Compilers

module of the course
“Professional English”

Yulia Burkatovskaya

Department of Computer Engineering

Associate professor

2. Lexical analysis

Basics of lexical analysis

Regular languages and regular expressions
Finite automata

Regular expression into NFA

NFA into DFA

Table implementation of FA

Lexical errors

2.1. Basics of lexical analysis

Removal of white spaces and comments

Before:
if (x==0) then

y=1; //case 1
else

z=2; //case 2

After:
if (x==0) then\n\ty=1l;\nelse\n\tz=2;

Basics of lexical analysis

Token classes
Identifiers
Sequence of letters and digits starting with a letter
Keywords
if, then, else...
Whitespaces
Non-empty sequence of blanks, newlines and tabs.
Integers
Non-empty sequence of digits
Operators
=, ==, <, >,

Etc.

Basics of lexical analysis

Lexical analysis tasks:
To classify substrings

according to token classes;

To form tokens for the

parser.

String

l

Lexical Analyzer

lexeme

{ token type

token

l

Sequence of tokens

l

Parser

Basics of lexical analysis

FORTRAN EXAMPLE

do 5 N=1,25 do 5 N=1.25
Cycle till the label 5, the Blanks are unimportant.
variable N changes from 1 vriables can be undeclared.
to 25. do5N=1.25
Assignment of the variable
doSN.

We don’t know if ‘do’ is a keyword without going ahead.

Basics of lexical analysis

Reserved words

C++ example (keywords are PL/1 example (keywords are
reserved): not reserved):
1f els 1f else
then then
the=els; then=else
else else

els=the; else=then

Basics of lexical analysis

1f
Recognition: 1f X <
, |

To read left-to-right
recognizing one token at a

time;
To recognize correctly the —
token class for the == < -
considering lexeme; ;/é
To minimize going ahead; —
To check reserved words
and to use prioritizing. 1) keyword
if <
2) identifier

2.2. Regular languages and
regular expressions

Let X be an alphabet, € is an empty symbol.

A string is any sequence of symbols from X.

X* is the set of all strings. Any LcX* is a language.
Union L1uL2={a: aelL1 or aelL2}
Concatenation L1L2={aB: aelL1, BelL2}
lteration: L*={e} UL ULL ULLL...

Example

L1={a,bc}, L2={aa,b,bc}

L1 uL2={a,bc,aa,b}

L1L2={aaa,ab,abc,bcaa,bcb,bcbc}
L1*={¢,a,bc,aa,abc,bca,bcbc,aaa,aabc,abca,abcbc,bcaa,...}

Regular languages and regular
expressions

Regular languages:
& is a Rlang;
{e} is a Rlang;
{x} for any xeX is a Rlang;
If L1 and L2 are Rlangs then L1UL2 is a Rlang;
If L1 and L2 are Rlangs then L1L2 is a Rlang;
If L is a Rlang then L* is a Rlangs;
There are no other Rlangs.

Regular languages and regular
expressions

Regular expressions:

= Jis aRexp;

= ¢isaRexp;

m XxeXis aRexp;

= If R1 and R2 are Rexps then R1+R2 is a Rexp;

= [|f R1 and R2 are Rexps then R1R2 is a Rexp;

= If Ris a Rexp then R* is a Rexp;
% %)
£ {€}
X {x}
R1+R2 L(R1)UL(R2)
R1R2 L(R1)L(R2)
R* (L(R))*

Regular languages and regular
expressions

Prioritizing:
lteration
Concatenation
Union

Examples:
(01+1)*(001+000+0+¢) is a Rexp;
0™ n>0 isn’'t Rexp.

Regular languages and regular

expressions

Laws for Rexps
R+S=S4+R R+R=R,(

R+S)+T =R+ (S+T),0+ R =R,

Re=:R =R, (RS)T = R(ST), VR = R} = I;
R(S+T)=RS+RT, (R+S)T = RT + ST;
R*=c+R+...+ R'R*, RR* = R*R, R(SR)* = (RS)*R:
R*RR* = RR*, RR* + ¢ = R*.

Example

b(b+ aa™b) = b(sb+ aa™b)

= bz + aa”)b = ba™b.

Regular languages and regular
expressions

Extensions of Rexps
One or more instances: R+=RR*
Zero or one instance: R?
Character classes: [a-z]=a+...+z
Exclusion: [*a-z] — everything except [a-Z]
Any symbol except eof: .

2.3. Finite automata

Regular expression = specification
Finite automata = implementation

Finite automata A=<X,Q,q0,F,W>:
X# — an input alphabet;
Q — a set of states;
q0eQ — a start state;

FcQ — a set of accepting
(final) states;

Y. XxQ—Q — a transition
function.

state

start state

accepting state

transition

g-transition

ZZ@cBo

Finite automata

Deterministic finite automata (DFA):
no e-transitions;
one transition per one pair ‘symbol-state’.

Nondeterministic finite automata (NFA):
e-transitions are allowed:
multiply transitions per one pair ‘symbol-state’ are allowed.

:

[Finite automata

DFA (one path for one string)
b
(D)

NFA (several paths)

Finite automata

The finite automata A accepts the string a=a1a2...an if there is a
path in the automata diagram from the start state to one of
accepting states where arches are marked by the symbols
al, a2,...,an and probably by .

The set of accepted strings form the accepted language L(A).
Languages accepted by FA are called automata languages.

Example
a, aa, ab, bbb are accepted
b is not accepted

[Finite automata

©

\@“

- : [
ojoso

[Finite automata]

Kleene
theorem

powerset
construction

2.4. Rexp into NFA

Kleene theorem. For every regular expression R, we can
construct a DFA accepting the same language.

R=0 {) ©'
R=a {) “ ®|

[Rexp into NFA
R=R1+R2 {:;:z::: ::::Qii)
R=R1R2 {>—~ ARI{>+—~ ARE{)

R=R1*

[Rexp into NFA

Example. R = b+ (a+ bb)(b+ ab)*a

(1) om0

b

Rexp into NFA

ab
T
bb b
r'/.r \i
|'/ 0 \". a =J'/ 9 \". AN ,'f/ 3 \"*."" - =JI/ A \". a [ff lH ?l
N N/ __/ N '\Qr;:”/
o b /
7\
N
/’" \ J
r ___, /‘ \
b/ G\‘- b a b b
oV N
/TN - o N\ e N/ 5 N/ = 77N VRN
l:.- 0 -.:= 1 ;-II:.- 2 -.Ii & \u_:i.- 3 ,Iri_._, = __{ _]: -.Ii 1l _.{ {/- l \\:I '-II
N N N4 N &;:?
o b /

| 2.5. NFA into DFA

[NFA into DFA

g-closure of the state q:
[a]={p: p=¥e(e,q);

Example e a
q0]1={q0,q1} N

4o
q1]={q1}
92]={q2}
q3]={a3,92}

[NFA into DFA

Q'={[p]: peQt}

QO'={[p]: pe[qOe]}
FO'={[p]: [P]nFe=J}

Example
q0]={[q90].[a1]}
q1]={q1}
q2]={q2}
q3]={q3,92}

[NFA into DFA

Y(x,[p])={ [s]: se{ [We(x,q)], q €[p] } }

[NFA into DFA

Q=2%

q0=Q0’

F={ Pe29: PnF'#J }
Wix P)={¥'(x,p): p P}

Example
s0={q0,q1}
s1={q2}
s2={q2,q3}
$3={q0,91,92,93}

NFA into DFA

DFA:
faster to execute (one transition per pair symbol-state);
bigger number of states (probably exponentially).

NFA:
smaller number of states (probably exponentially);
slower to execute (more then one transition).

[2.6. Table implementation of FA

.
X q

€ Q2

:

Z
X
~
o)
-l\)
QO
w
—

2.7. Lexical errors

Lexical errors include misspellings of identifiers, keywords or
operators, e.g.

8abcdef
ifff

If Ais a FAand ag¢L(A) then a contains a lexical error.

