Dual problems in linear programming

Yulia Burkatovskaya

Outline

- Dual LP-problems
- Maximum-weight matching
- Assignment problem
- Minimum-cost flow

Dual LP-problems

Initial problem

Objective function

- $L(X)=\sum_{i=1}^{n} c_{i} x_{i} \rightarrow \max$

Subject to

- $\sum_{i=1}^{n} a_{j, i} x_{i} \leq b_{j}, j=\overline{1, k}$;
- $\sum_{i=1}^{n} a_{j, i} x_{i}=b_{j}, j=\overline{k+1, m} ;$
- $x_{i} \geq 0, i=\overline{1, l}$.

Dual problem

Objective function

- $l(Y)=\sum_{j=1}^{m} b_{j} y_{j} \rightarrow \min$

Subject to

- $\sum_{j=1}^{m} a_{j, i} y_{j} \geq c_{i}, i=\overline{1, l}$;
- $\sum_{j=1}^{m} a_{j, i} y_{j}=c_{i}, i=\overline{l+1, n} ;$
- $y_{j} \geq 0, j=\overline{1, k}$.

Dual LP-problems

- Complementary slackness conditions

$$
\begin{aligned}
& L(X)=\sum_{i=1}^{n} c_{i} x_{i}=\sum_{i=1}^{l} c_{i} x_{i}+\sum_{i=l+1}^{n} c_{i} x_{i} \leq \\
& \leq \sum_{i=1}^{l} x_{i} \sum_{j=1}^{m} a_{i, j} y_{j}+\sum_{i=l+1}^{n} x_{i} \sum_{j=1}^{m} a_{i, j} y_{j}= \\
& =\sum_{j=1}^{k} y_{j} \sum_{i=1}^{n} a_{j, i} x_{i}+\sum_{j=k+1}^{m} y_{j} \sum_{i=1}^{n} a_{j, i} x_{i} \leq \\
& \leq \sum_{j=1}^{k} b_{j} y_{j}+\sum_{j=k+1}^{m} b_{j} y_{j}=\sum_{j=1}^{m} b_{j} y_{j}=l(Y)
\end{aligned}
$$

So, $L(X) \leq l(Y)$ and
$L(X)=l(Y)$ iff (all summands are non-negative!):
(a) $\sum_{i=1}^{l} x_{i}\left(\sum_{j=1}^{m} a_{i, j} y_{j}-c_{i}\right)=0$;
(b) $\sum_{j=1}^{k} y_{j}\left(b_{j}-\sum_{i=1}^{n} a_{j, i} x_{i}\right)=0$.

Dual LP-problems

- Complementary slackness conditions

So, $L(X)=l(Y)$ iff:
(a) For all $i=\overline{1, l}$, either $x_{i}=0$ or the corresponding condition in the dual problem turns into the equality $\sum_{j=1}^{m} a_{j, i} y_{j}=c_{i}$;
(b) For all $j=\overline{1, k}$, either $y_{j}=0$ or the corresponding condition in the initial problem turns into the equality $\sum_{i=1}^{n} a_{j, i} x_{i}=b_{j}$.

To solve the LP problem, we can find values (X, Y), which satisfy the complementary slackness conditions. These values provide the maximum value of the objective function $L(X)$ and the minimum value of the objective function $l(Y)$.

Maximum-weight matching

- Maximum-weight matching in a weighted graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is a matching with the maximum sum of the edge weights.

Maximum-weight matching

- Vertices - people.
- Two persons, working in pair, produce a certain amount of a product. How to match people, to produce the greatest amount of product?

Maximum-weight matching

- Problem statement

$$
\begin{gathered}
\sum_{j=1}^{q} c_{j} \xi_{j} \rightarrow \max ; \\
\sum_{j=1}^{q} I_{k j} \xi_{j} \leq 1, \quad \forall k=1, \ldots, p ; \\
\xi_{j} \in\{0,1\} .
\end{gathered}
$$

Maximum-weight matching

The problem can be transformed into the perfect maximum-weight matching problem:

- add artificial edges with the weight $-\infty$;
- add an artificial vertex if the number of vertices is odd.

Maximum-weight matching

- Problem statement
- Solutions: $\xi_{j} \in\{0,1,1 / 2\}$

$$
G\left(V_{r}, E_{r}\right): V_{r}=2 p_{r}+1
$$

$$
\begin{gathered}
\sum_{j=1}^{q} c_{j} \xi_{j} \rightarrow \max \\
\sum_{j=1}^{q} I_{k j} \xi_{j}=1, \quad \forall k=1, \ldots, p \\
\xi_{j} \in\{0,1\}
\end{gathered}
$$

Maximum-weight matching

- Problem statement (non-discrete!)

$$
\begin{gathered}
\sum_{j=1}^{q} c_{j} \xi_{j} \rightarrow \max ; \\
\text { (a) } \sum_{j \in T_{k}} \xi_{j}=1, \quad k=\overline{1, p}, T_{k}=\{j=(i, k)\} ; \\
\text { (b) } \sum_{j \in E_{r}} \xi_{j} \leq p_{r}, V_{r} \subseteq V,\left|V_{r}\right|=2 p_{r}+1 ; \\
\xi_{j} \geq 0, j=\overline{1, q} .
\end{gathered}
$$

- (a) every vertex is covered by an edge;
- (b) in every odd-cardinality set of vertices, every vertex is covered by at most one edge.

Maximum-weight matching

Dual problem statement

- π_{i} - variables associated with vertices
- λ_{r} - variables associated with odd-cardinality sets of vertices

$$
\begin{aligned}
& \sum_{j=1}^{p} \pi_{j}+\sum_{V_{r}} p_{r} \lambda_{r} \rightarrow \min ; \\
& \forall j=1, \ldots, q, \quad e_{j}=\left(v_{i}, v_{k}\right), \quad F_{j}=\left\{V_{r} \mid e_{j} \in E_{r}\right\} ; \\
& \quad \lambda_{j} \geq 0, \quad \forall V_{r} .
\end{aligned}
$$

Maximum-weight matching

Complementary slackness conditions

- For every $\xi_{j}, j=(i, k)$ either $\xi_{j}=0$, or the equality holds in the corresponding constraint $\pi_{i}+\pi_{k}+\sum_{V_{r} \in F_{j}} \lambda_{r}=c_{j}$ (the edge $j=(i, k)$ can belong to a matching only if the equality holds);
- For every λ_{r}, either $\lambda_{r}=0$, or the equality holds in the corresponding constraint $\sum_{j \in E_{r}} \xi_{j}=p_{r}\left(\lambda_{r}>0\right.$ only if the oddcardinality set of vertices has a maximum-cardinality matching).

Maximum-weight matching

- Start. Choose initial values of the variables.
- For every $\lambda_{r}, \lambda_{r}=0$;
- For every edge $j=(i, k), \pi_{i}+\pi_{k} \geq c_{j}$.
- Equality partial graph $G^{\prime}=\left(V, E^{\prime}\right): \mathrm{E}^{\prime}=\left\{j=(i, k), \pi_{i}+\pi_{k}=c_{j}\right\}$.
- An optimal matching contains only edges from the EPG.

Maximum-weight matching

- Let the current graph (after a number of blossom shrinkings), be G_{f-1} and its equality partial graph be G_{f}^{\prime}. $\ln G_{f}^{\prime}$, start growing an alternating tree T until the tree either:
- A. blossoms;
- B. augments;
- C. becomes Hungarian.

Maximum-weight matching

- Case A. In this case the blossom is shrunk thus obtaining a new graph G_{f} and its equality partial graph G_{f+1}^{\prime}.
- The shrinking of a blossom leaves the remaining T with the correct structure of an alternating tree.
- T could be retained and growing of the tree can continue.

Maximum-weight matching

- Case B. In this case a better matching with larger cardinality is obtained.
- T must now be discarded and a new tree grown in the same G_{f}^{\prime} by choosing some remaining unsaturated vertex of G_{f}^{\prime} as the new root.
- Once T is discarded and a new tree is started to be grown in G_{f}^{\prime} some of the pseudo-vertices of G_{f}^{\prime} (formed by the shrinking of earlier blossoms) can now appear labeled inner in the new tree.

Maximum-weight matching

- Case C. In this case, the weight vector $\left[\pi_{i}, \lambda_{r}\right]$ is changed for the current graph G_{f+1} so that a new EPG is obtained. The changes in [π_{i}, λ_{r}] are chosen so that the new G_{f}^{\prime} will:
- (a) Continue to satisfy the complementary slackness conditions; and
- (b) Either:
- the current alternating tree in the old G_{f}^{\prime} can be grown further, or it blossoms, or augments-using new links that enter the new G_{f}^{\prime};
- Or: some pseudo-vertex of the current alternating tree which was labelled inner is disposed of;
- Or: we prove that no perfect matching exists in G_{0}.

Maximum-weight matching

- For the links $j=(i, k)$ in G_{f+1} but not in G_{f}^{\prime}, with one terminal vertex in the current alternating tree T and labeled outer, and the other terminal vertex not in T calculate:

$$
\Delta_{1}=\min _{j}\left\{\pi_{i}+\pi_{k}-c_{j}\right\}
$$

- Then,

$$
\Delta=\min \left\{\Delta_{1}, \Delta_{2}, \Delta_{3}\right\}
$$

Maximum-weight matching

- For the links $j=(i, k)$ in G_{f+1} but not in G_{f}^{\prime}, with both terminal vertices in T and both labelled outer calculate:

$$
\Delta_{2}=\frac{1}{2} \min _{j}\left\{\pi_{i}+\pi_{k}-c_{j}\right\}
$$

Maximum-weight matching

- For the sets S_{r} of vertices of G forming an outermost pseudovertex of T labelled inner calculate:

$$
\Delta_{3}=\frac{1}{2} \min \left\{\lambda_{r}\right\}
$$

Maximum-weight matching

- For every vertex k of G which is an outer vertex of T or is contained in a pseudo-vertex of \boldsymbol{T} labelled outer, decrease π_{k} to $\pi_{k}-\Delta$.
- For every vertex k of G which is an inner vertex of T or is contained in a pseudo-vertex of \boldsymbol{T} labelled inner, increase π_{k} to $\pi_{k}+\Delta$.
- For every set S_{r} of vertices of G which forms an outermost pseudovertex of \boldsymbol{T} labelled outer, increase λ_{r} to $\lambda_{r}+2 \Delta$.
- For every set S_{r} of vertices of G which forms an outermost pseudovertex of \boldsymbol{T} labelled inner decrease λ_{r} to $\lambda_{r}-2 \Delta$.

Maximum-weight matching

$$
a-\text { root }
$$

$a b-$ augmenting path

d - root
Hungarian tree
D1:
(d,e): 6+5-5-6
(d,h): $6+5-1=10$
$(\mathrm{d}, \mathrm{g}): 6+0-3=2 \mathrm{~min}$
D2:
(a,d): $(0+6-4) / 2=1 \mathrm{~min}$
D3: no
D $=1=$ D 2

Maximum-weight matching


```
d - root
Hungarian tree
D1:
        (d,e): 6+5-5=6
        (d,h): 6+5-1=10
        (d,g): 6+0-3=2 min
    D2:
        (a,d): (0+6-4)/2=1 min
    D3: no
    D=1=D2
```


dba - blossom Lambda $(\mathrm{dba})=0$

Maximum-weight matching

d - root
dba - blossom
Lambda $(\mathrm{dba})=0$

d* - root

Hungarian tree
D1:
$(\mathrm{d}, \mathrm{g}): 5+0-3=2$
(d,h): $5+5-1=9$
(d,e): $5+5-5=5$
(b,e): $2+5-6=1 \mathrm{~min}$
(b,f): $2+2-2=2$
(b,c): $2+6-7=1 \mathrm{~min}$
D2: no
D3: no
$\mathrm{D}=\mathrm{l}=\mathrm{D} 1$

Maximum-weight matching

d* - root
Hungarian tree
D1:
$(\mathrm{d}, \mathrm{g}): 5+0-3=2$
(d,h): $5+5-1=9$
(d,e): $5+5-5=5$
(b,e): $2+5-6=1 \mathrm{~min}$
(b,f): $2+2-2=2$
(b,c): $2+6-7=1 \mathrm{~min}$
D2: no
D3: no
$\mathrm{D}=1=\mathrm{D} 1$

Maximum-weight matching

$$
\mathrm{d}^{*} \text { - root }
$$

$\mathrm{d}^{*} \mathrm{c}$ - augmenting path

Maximum-weight matching

$$
\begin{aligned}
& \mathrm{h} \text { - root } \\
& \mathrm{hf}-\text { augmenting path }
\end{aligned}
$$

e - root
Hungarian tree DI:
(h,i): $5+2-1=6$
(h,g): $5+0-2=3 \mathrm{~min}$
D2:
(h,e): $(5+5-4) / 2=3 \mathrm{~min}$ D3:
d*: 2/2=1 min
$\mathrm{D}=\mathrm{I}=\mathrm{D} 3$

Maximum-weight matching

e - root
Hungarian tree
D1:
(h,i): $5+2-1=6$
(h,g): $5+0-2=3 \mathrm{~min}$
D2:
(h,e): $(5+5-4) / 2=3 \mathrm{~min}$
D3:
d*: 2/2=1 min D=1=D3

e - root
Hungarian tree D1:
(h,i): $4+2-1=5$
$(\mathrm{h}, \mathrm{g}): 4+0-2=2 \mathrm{~min}$
(e,d): $4+5-5=4$
D2:
(h,e): $(4+4-4) / 2=2 \mathrm{~min}$ D3: no
$\mathrm{D}=\mathrm{l}=\mathrm{DI}=\mathrm{D} 2$

Maximum-weight matching

e-root
Hungarian tree
D1:
(h,i): $4+2-1=5$
$(\mathrm{h}, \mathrm{g}): 4+0-2=2 \mathrm{~min}$
(e,d): 4+5-5=4
D2:
(h,e): $(4+4-4) / 2=2 \mathrm{~min}$
D3: no
$\mathrm{D}=\mathrm{l}=\mathrm{D} 1=\mathrm{D} 2$

ebcfhg - augmenting path

Maximum-weight matching


```
e - root
ebcfhg - augmenting path
```

 i - root
 Hungarian tree D1:
(i,f): $2+5-4=3 \mathrm{~min}$ (i,h): $2+2-1=3 \mathrm{~min}$ D2: no
D3: no
$\mathrm{D}=3=\mathrm{D} 1$

Maximum-weight matching

i - root
Hungarian tree D1:
(e,d): $2+5-5=2 \mathrm{~min}$ (g,d): $0+5-3=2 \mathrm{~min}$ D2: no
D3: no
$\mathrm{D}=1=\mathrm{D} 1$

Maximum-weight matching

[^0]
i - root
Hungarian tree D1: no
D2: no D3: no

Assignment problem

- To find, in a weighted bipartite graph, a matching in which the sum of weights of the edges is as small (large) as possible.

Assignment problem

Bipartite graph:

- No odd-length cycles;
- No blossoms!
- Hungarian algorithm.

Assignment problem

Initial problem

Objective function:

$$
\sum_{j=1}^{q} c_{j} \xi_{j} \rightarrow \min
$$

Subject to:

$$
\begin{gathered}
\sum_{j \in T_{k}} \xi_{j}=1, \\
k=\overline{1, p}, T_{k}=\{j=(i, k)\} ; \\
\xi_{j} \geq 0, j=\overline{1, q} .
\end{gathered}
$$

Dual problem

Objective function:

$$
\sum_{i=1}^{p} \pi_{j} \rightarrow \max ;
$$

Subject to:

$$
\begin{gathered}
\pi_{i}+\pi_{k} \leq c_{j} \\
\forall j=(i, k), j=\overline{1, q}
\end{gathered}
$$

Minimum-cost flow

- Residual network

[^0]: i - root
 Hungarian tree
 D1:
 (e,d): 2+5-5=2 min
 (g,d): $0+5-3=2 \mathrm{~min}$
 D2: no
 D3: no
 D=1=D1

