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Mergeable heap

A mergeable heap Is any data structure that supports the following five

>
>

>

operations, in which each element has a key:
MAKE-HEAP() creates and returns a new heap containing no elements.

INSERT(H,x) inserts element x, whose key has already been filled in, into
heap H.

MINIMUM(H) returns a pointer to the element in heap H whose key is
minimum.

EXTRACT-MIN(H) deletes the element from heap H whose key is
minimum, returning a pointer to the element.

UNION(H1,H2) creates and returns a new heap that contains all the
elements of heaps H1 and H2. Heaps H1 and H2 are “destroyed” by this
operation.

In addition to the mergeable-heap operations above, Fibonacci heaps also
support the following two operations:

DECREASE-KEY (H,x,k) assigns to element x within heap H the new key
value k, which we assume to be no greater than its current key value.1
DELETE(H; x) deletes element x from heap H.



Mergeable heap

Binary heap  Fibonacci heap
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Fibbonacci heaps

» Better to use when EXTRACT-MIN and DELETE operations
are rare

» Graphs (single-source shortest path, shortest spanning
tree)

» Drawback: not easy to understand and implement



Structure of Fibbonacci heap

» A Fibonacci heap is a collection of rooted trees that are min-heap ordered.
That is, each tree obeys the min-heap property: the key of a node is greater
than or equal to the key of its parent.
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Structure of Fibbonacci heap

» Attributes of nodes
» Key (x.key)
» The number of children in the child list of node x (x.degree).

» The Boolean-valued attribute x.mark indicates whether node x
has lost a child since the last time x was made the child of
another node.

» Newly created nodes are unmarked, and a node x becomes
unmarked whenever it is made the child of another node.

» A pointer H:min to the root of a tree containing the minimum
key; we call this node the minimum node.

» The roots of the trees are connected with a doubly-linked list.



Mergeable-heap operations

» Inserting a node

FiB-HEAP-INSERT(H, x)

X.degree = 0
X.p = NIL
x.child = NIL
x.mark = FALSE
it H.min == NIL
create a root list for H containing just x
H.min = x
else insert x into H s root list
it x.key < H.min.key
H.min = x

1l Hn=Hn+1
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Mergeable-heap operations

» Uniting two Fibbonacci heaps

Fis-HEAP-UNION(H,, H;)

H = MAKE-FIB-HEAP()

H.min = H{.min

concatenate the root list of H> with the root list of H

it (Hy.min==NIL) or (H;.min % NIL and H;.min.kev < H,.min.key)
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H.min = H,.min
Hn= Hi.n+Han
return A



Mergeable-heap operations
» Extracting the minimum node

FIB-HEAP-EXTRACT-MIN(H)

z = H.min
if 7 # NIL
tor each child x of z
add x to the root list of H
xX.p = NIL
remove Z trom the root list of H
it £ == z.right
H.min = NIL
else H.min = z.right
CONSOLIDATE(H )
11 Hn= Hn-1

12 return 7
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Mergeable-heap operations

H . min H_min
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Mergeable-heap operations




Mergeable-heap operations

» The procedure CONSOLIDATE uses an auxiliary array A[0..D(H,n)] to
keep track of roots according to their degrees. If A[i]=y, then y is currently a
root with y:degree=i.



Mergeable-heap operations

CoNSOLIDATE(H)
let A[0.. D(H.n)] be a new array

1

2 fori = 0to D(H.n)

3 Ali] = NIL

4 for each node w in the root list of H
5 X =uw

6 d = x.degree

7 while A[d] £ NIL

8 y = A[d] // another node with the same degree as x
9 it x.kev = y.key

10 exchange x with y

11 Fig-HEAP-LINK(H, y.x)
12 Ald] = NIL

13 d =d+1

14 Ald] = x

15 H.min = NIL
16 fori = 0to D(H.n)
17 it A[i] # NIL

18 it H.min == NIL

19 create a root list for H containing just A[]
20 H.min = Ali]

21 else insert Afi] into H s root list

22 it Afi].key = H.min.key

23 H.min = AJi]

FIB-HEAP-LINK (H, y,x)

| remove y from the root list of H

2 make y achild of x, incrementing x.degree
3 v.mark = FALSE



Fibbonacci-heap operations

FIB-HEAP-DECREASE-KEY (H,x k)
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itk = x.key
error “new key 1s greater than current key”
x.key =k

¥ =x.p
if ¥ £ NIL and x.key < y.key
Cut(H,x,y)

CAsCADING-CuT(H, y)
if x.key < H.min.key
H.min = x

» Decreasing a key and deleting a node

Cur(H,x.v)

remove x from the child list of y, decrementing y.degree
add x to the root list of H

xX.p = NIL

x.mark = FALSE
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'ASCADING-CUT(H, y)

if v.mark == FALSE
y.mark = TRUE

else CuT(H, y,2)
CascADING-CUT(H, z)
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Fibbonacci-heap operations

H.min

ic}@—@ "f":E""' 18 ?
giog o8
Do @

H. mrn

© @@ :H. :% %

H . miin
(b) @ (7 18 ?
24 IYeD) @ a1)
D ® ©
35)

H.min

@ @3-G)HES) f’é“ 18 ?
&
G 62




Fibbonacci-heap operations

» Deleting a node

FiB-HEAP-DELETE(H, x)

| FiB-HEAP-DECREASE-KEY(H, x,—00)
2 FIB-HEAP-EXTRACT-MIN(H)



Fibbonacci-heap operations

» Deleting a node

FiB-HEAP-DELETE(H, x)

| FiB-HEAP-DECREASE-KEY(H, x,—00)
2 FIB-HEAP-EXTRACT-MIN(H)



Bounding maximum degree

>

For each node x within a Fibonacci heap, define size.x to be the number of
nodes, including x itself, in the subtree rooted at x. (Note that x need not be
In the root list—it can be any node at all.)

Size(x) iIs exponential in x:degree.

Let x be any node in a Fibonacci heap, and suppose that x:degree =k. Let
y1, y2,...,yk denote the children of x in the order in which they were linked
to X, from the earliest to the latest. Then, y1:degree >0,...,yi :degree > i-2.

Let x be any node in a Fibonacci heap, and let k=x:degree. Then size.x
>F(k—2) >¢X, where p=(1+sgrt(5))/2.

The maximum degree D(n) of any node in an n-node Fibonacci heap is
O(lg n).
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