
Compilers
module of the course

“Professional English”

Yulia Burkatovskaya
Department of Computer Engineering

Associate professor

3. Parsing

 Basics of parsing

 Context-free grammar

 Parse tree

 Ambiguity

 Associativity and precedence

 Left-recursion

 Error-recovery

3.1. Basics of parsing

Syntax analysis tasks:

 To understand the meaning

of the sequence of tokens

 To distinguish between

valid and invalid strings of

tokens

 To construct a parse tree

for the semantic analyzer

Sequence of tokens

Parse tree

Lexical Analyzer

Parser

Semantic analyser

Basics of parsing

Example

if x==0 then y=1; else z=2;

Lexical Analyzer

if ws id rel int then assign

else

;ws ws id int

assign ;ws id int

Parser

id rel int

relation

predicate

assignment

then-structure

assignment

else-structure

if-then-else-structure

id assign int id assign int

Basics of parsing

 Regular languages

Counting “mod k”.

 Context-free languages

Recursive structures.

if …

then …

if …

then …

…

else …

else …

0 1

23

1

1

1

1

0

0
0

0

Basics of parsing

Not every string of tokens is a program!

 Regular expressions describe tokens.

 Context-free grammars describe valid strings of tokens.

3.2. Context-free grammars

Context-free grammar G=<A,T,N,P>

 A – a start symbol;

 T – a set of terminals;

 N – a set of non-terminals;

 P – a set of productions.

Production: X → Y1Y2…Yk;

X N;

Yi T N {ε}.

A set of productions: X → S1 | S2 | … | Sj.

Context-free grammars

 Example (if-else structure)

EXP → if EXP then ST;

EXP → if EXP then ST; else ST;

EXP → ID

EXP → ID COM ID

EXP → ID COM INT

ST → ID = ID | ID = INT

COM → == | < | <= | > | >=

ID → LET | ID LET | ID DIG

INT → DIG | INT DIG

LET → a | … | z | A | … | Z

DIG → 0 | … | 9

 EXP=EXPRESSION

 ST=STATEMENT

 ID=IDENTIFIER

 COM=COMPARISON

 INT=INTEGER

 LET=LETTER

 DIG=DIGIT

Context-free grammars

Derivation

Let G=<A,T,N,P> be a CFG and:

 S1S2…Sk…Sn (T N {ε})*;

 Sk → Y1…Yj P,

then S1S2…Sk…Sn → S1S2…Y1…Yj …Sn is a step of

derivation.

α0 → α1 → … → αn: αn derives from α0 in n steps (α0 →* αn) .

Context-free grammars

EXP → if EXP then ST;

EXP → if EXP then ST; else ST;

EXP → ID

EXP → ID COM ID

EXP → ID COM INT

ST → ID = ID | ID = INT

COM → == | < | <= | > | >=

ID → LET | IDLET | IDDIG

INT → DIG | INTDIG

LET → a | … | z | A | … | Z

DIG → 0 | … | 9

EXP → if EXP then ST; → if if EXP then ST; else ST; then ST; →

if if ID COM INT then ST; else ST; then ST; →

if if ID COM INT then ST; else ST; then ID = ID; → …

if if x1 <= 12 then x2 = 23; else y = z; then z = x2;

Context-free grammars

 Leftmost derivation: the leftmost non-terminal is always

chosen to replace.

EXP → if EXP then ST; → if if EXP then ST; else ST; then ST; →

if if ID COM INT then ST; else ST; then ST; → ….

 Rightmost derivation: the rightmost non-terminal is always

chosen to replace.

EXP → if EXP then ST; → if EXP then ID = ID; →

if EXP then ID = IDDIG; → if EXP then ID = ID2;

Context-free grammars

L(G)={α: α T* {ε}, A →* α} – the language generated by G

(context-free language).

G(A,T,N,P) and G’(A’,T,N’,P’) are equivalent if they generate the

same language, i.e. L(G)=L(G’).

Implementing tools are sensitive to grammar.

E → T

T → E+T

T → E*T

T → ID

T → (E)

E → (E)

E → E+E

E → E*E

E → ID

CFG vs Rexp

 Separating the syntactic structure of a language into lexical
and nonlexical parts provides a convenient way of
modularizing the front end of a compiler into two manageable-
sized components.

 The lexical rules of a language are frequently quite simple,
and to describe them we do not need a notation as powerful
as grammars.

 Regular expressions generally provide a more concise and
easier-to-understand notation for tokens than grammars.

 More efficient lexical analyzers can be constructed
automatically from regular expressions than from arbitrary
grammars.

3.3. Parse tree

Tree terminology

A

B C D

E F G

J

H

I

nodes

leafs

edges

root

parent of J, K

K

children of H

siblings

interior

nodes

descendants

of B

ancestors

of H

Parse tree

1

2 3 4

5 6 7

10

8

9 11

breadth-first search

1

2 7 8

3 4 5

10

9

6 11

depth-first search

Parse tree

Parse tree is a graphical representation of a derivation.

 The root is labeled by the start symbol.

 Leaves are labeled by terminals. These labels read from left

to right constitute a sequential form called the yield or

frontier of the tree.

S

Y1 Yi Yk... ...

S → Y1...Yi...Yk

Parse tree

EXP → if EXP then ST; → if EXP then ID = ID; →

if EXP then ID = IDDIG; → if EXP then ID = ID2;

EXP

if EXP then ST ;

ID = ID

ID DIG

2

3.4. Ambiguity

 Grammar: E → E+E|E*E|(E)|ID

 String: ID*ID+ID

E

E + E

E * E ID

IDID

E

E * E

E + EID

IDID

Ambiguity

 A grammar is ambiguous if it has more than one parse

tree for some string.

 It can cause different interpretations of a program!

E

E + E

E * E ID

IDID

E

E * E

E + EID

IDID

(id*id)+id id*(id+id)

Ambiguity

To eliminate ambiguity:

 to rewrite a grammar;

E → E’+E|E’

E’ → ID*E’|(E)*E’|(E)|D

E

E’ + E

ID * E

ID

E’

ID

E’

(id*id)+id

Ambiguity

 to use additional rules to resolve the ambiguities;

If-else grammar:

 E → if E then E | if E then E else E | ID

if E1 then if E2 then E3 else E4

E

Eif then E

Eif then E else E

E1

E2 E3 E4

E

Eif then E

Eif then E

else E

E1

E2 E3

E4

Ambiguity

 General rule: “Match each else with the closest unmatched

then“.

if E1 then if E2 then E3 else E4

E

Eif then E

Eif then E else E

E1

E2 E3 E4

Ambiguity

Unambiguous if-else grammar:

 STMT → MATCHEDSTMT | OPENSTMT

 MATHEDSTMT → if EXPR then MATHEDSTMT else

MATCHEDSTMT

 OPENSTMT → if EXPR then STMT | if EXPR then

MATCHEDSTMT else OPENSTMT

3.5. Associativity and precedence

Associativity of operators:

 left-associated operators (-,+,*,/,…) – an operand with

operator signs on both sides of it belongs to the operator to its

left;

 right-associated operators (=,exponentiation,…) – an operand

with operator signs on both sides of it belongs to the operator

to its right.

.

Associativity and precedence

E → a=E | … | z=E | a | … | z

E

=a E

=b E

c

a=(b=c)

E → E+a | … | E+z | a | … | z

E

+E c

+E b

a

(a+b)+c

Associativity and precedence

We say that * has higher precedence than + if * takes its

operands before + does.

Operators *, / have higher precedence than +, -

a+b*c

a+(b*c) (a+b)*c

Associativity and precedence

Arithmetic grammar

 E → LET = E | LET = EXPR | LET

 EXP → EXP+TERM | EXP-TERM | TERM

 TERM → TERM*FACTOR | TERM/FACTOR | FACTOR

 FACTOR → DIG | (EXP)

 DIG → 0 | … | 9

 FACTOR → LET | (EXP)

 LET → a | … | z

3.6. Left-recursion

 Left-recursive grammar: A → Aa

Left-recursive arithmetic grammar:

 E → E+T | T

 T → T*F | F

 F → (E) | ID

Non-left-recursive arithmetic grammar:

 E → TE’ | T

 E’ → +TE’ | +T

 T → FT’ | F

 T’ → *FT’ | *F

 F → (E) | ID

Left-recursion

Left-recursive grammar:

 A → Aw1 | … | Awn

 A → v1 | … | vm

Non-left-recursive grammar:

 A → v1A’ | … | vmA’

 A → v1 | … | vm

 A’ → w1A’ | … | wnA’

 A’ → w1 | … | wn

3.7. Left-factoring

 When the choice between two alternative productions for a

non-terminal is not clear, we may be able to rewrite the

productions to defer the decision until enough of the input has

been seen that we can make the right choice.

If-else grammar:

 S → if E then S | if E then S else S | ID

If-else grammar after left-factoring:

 S → if E then S S’ | ID

 S’ → ε | else S

Left-factoring

Before:

 A → σα

 A → σβ

σ is the longest common prefix

After:

 A → σA’

 A’ → α

 A’ → β

3.8. Error-recovery

Syntactic errors include

 misplaced semicolons or extra or missing braces; that is, "{" or

" } . " ;

 in C or Java, the appearance of a case statement without an

enclosing switch.

Error-recovery strategies:

 panic-mode;

 phrase-level;

 error-productions;

 global-correction.

Error-recovery

Panic-mode: the parser discards input symbols one at a time

until one of a designated set of synchronizing tokens

(semicolon ;, brace }, …) is found.

 Panic-mode correction often skips a considerable amount

of input without checking it for additional errors (-);

 it has the advantage of simplicity (+);

 it is guaranteed not to go into an infinite loop (+).

Skip ahead to next integer (2) and then continue.

(1++2)*3

Error-recovery

Phrase-level: a parser may perform local correction on the
remaining input; that is, it may replace a prefix of the
remaining input by some string that allows the parser to
continue (to replace a comma by a semicolon, delete an
extraneous semicolon, or insert a missing semicolon).

 It can lead to infinite loops (for example, if we always inserted
something on the input ahead of the current input symbol) (-).

 Phrase-level replacement has been used in several error-
repairing compilers, as it can correct any input string (+).

 It has the difficulty in coping with situations in which the actual
error has occurred before the point of detection (-).

Error-recovery

Error Productions: known common mistakes are specified in the
grammar. A parser constructed from a grammar detects the
anticipated errors when an error production is used during
parsing.

 The parser can then generate appropriate error diagnostics
about the erroneous construct that has been recognized in the
input (+).

 It complicates the grammar (-).

 5x instead of 5*x: add the production E→ EE

Error-recovery

Global Correction: find a correct “nearby” program trying token

insertions and deletions and other changes in tokens.

 Hard to implement (-).

 Slows down parsing of correct programs (-).

 “Nearby” is not necessarily “the intended” program (-).

Error-recovery

Past

 Slow recompilation cycle (even once a day)

 Find as many errors in one cycle as possible

Present

 Quick recompilation cycle

 Users tend to correct one error/cycle

 Complex error recovery is less compelling

