
Compilers
module of the course

“Professional English”

Yulia Burkatovskaya
Department of Computer Engineering

Associate professor

5. Bottom-up parsing

 Reduction

 Handle pruning

 Shift-reduce parsing

 Conflicts during shift-reduce parsing

 Introduction to LR parsing: simple LR

 Items and the LR(0) automaton

 Use of the LR(0) automaton

 Viable prefix

5. Bottom-up parsing

Bottom-up parsing is the construction of a parse tree for an input

string beginning at the leaves (the bottom) and working up

towards the root (the top).

E → T

T → E+T

T → E*T

T → ID

T → (E)

ID → a | … | z

(a+b) → (ID+b) → (T+b) → (E+b) → (E+ID) → (E+T) → (T) → (E)

→ T → E

E

+ b)a(

...

Bottom-up parsing

E

+ b)a(

...

E

+ b)a(

...

ID

Bottom-up parsing

E

+ b)a(

...

ID ID

E

+ b)a(

...

ID ID

T

Bottom-up parsing

E

+ b)a(

...

ID ID

E

+ b)a(

...

ID ID

TT T

E E

Bottom-up parsing

E

+ b)a(

...

ID ID

T T

E

T

E

E

+ b)a(

...

ID ID

T

E

T

T

Bottom-up parsing

+ b)a(

ID ID

T T

E

T

E

E

+ b)a(

...

ID ID

T T

E

T

E

T

E

T

5.1. Reduction

 We can think of bottom-up parsing as the process of
"reducing" a string w to the start symbol of the grammar.

 At each reduction step, a specific substring matching the
body of a production is replaced by the nonterminal at the
head of that production.

 The key decisions during bottom-up parsing are about when
to reduce and about what production to apply, as the parse
proceeds.

Reduction

E → T

T → E+T

T → E*T

T → ID

T → (E)

ID → a | … | z

(a+b)*c → (ID+b)*c → (T+b)*c → (E+b)*c → (E+ID)*c → (E+T)*c

→ (T)*c → (E)*c → T*c → E*c → E*ID → E*T → T → E

Here the leftmost substring is replaced.

5.2. Handle pruning

 Bottom-up parsing during a left-to-right scan of the input

constructs a rightmost derivation in reverse.

 Informally, a "handle" is a substring that matches the body

of a production, and whose reduction represents one step

along the reverse of a rightmost derivation.

Right sequential form Handle Reducing production

a+b*c a ID → a

ID+b*c ID T → ID

E+T*c E+T T → E+T

T*c E E → T

5.3. Shift-Reduce Parsing

 A stack holds grammar symbols and an input buffer
holds the rest of the string to be parsed.

 The handle always appears at the top of the stack
just before it is identified as the handle.

 During a left-to-right scan of the input string, the
parser shifts zero or more input symbols onto the
stack, until it is ready to reduce a string β of
grammar symbols on top of the stack. It then
reduces β to the head of the appropriate production.

 The parser repeats this cycle until it has detected
an error or until the stack contains the start symbol
and the input is empty.

Shift-Reduce Parsing

E → T

T → E+T

T → E*T

T → ID

T → (E)

STACK INPUT ACTION

$ ID+ID*ID$ shift

ID$ +ID*ID$ reduce by T →ID

T$ +ID*ID$ reduce by E →T

E$ +ID*ID$ shift

+E$ ID*ID$ shift

ID+E$ *ID$ reduce by T →ID

T+E$ *ID$ reduce by T →E+T

Shift-Reduce Parsing

E → T

T → E+T

T → E*T

T → ID

T → (E)

STACK INPUT ACTION

T+E$ *ID$ reduce by T →E+T

T$ *ID$ reduce by E →T

E$ *ID$ shift

*E$ ID$ shift

ID*E$ $ reduce by T →ID

T*E$ $ reduce by T →E*T

T$ $ reduce by E→T

E$ $ accept

Shift-Reduce Parsing

While the primary operations are shift and reduce, there are
actually four possible actions a shift-reduce parser can make:

 Shift. Shift the next input symbol onto the top of the stack.

 Reduce. The right end of the string to be reduced must be at
the top the stack. Locate the left end of the string within the
stack and decide with what nonterminal to replace the string.

 Accept. Announce successful completion of parsing.

 Error. Discover a syntax error and call an error recovery
routine.

Shift-Reduce Parsing

The handle will always eventually appear on top of the stack,

never inside.

 A → αAz → αβByz → αβγyz

STACK INPUT ACTION

$αβγ yz$ reduce by B →γ

$αβB yz$ shift (B is the rightmost non-

terminal!)

$αβBy z$ reduce by A → βBy

$αA z$ shift

$αAz $ reduce by A → αAz

$A $ accept

Shift-Reduce Parsing

 A → αβxAz → αβxyz → αβγyz

STACK INPUT ACTION

$αγ xyz$ reduce by B →γ

$αB xyz$ shift (B is the rightmost non-

terminal!)

$αBx yz$ shift

$αBxy z$ reduce by A →y

$αBxA z$ shift

$αBxAz $ reduce by A → αBxAz

$A $ accept

5.4. Conflicts During Shift-Reduce

Parsing

 Whether to shift or to reduce (a shift/reduce conflict)?

 Which of several reductions to make (a reduce/reduce

conflict)?

An ambiguous grammar (for example, consider the dangling-else

grammar):

 STMT → if STMT then STMT

 STMT → if STMT then STMT else STMT

 STMT → OTHER

Conflicts During Shift-Reduce Parsing

 If “if STMT then STMT” is a handle?

 A shift/reduce conflict.

A possible decision: always shift!

STACK INPUT ACTION

$...if STMT then STMT else …$ Reduce by STMT → if STMT

then STMT?

Shift “else”?

Conflicts During Shift-Reduce Parsing

 Suppose we have a lexical analyzer that returns the token
name id for all names, regardless of their type.

 Suppose also that procedures and arrays have the same
syntax, for example:

 A(i,j): procedure A with parameters i,j;

 A(i,j): element of the array A with the indices i, j.

 Since the translation of indices in array references and
parameters in procedure calls are different, we want to use
different productions to generate lists of actual parameters
and indices.

Conflicts During Shift-Reduce Parsing

 STMT → ID(PAR_LIST)

 STMT → EXPR:=EXPR

 PAR_LIST → PAR_LIST,PAR

 PAR_LIST → PAR

 PAR → ID

 EXPR → ID(EXPR_LIST)

 EXPR → ID

 EXPR_LIST → EXPR_LIST,EXPR

 EXPR_LIST → EXPR

A(i,j)

Lexical Analyzer

Parser

ID(ID,ID)

Conflicts During Shift-Reduce Parsing

 Procedure or array?

 A reduce/reduce conflict.

.

STACK INPUT ACTION

$...ID(ID ,ID) …$ Reduce by “PAR → ID” or

“EXPR → ID”?

Conflicts During Shift-Reduce Parsing

Possible decision:

 Use

STMT → PROCID(PAR_LIST)

instead of

STMT → ID(PAR_LIST).

 Use parsing table during lexical analysis.

STACK INPUT ACTION

$...ID(ID ,ID) …$ Reduce by “PAR → ID”

$...PROCID(ID ,ID) …$ Reduce by “EXPR → ID”

5.5. Introduction to LR-parsing: simple

LR

LR(k)-grammars

 L – scanning the input from left to right;

 L – producing a rightmost derivation in reverse;

 k – using k input symbols of lookahead at each step to make

parsing action decisions.

 The practical interest: k=0 and k=1.

 LR=LR(1).

Introduction to LR-parsing: simple LR

Why LR-parser?

 LR parsers can be constructed to recognize virtually all

programming language constructs for which context-free

grammars can be written. Non-LR context-free grammars

exist, but these can generally be avoided for typical

programming-language constructs.

 The LR-parsing method is the most general nonbacktracking

shift-reduce parsing method known, yet it can be implemented

as efficiently as other, more primitive shift-reduce methods.

Introduction to LR-parsing: simple LR

Why LR-parser?

 An LR parser can detect a syntactic error as soon as it is

possible to do so on a left-to-right scan of the input.

 The class of grammars that can be parsed using LR methods

is a proper superset of the class of grammars that can be

parsed with predictive or LL methods.

Introduction to LR-parsing: simple LR

Drawback

 Too much work to construct an LR parser by hand for a typical

programming-language grammar. A specialized tool, an LR

parser generator, is needed.

 Fortunately, many such generators are available (i.e.Yacc).

Such a generator takes a context-free grammar and

automatically produces a parser for that grammar. If the

grammar contains ambiguities or other constructs that are

difficult to parse in a left-to-right scan of the input, then the

parser generator locates these constructs and provides

detailed diagnostic messages.

5.6. Items and the LR(0) Automaton

 When to shift and when to reduce?

 Why reduce?

E → T

T → E+T

T → E*T

T → ID

T → (E)

STACK INPUT ACTION

$ ID+ID*ID$ shift

… … …

T+E$ *ID$ reduce by T →E+T

T$ *ID$ reduce by E →T

Items and the LR(0) Automaton

 An LR parser makes shift-reduce decisions by maintaining
states to keep track of where we are in a parse. States
represent sets of "items“.

 An LR(0) item (item for short) of a grammar G is a production
of G with a dot at some position of the body. Thus, production
A→XYZ yields the four items:

 A→ · XYZ

 A→X · YZ

 A→XY · Z

 A→XYZ ·

 The production A →ε generates only one item, A→ ·.

Items and the LR(0) Automaton

Intuitively, an item indicates how much of a production we have
seen at a given point in the parsing process. For example,

 the item A → · XYZ indicates that we hope to see a string
derivable from XYZ next on the input;

 the item A → X · YZ indicates that we have just seen on the
input a string derivable from X and that we hope next to see a
string derivable from YZ.

 Item A → XYZ · indicates that we have seen the body XYZ
and that it may be time to reduce XYZ to A.

Items and the LR(0) Automaton

 One collection of sets of LR(0) items, called the canonical

LR(0) collection, provides the basis for constructing a

deterministic finite automaton that is used to make parsing

decisions. Such an automaton is called an LR(0) automaton.

 In particular, each state of the LR(0) automaton represents a

set of items in the canonical LR(0) collection.

Items and the LR(0) Automaton

 To construct the canonical LR(0) collection for a grammar, we
define an augmented grammar and two functions,
CLOSURE and GOTO.

 If G is a grammar with start symbol S, then G', the augmented
grammar for G, is G with a new start symbol S‟ and
production S'→S. The purpose of this new starting production
is to indicate to the parser when it should stop parsing and
announce acceptance of the input. That is, acceptance occurs
when and only when the parser is about to reduce by S'→S.

Items and the LR(0) Automaton

Closure of item sets

If I is a set of items for a grammar G, then CLOSURE(I) is the set
of items constructed from I by the two rules:

 Initially, add every item in I to CLOSURE(I).

 If Aα·Bβ CLOSURE(I) and B→γ is a production, then add the
item B→·γ to CLOSURE(I), if it is not already there. Apply this
rule until no more new items can be added to CLOSURE(I).

Items and the LR(0) Automaton

An augmented

expression

grammar:

 E‟ → E

 E → E+T | T

 T → T*F | F

 F → (E) | ID

 I={E‟ → ·E}

Rule 1:

 add E‟ → ·E to the CLOSURE(I);

Rule 2:

 E → E+T P so add E → ·E+T to the

CLOSURE(I);

 E → T P so add E → ·T to the

CLOSURE(I);

 T → T*F P so add T → ·T*F to the

CLOSURE(I);

 …

Items and the LR(0) Automaton

An augmented expression

grammar:

 E‟ → E

 E → E+T | T

 T → T*F | F

 F → (E) | ID

 I={[E‟ → ·E]}

CLOSURE(I):

 E‟ → ·E

 E → ·E+T

 E → ·T

 T → ·T*F

 T → ·F

 F → ·(E)

 F → ·ID

Items and the LR(0) Automaton

A convenient way to implement the function CLOSURE is to keep

a boolean array added, indexed by the nonterminals of G,

such that added[B] is set to true if and when we add the item

B→·γ for each B-production B→·γ.

Items and the LR(0) Automaton

Note that if one B-production is added to the CLOSURE(I) with the
dot at the left end, then all B-productions will be similarly
added to the closure. Hence, it is not necessary to list the
items B→·γ added to the CLOSURE(I). A list of the
nonterminals B whose productions were so added will suffice.

We divide all the sets of items of interest into two classes:

 Kernel items: the initial item, S‟ → ·S, and all items whose
dots are not at the left end.

 Nonkernel items: all items with their dots at the left end,
except for S‟ → ·S.

Items and the LR(0) Automaton

Each set of items of interest is formed by taking the closure of a
set of kernel items; the items added in the closure can never
be kernel items. Thus, we can represent the sets of items we
are really interested in with very little storage if we throw away
all nonkernel items, knowing that theycould be regenerated by
the closure process.

Items and the LR(0) Automaton

The function GOTO

The second useful function is GOTO(I,X) where

 I is a set of items;

 X is a grammar symbol;

 GOTO(I,X) is defined to be the CLOSURE of the set of all
items [A→αX·β] such that [A→αX·β] I.

Intuitively, the GOTO function is used to define the transitions in
the LR(0) automaton for a grammar. The states of the
automaton correspond to sets of items, and GOTO(I,X)
specifies the transition from the state for I under input X.

Items and the LR(0) Automaton

An augmented expression
grammar:

 E‟ → E

 E → E+T | T

 T → T*F | F

 F → (E) | ID

 I={[E‟ → · E],[E → E · +T]}

 Construct GOTO(I,+)

[E → E · +T] contains +:

 move the dot the + and obtain
[E → E+ · T];

 construct the function
CLOSURE([E → E+ · T]):

 E → E+ · T

 T → · T*F

 T → · F

 F → · (E)

 F → · ID

Items and the LR(0) Automaton

An augmented expression

grammar:

 E‟ → E

 E → E+T | T

 T → T*F | F

 F → (E) | ID

 I={[E‟ → · E],[E → E · +T]}

GOTO(I,+):

 E → E+ · T

 T → · T*F

 T → · F

 F → · (E)

 F → · ID

Items and the LR(0) Automaton

C – the canonical collection of sets of LR(0) items for an

augmented grammar G„:

 Add the CLOSURE([S‟→ · S]) to C;

 For each I C and for each X: GOTO(I,X)≠Ø and

GOTO(I,X) C add GOTO(I,X) to C;

 Repeat the last step until it is possible.

5.7. Use of the LR(0) Automaton

The central idea behind «Simple LR», or SLR, parsing is the
construction from the grammar of the LR(0) automaton.

 The states of this automaton are the sets of items from the
canonical LR(0) collection;

 the transitions are given by the GOTO function;

 the start state is the CLOSURE([S‟→ · S]);

 all state are accepting states.

Use of the LR(0) Automaton

How can LR(0) automata help with shift-reduce decisions?

 Suppose that the string α of grammar symbols takes the LR(0)

automaton from the start state 0 to some state j. Then, shift on

next input symbol a if state j has a transition on a.

 Otherwise, we choose to reduce; the items in state j will tell us

which production to use.

5.8. Viable prefixes

 The prefixes of right sentential forms that can appear on the

stack of a shiftreduce parser are called viable prefixes. A

viable prefix is a prefix of a right-sentential form that does not

continue past the right end of the rightmost handle of that

sentential form.

 By this definition, it is always possible to add terminal

symbols to the end of a viable prefix to obtain a right-

sentential form.

 LR(0) automaton recognizes viable prefixes.

Viable prefixes

A → αAz

A → βBy

B → γ

STACK INPUT ACTION

$αβγ yz$ reduce by B →γ

$αβB yz$ shift

$αβBy z$ reduce by A → βBy

$αA z$ shift

$αAz $ reduce by A → αAz

$A $ accept

A → αAz → αβByz → αβγyz

