.

 In open addressing, the hash table can “fill up” so that no

further insertions can be made; one consequence is that the

load factor α can never exceed 1.

Open addressing

 To determine which slots to probe, we extend the hash function

to include the probe number (starting from 0) as a second input

 ℎ: 𝑈 × 0, … , 𝑚 − 1 → 0, … , 𝑚 − 1

 The probe sequence is a permutation of 0, … , 𝑚 − 1 (no

repetitions!)

 ℎ 𝑘, 0 , … , ℎ 𝑘, 𝑚 − 1

Open addressing

Open addressing

 Linear probing

 ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑖 𝑚𝑜𝑑 𝑚

 Example: m=7. 5, 6, 7, 0,…,4

 Good: easy to implement

 Bad: primary clustering (long sequences of occupied slots)

Open addressing

 Quadratic probing

 ℎ 𝑘, 𝑖 = ℎ′ 𝑘 + 𝑐1𝑖 + 𝑐2𝑖2 𝑚𝑜𝑑 𝑚

 ℎ′ 𝑘 + 𝑐1 + 𝑐2 𝑚𝑜𝑑 𝑚, ℎ′ 𝑘 + 2𝑐1 + 4𝑐2 𝑚𝑜𝑑 𝑚, …

 Good: better then linear

 Bad: secondary clustering (two elements with the same initial

slot have the same probe sequence), limitations for constants.

Open addressing

 Double hashing

 ℎ 𝑘, 𝑖 = ℎ1 𝑘 + 𝑖ℎ2 𝑘 𝑚𝑜𝑑 𝑚

 Example: ℎ1 𝑘 = 𝑘 𝑚𝑜𝑑 𝑚, ℎ2 𝑘 = 1 + 𝑘 𝑚𝑜𝑑 𝑚′

 Good: the probe sequences depends in two ways on k; so, two

elements with the same initial slot can have different probe

sequences

 ℎ2 𝑘 should be relatively prime to m

Open addressing

 Double hashing

 Example: insert 14

 ℎ1 𝑘 = 𝑘 𝑚𝑜𝑑 13,

 ℎ2 𝑘 = 1 + 𝑘 𝑚𝑜𝑑 11

Open addressing

 Analysis of open addressing

