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2.1. Basics of lexical analysis

Removal of white spaces and comments

Before:
if (x==0) then

y=1; //case 1
else

z=2; //case 2

After:
if (x==0) then\n\ty=1l;\nelse\n\tz=2;



Basics of lexical analysis

Token classes
Identifiers
Sequence of letters and digits starting with a letter
Keywords
if, then, else...
Whitespaces
Non-empty sequence of blanks, newlines and tabs.
Integers
Non-empty sequence of digits
Operators
=, ==, <, >,

Etc.



Basics of lexical analysis

Lexical analysis tasks:
To classify substrings

according to token classes;

To form tokens for the

parser.
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Basics of lexical analysis

FORTRAN EXAMPLE

do 5 N=1,25 do 5 N=1.25
Cycle till the label 5, the Blanks are unimportant.
variable N changes from 1 vriables can be undeclared.
to 25. do5N=1.25
Assignment of the variable
doSN.

We don’t know if ‘do’ is a keyword without going ahead.



Basics of lexical analysis

Reserved words

C++ example (keywords are PL/1 example (keywords are
reserved): not reserved):
1f els 1f else
then then
the=els; then=else
else else

els=the; else=then



Basics of lexical analysis

1f
Recognition: 1f X <
, |

To read left-to-right
recognizing one token at a

time;
To recognize correctly the —
token class for the == < -
considering lexeme; ;/é
To minimize going ahead; —
To check reserved words
and to use prioritizing. 1) keyword
if <
2) identifier




2.2. Regular languages and
regular expressions

Let X be an alphabet, € is an empty symbol.

A string is any sequence of symbols from X.

X* is the set of all strings. Any LcX* is a language.
Union L1uL2={a: aelL1 or aelL2}
Concatenation L1L2={aB: aelL1, BelL2}
lteration: L*={e} UL ULL ULLL...

Example

L1={a,bc}, L2={aa,b,bc}

L1 uL2={a,bc,aa,b}

L1L2={aaa,ab,abc,bcaa,bcb,bcbc}
L1*={¢,a,bc,aa,abc,bca,bcbc,aaa,aabc,abca,abcbc,bcaa,...}



Regular languages and regular
expressions

Regular languages:
& is a Rlang;
{e} is a Rlang;
{x} for any xeX is a Rlang;
If L1 and L2 are Rlangs then L1UL2 is a Rlang;
If L1 and L2 are Rlangs then L1L2 is a Rlang;
If L is a Rlang then L* is a Rlangs;
There are no other Rlangs.



Regular languages and regular
expressions

Regular expressions:

= Jis aRexp;

= ¢isaRexp;

m XxeXis aRexp;

= If R1 and R2 are Rexps then R1+R2 is a Rexp;

= [|f R1 and R2 are Rexps then R1R2 is a Rexp;

= If Ris a Rexp then R* is a Rexp;
% %)
£ {€}
X {x}
R1+R2 L(R1)UL(R2)
R1R2 L(R1)L(R2)
R* (L(R))*




Regular languages and regular
expressions

Prioritizing:
lteration
Concatenation
Union

Examples:
(01+1)*(001+000+0+¢) is a Rexp;
0™ n>0 isn’'t Rexp.



Regular languages and regular

expressions

Laws for Rexps
R+S=S4+R R+R=R,(

R+S)+T =R+ (S+T),0+ R =R,

Re=:R =R, (RS)T = R(ST), VR = R} = I;
R(S+T)=RS+RT, (R+S)T = RT + ST;
R*=c+R+...+ R'R*, RR* = R*R, R(SR)* = (RS)*R:
R*RR* = RR*, RR* + ¢ = R*.

Example

b(b+ aa™b) = b(sb+ aa™b)

= bz + aa” )b = ba™b.



Regular languages and regular
expressions

Extensions of Rexps
One or more instances: R+=RR*
Zero or one instance: R?
Character classes: [a-z]=a+...+z
Exclusion: [*a-z] — everything except [a-Z]
Any symbol except eof: .



2.3. Finite automata

Regular expression = specification
Finite automata = implementation

Finite automata A=<X,Q,q0,F,W>:
X# — an input alphabet;
Q — a set of states;
q0eQ — a start state;

FcQ — a set of accepting
(final) states;

Y. XxQ—Q — a transition
function.

state

start state

accepting state

transition

g-transition

ZZ@cBo



Finite automata

Deterministic finite automata (DFA):
no e-transitions;
one transition per one pair ‘symbol-state’.

Nondeterministic finite automata (NFA):
e-transitions are allowed:
multiply transitions per one pair ‘symbol-state’ are allowed.

:




[Finite automata

DFA (one path for one string)
b
(D)

NFA (several paths)




Finite automata

The finite automata A accepts the string a=a1a2...an if there is a
path in the automata diagram from the start state to one of
accepting states where arches are marked by the symbols
al, a2,...,an and probably by .

The set of accepted strings form the accepted language L(A).
Languages accepted by FA are called automata languages.

Example
a, aa, ab, bbb are accepted
b is not accepted




[Finite automata
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[Finite automata ]

Kleene
theorem

powerset
construction




2.4. Rexp into NFA

Kleene theorem. For every regular expression R, we can
construct a DFA accepting the same language.

R=0 {) ©'
R=a {) “ ®|



[Rexp into NFA
R=R1+R2 {:;:z::: ::::Qii)
R=R1R2 {>—~ ARI{>+—~ ARE{)

R=R1*



[Rexp into NFA

Example. R = b+ (a+ bb)(b+ ab)*a

(1) om0

b




Rexp into NFA
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| 2.5. NFA into DFA




[NFA into DFA

g-closure of the state q:
[a]={p: p=¥e(e,q);

Example e a
q0]1={q0,q1} N

4o
q1]={q1}
92]={q2}
q3]={a3,92}




[NFA into DFA

Q'={[p]: peQt}

QO'={[p]: pe[qOe]}
FO'={[p]: [P]nFe=J}

Example
q0]={[q90].[a1]}
q1]={q1}
q2]={q2}
q3]={q3,92}




[NFA into DFA

Y(x,[p])={ [s]: se{ [We(x,q)], q €[p] } }




[NFA into DFA

Q=2%

q0=Q0’

F={ Pe29: PnF'#J }
Wix P)={¥'(x,p): p P}

Example
s0={q0,q1}
s1={q2}
s2={q2,q3}
$3={q0,91,92,93}




NFA into DFA

DFA:
faster to execute (one transition per pair symbol-state);
bigger number of states (probably exponentially).

NFA:
smaller number of states (probably exponentially);
slower to execute (more then one transition).



[2.6. Table implementation of FA
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2.7. Lexical errors

Lexical errors include misspellings of identifiers, keywords or
operators, e.g.

8abcdef
ifff

If Ais a FAand ag¢L(A) then a contains a lexical error.



