
Compilers
module of the course
“Professional English”

Yulia Burkatovskaya
Department of Computer Engineering
Associate professor

2. Lexical analysis

 Basics of lexical analysis
 Regular languages and regular expressions
 Finite automata
 Regular expression into NFA
 NFA into DFA
 Table implementation of FA
 Lexical errors

2.1. Basics of lexical analysis

Removal of white spaces and comments

Before:
if (x==0) then

y=1; //case 1

else

z=2; //case 2

After:
if (x==0) then\n\ty=1;\nelse\n\tz=2;

Basics of lexical analysis
Token classes
 Identifiers

Sequence of letters and digits starting with a letter
 Keywords

if, then, else…

 Whitespaces
Non-empty sequence of blanks, newlines and tabs.

 Integers
Non-empty sequence of digits

 Operators
=, ==, <, >,…

Etc.

Basics of lexical analysis

Lexical analysis tasks:
 To classify substrings

according to token classes;
 To form tokens for the

parser.

String

Lexical Analyzer

Sequence of tokens

Parser

token type lexeme{ },

token

Basics of lexical analysis

FORTRAN EXAMPLE

do 5 N=1,25

Cycle till the label 5, the
variable N changes from 1
to 25.

do 5 N=1.25

Blanks are unimportant.
Variables can be undeclared.
do5N=1.25

Assignment of the variable
do5N.

We don’t know if ‘do’ is a keyword without going ahead.

Basics of lexical analysis

Reserved words
C++ example (keywords are

reserved):
if els

then

the=els;

else

els=the;

PL/1 example (keywords are
not reserved):

if else

then

then=else

else

else=then

Basics of lexical analysis

Recognition:
 To read left-to-right

recognizing one token at a
time;

 To recognize correctly the
token class for the
considering lexeme;

 To minimize going ahead;
 To check reserved words

and to use prioritizing.
if

1) keyword

2) identifier

==

==

= =

if x

if x

if x

2.2. Regular languages and
regular expressions
Let X be an alphabet, ε is an empty symbol.
A string is any sequence of symbols from X.
X* is the set of all strings. Any LX* is a language.
 Union L1L2={α: αL1 or αL2}
 Concatenation L1L2={αβ: αL1, βL2}
 Iteration: L*={ε} L LL LLL…

Example
L1={a,bc}, L2={aa,b,bc}
L1 L2={a,bc,aa,b}
L1L2={aaa,ab,abc,bcaa,bcb,bcbc}
L1*={ε,a,bc,aa,abc,bca,bcbc,aaa,aabc,abca,abcbc,bcaa,…}

Regular languages and regular
expressions

Regular languages:
 is a Rlang;
 {ε} is a Rlang;
 {x} for any xX is a Rlang;
 If L1 and L2 are Rlangs then L1L2 is a Rlang;
 If L1 and L2 are Rlangs then L1L2 is a Rlang;
 If L is a Rlang then L* is a Rlangs;
 There are no other Rlangs.

Regular languages and regular
expressions
Regular expressions:
 is a Rexp;
 ε is a Rexp;
 xX is a Rexp;
 If R1 and R2 are Rexps then R1+R2 is a Rexp;
 If R1 and R2 are Rexps then R1R2 is a Rexp;
 If R is a Rexp then R* is a Rexp;
 There are no other Rexps. Rexp Rlang

ε {ε}
x {x}
R1+R2 L(R1)L(R2)
R1R2 L(R1)L(R2)
R* (L(R))*

Regular languages and regular
expressions

Prioritizing:
 Iteration
 Concatenation
 Union

Examples:
 (01+1)*(001+000+0+ε) is a Rexp;
 0n1n: n>0 isn’t Rexp.

Regular languages and regular
expressions

Laws for Rexps

Example

Regular languages and regular
expressions

Extensions of Rexps
 One or more instances: R+=RR*
 Zero or one instance: R?
 Character classes: [a-z]=a+…+z

 Exclusion: [^a-z] – everything except [a-z]
 Any symbol except eof: .

2.3. Finite automata

Regular expression = specification
Finite automata = implementation

Finite automata A=<X,Q,q0,F,Ψ>:
 X – an input alphabet;
 Q – a set of states;
 q0Q – a start state;
 FQ – a set of accepting

(final) states;
 Ψ: X×Q→Q – a transition

function.

state

start state

accepting state

transition q1 q2
x

ε-transition q1 q2
ε

Finite automata

Deterministic finite automata (DFA):
 no ε-transitions;
 one transition per one pair ‘symbol-state’.

Nondeterministic finite automata (NFA):
 ε-transitions are allowed;
 multiply transitions per one pair ‘symbol-state’ are allowed.

q1 q2
ε

q1

q2

q3x

x

Finite automata

 DFA (one path for one string)

 NFA (several paths)

1 2 3
a b

4
c

5
b

1
a

3

2

4

a

ε

6
b

7
a

8
c

ε

11
c

10
b

9b 12
c

13
c

ε

Finite automata

The finite automata A accepts the string α=a1a2…an if there is a

path in the automata diagram from the start state to one of
accepting states where arches are marked by the symbols
a1, a2,…,an and probably by ε.

The set of accepted strings form the accepted language L(A).
Languages accepted by FA are called automata languages.

Example
a, aa, ab, bbb are accepted
b is not accepted

Finite automata

Finite automata

Rexp NFA DFA

Lexical
specification

Table
implementation

Kleene
theorem

powerset
construction

2.4. Rexp into NFA

Kleene theorem. For every regular expression R, we can
construct a DFA accepting the same language.

 R=

 R=ε

 R=a

Rexp into NFA

 R=R1+R2

 R=R1R2

 R=R1*

Rexp into NFA

Example.

Rexp into NFA

2.5. NFA into DFA

NFA
A=<X,Qε,q0ε,Ψε,Fε>

DFA
A=<X,Q,q0,Ψ,F>

NFA without
ε-transitions

A’=<X,Q’,Q0',Ψ’.F’>

NFA into DFA

ε-closure of the state q:
[q]={p: p=Ψε(ε,q)}

Example
[q0]={q0,q1}
[q1]={q1}
[q2]={q2}
[q3]={q3,q2}

NFA into DFA

Q’={[p]: pQε}
Q0’={[p]: p[q0ε]}
F0’={[p]: [p]Fε}

Example
[q0]={[q0],[q1]}
[q1]={q1}
[q2]={q2}
[q3]={q3,q2}

NFA into DFA

Ψ’(x,[p])={ [s]: s{ [Ψε(x,q)], q [p] } }

NFA into DFA

Q=2Q’

q0=Q0’

F={ P2Q’: PF’ }
Ψ(x,P)={Ψ’(x,p): p P}

Example
s0={q0,q1}
s1={q2}
s2={q2,q3}
s3={q0,q1,q2,q3}

NFA into DFA

DFA:
 faster to execute (one transition per pair symbol-state);
 bigger number of states (probably exponentially).

NFA:
 smaller number of states (probably exponentially);
 slower to execute (more then one transition).

2.6. Table implementation of FA

q1

q2

q3x

x

x q2

q1
q1 q2

x

q1 q2
ε

ε q2

q1

x {q2, q3}

q1

2.7. Lexical errors

Lexical errors include misspellings of identifiers, keywords or
operators, e.g.

 ===
 8abcdef
 ifff
 …

If A is a FA and αL(A) then α contains a lexical error.

