Compilers

module of the course
“Professional English”

Yulia Burkatovskaya
Department of Computer Engineering
Associate professor

4. Top-down parsing

Top-down parsing = depth-first search = leftmost derivation

E—->T e

T— E+T

T—>E*T l l
T—ID T T

T — (E) - ~
E T

E->T->ET - T'T > (E)’T —» (T)'T - (E+T)*T — (T+T)*T
— (ID+T)*T — (ID+ID)*ID — (a+ID)*T — (atb)*T — (a+b)*ID
— (atb)*c

[Top-down parsing

y L
T T
E T E ﬁ T
v
1

W=

[Top-down parsing

i i
N

A

A

[Top-down parsing

Extra

iInformation:

parentheses

single-successor

nodes

Top-down parsing

Abstract syntax tree Abstracts from the concrete
grammar

More compact and easy to

\ use

4.1. Recursive-descent parsing

Recursive-descent parsing:

= from the top;

= from left to right;

= probably using backtracking. E

E—-T

T—E+T

T BT d = = BB
T—ID

T — (E)

ID—al...|z

[Recursive-descent parsing]

T T

T T

[Recursive-descent parsing

Loop! E
Left-recursive grammat.

Recursive-descent parsing

E-TE|T
E' — +TE' | +T
TFT|F
T — *FT' | *F g
F— (E)| ID
Do>al... |z

[Recursive-descent parsing]

E E

T E’

[Recursive-descent parsing

E E

MatchI

Recursive-descent parsing

Recursive-descent parsing

E E
T E T E
F T F T
A Y
E E
T E T E
F T F T
:'/ Y
G | E

~—__ ~_
\\\ \\\\ “an
S -

/ N ~

\ \

\ \

| |
HEEE R

| !

\ /

N /

~ /

~_-

Mismath! '
Backtracking.

Recursive-descent parsing

E E E
T E T E T E
F T F T F T
A4 Y 4
E E E
T E T E T E
T F T F T
A \ 4 \ \
ID ID i F T

)
! /
l\ Il
\ i
- ~ N\
- ~ \ \
Ve SN AN \
N
N \ \
\\ \ \\
\ AN .
\ . Mismatch!
\ \
\ \

- lllll IIIII

4.2. FIRST and FOLLOW

The construction of both top-down and bottom-up parsers is aided

by two functions, FIRST and FOLLOW, associated with a
grammar G.

During top-down parsing, FIRST and FOLLOW allow us to

choose which production to apply, based on the next input
symbol.

During panic-mode error recovery, sets of tokens produced by
FOLLOW can be used as synchronizing tokens.

FIRST and FOLLOW

Define FIRST(a), where a is any string of grammar symbols,
to be the set of terminals that begin strings derived from a. If
a—... — €, then eeFIRST(q).

Define FOLLOW(A), for nonterminal A, to be the set of
terminals a that can appear immediately to the right of A In
some sentential form; that is, the set of terminals a such that
there exists a derivation of the form S—... — aAap, for some
a and . Note that there may have been symbols between A
and a, at some time during the derivation, but if so, they
derived € and disappeared. If A can be the rightmost symbol in
some sentential form, then $ € FOLLOW(A).

FIRST and FOLLOW

If X Is a terminal, then FIRST(X) = {X}.

If X is a nonterminal and X—Y,Y,...Y, eP, aeFIRST(Y,), then
place a in FIRST(X). if for some i, aeFIRST(Y;, and
eeFIRST(Y,),..., €eFIRST(Y_,), that is, Y,Y,...Y,—e. |f
eeFIRST(Y),..., €eFIRST(Y,), then add € to FIRST(X). For
example, everything in FIRST(Y1) is included into FIRST(X). If
Y, does not derive g, then we add nothing more to FIRST(X),
but if Y,—€eeP, then we add FIRST(Y,) , and so on.

If X—eeP, then add € to FIRST(X).

FIRST and FOLLOW

Now, we can compute FIRST for any string X, X,...X, as follows.

Add to FIRST(X,X,...X,) all non-& symbols of FIRST(X,) .

Also add the non-& symbols of FIRST(X,), if eeFIRST(X,); the

non-g& symbols of FIRST(X,), if eeFIRST(X;) and
eeFIRST(X,); and so on.

Finally, add € to FIRST(XX,...X,) if, for all I, eeFIRST(X).

[FIRST and FOLLOW

ETE T FIRST(ID)={a,...,z}

E' — +TE | +T FIRST(F)={a,...,z,(}

T SFT|F FIRST(T)={"}

T = *FT' | *F FIRST(T) {a z,(}
(

IDo>al...|z FIRST(E)= {a ----- z,(}

FIRST and FOLLOW

Place $ in FOLLOW(S), where S is the start symbol, and $ is
the input right endmarker.

If A—»aBBeP, then everything in FIRST(B) except € is in
FOLLOW(B).

If A—aBeP, or A—oBBeP, where ecFIRST(B), then
everything in FOLLOW(A) is in FOLLOW(B) .

[FIRST and FOLLOW

E—TE|T
E' — +TE' | +T
T—FT|F
T — *FT' | *F
F— (E)|ID
D>al..|z

FIRST(ID)={a,...,Z}
FIRST(F)={a,...,z,(}
FIRST(T)={*}
FIRST(T)={a,...,z,(}
FIRST(E’)={+}
FIRST(E)={a,...,z,(}
FOLLOW(E)={$,)}
FOLLOW(T)={+,$,)}
FOLLOW(F)={*+,$,)}
FOLLOW(E)={$,)}
FOLLOW(T')={+,$,)}
FOLLOW(ID)={*,+,$,)}

[FIRST and FOLLOW

E— TE
E— +TE | €
TFT

T —*FT | ¢
F— (E)|ID
D>al..|z

FIRST(ID)={a,...,z}
FIRST(F)={a,...,z,(}
FIRST(T’)={c,*}
FIRST(T)={a,...,z,(}
FIRST(E’)={¢c,+}
FIRST(E)={a,...,z,(}
FOLLOW(E)={$,)}
FOLLOW(T)={+,$,)}
FOLLOW(F)={*+,3,)}
FOLLOW(E)={$,)}
FOLLOW(T")={+,$,)}
FOLLOW(ID)={*,+,$,)}

4.3. Predictive parsing table

For each production A — a of the grammar, do the following:
For each terminal xeFIRST(a), add A — a to M[A, X];

If eeFIRST(a), then for each terminal yeFOLLOW(A), add the
production A—a to M[Ay]. If eeFIRST(a), and $FOLLOW(A),
add A — a to M[A, $] as well.

If, after performing the above, there is no production at all in the
cell M[A)x], then set M[A,X] to error (which we normally
represent by an empty entry in the table).

[Predictive parsing table

E-TE|T E—TE

FIRST(T)={a,...,z(} FIRST(T)={a,...,z(}

FIRST(E)={+} FIRST(E")={¢e,+}

FIRST(TE)={a,...,z,(} FIRST(TE)={a,...,z,(}
Add E — TE’ and E — T to: Add E — TE' to:

MI[E,a] MI[E,a]

I-\./I.[E,z] MI[E,Z]

MI[E, (] MIE.,(]

Predictive parsing table

a z + * (
E E—-TE’ E—-TE’ E— TE’

E—-T E—-T E—-T
E’ E'— +TE’

E'— +T

T T— FT T— FT T— FT

T—-F T—-F T—-F
T T—*FT

T— *F

F F— ID F— ID F—(E)
ID |ID —a ID —z

Predictive parsing table

a z + * () $
E |E->TE E-TE’ E— TE’
E’ E'— +TFE’ E'— ¢ E'— ¢
T |[T>FT T FT T FT
T T—*FT T—e¢ T—¢
F F— ID F— ID F—(E)
ID | ID —a ID —z

4.4. Non-recursive-descent parsing

Input string

alblc|$
stack l

X e s Descent .+ output
parser

I

Parsing
table

AN <

Non-recursive-descent parsing

X —a symbol at the top of the stack, $ — the bottom marker

(initially there is $S in the stack, S — the start symbol of the
grammar);

a — an input symbol ($ — the right position marker);

M[A,a] — the parsing table, A is a non-terminal, a is a terminal
or $.

Non-recursive-descent parsing

The descent parser observes X and a.
if X=a=$ then parsing is successfully completed:;
If X=a=$ then the parser removed X from the top of the stack
and moves to the next input symbol;

If X Is a non-terminal then the row M[X,a] of the parsing table
Is considered. If M[X,a] = X—Z1...Zk then X is replaced by
Zk...Z1 at the stack (Z1 is at the top). If M[X,a] = error then an
error recovery program is called.

If X is a terminal and X=#a then an error recovery program is
called.

Non-recursive-descent parsing

E-TE|T
E' — +TE' | +T
TFT|F
T — *FT' | *F
F— (E)| ID
Do>al... |z

Non-recursive-descent parsing

E E-TE’ E—->TE’ E— TE’

E—-T E—-T E-T
E’ E'— +TE’

E'— +T

T T— FT T— FT T— FT

T—-F T—F T—F
T T—*FT

T— *F

F F— ID F— ID F—(E)
ID | ID —a ID -z

Non-recursive-descent parsing

Stack Input Output Stack Input Output
ES$ (ath)$ akE’)$ a+b)$ ID —a
TS (ath)$ |E-T E)$ +b)$

F$ (a+b)$ | T—F +T)$ +b)$ E"—+T
(E)$ (atb)$ F —(E) T)$ b)$

E)$ a+b)$ ID)$ D)$ T —ID
TE"S a+bh)$ E-TE’ b)$ D)$ ID —b
FE)$ a+b)$ T —>F)$)$

IDE’)$ a+b)$ F —ID $ $

4.5. LL(1) grammars

L — scanning the input from left to right;
L — producing a leftmost derivation,

1 — using one input symbol of lookahead at each step to
make parsing action decisions.

For every LL(1) grammar, each parsing-table entry uniquely
identifies a production or signals an error.

No backtracking!

Although left recursion elimination and left factoring are easy
to do, there are some grammars for which no amount of
alteration will produce an LL(1) grammar.

LL(1) grammars

LL(1) grammar
E—-TFE
E'— +TE’ | €
T—>FT
T —*FT | ¢
F—(E)|ID
ID—al...|z

For all A»a | B:

For no terminal x do both a
and [derive strings
beginning with X
(FIRST(a)NFIRST(B)=9);
At most one of a and 8 can
derive the empty string;

If B derives g, then a does
not derive any string
beginning with a terminal in
FOLLOW (A).

LL(1) grammars

a z + * () $
E |E->TE E-TE’ E— TE’
E’ E'— +TE’ E'— ¢ E'— ¢
T T—-FT T— FT T— FT
T T—*FT T—e¢ T—¢
F F— ID F— ID F—(E)
ID | ID —a ID —z

LL(1) grammars

Not LL(1) grammar
ST — if EXPR then ST ST’ | a
ST — else ST | €
EXPR — b

FIRST(EXPR)={b}
FIRST(ST')={else, €}
FIRST(ST)={if,a}
FOLLOW(ST)={$,else}
FOLLOW(ST)={$,else}
FOLLOW(EXPR)={b,then}

LL(1) grammars

a b if else $
ST ST—a ST — if EXPR then ST ST’
ST ST — else ST ST > ¢
ST’ > ¢
EXPR EXPR — b

4.6. Error recovery In predictive parsing

An error is detected during predictive parsing when the terminal
on top of the stack does not match the next input symbol or
when nonterminal A is on top of the stack, x is the next input
symbol, and M[A,a] is error (i.e., the parsing-table entry is
empty).

Panic Mode

Panic-mode error recovery is based on the idea of skipping
symbols on the input until a token in a selected set of
synchronizing tokens appears. Its effectiveness depends on
the choice of synchronizing set. The sets should be chosen so
that the parser recovers quickly from errors that are likely to

occur in practice.

Error recovery in predictive parsing

Some heuristics are as follows:

As a starting point, place all symbols in FOLLOW(A) into the
synchronizing set for nonterminal A. If we skip tokens until an
element of FOLLOW(A) is seen and pop A from the stack, it is
likely that parsing can continue.

It is not enough to use FOLLOW(A) as the synchronizing set
for A. For example, if semicolons terminate statements, as in
C, then keywords that begin statements may not appear in the
FOLLOW set of the nonterminal representing expressions. A
missing semicolon after an assignment may therefore result in
the keyword beginning the next statement being skipped. For
example, we might add keywords that begin statements to the
synchronizing sets for the nonterminals generating
expressions.

Error recovery in predictive parsing

If we add symbols in FIRST(A) to the synchronizing set for
nonterminal A, then it may be possible to resume parsing
according to A if a symbol in FIRST(A) appears in the input.

If a nonterminal can generate the empty string, then the
production deriving € can be used as a default. Doing so may
postpone some error detection, but cannot cause an error to
be missed. This approach reduces the number of
nonterminals that have to be considered during error recovery.

If a terminal on top of the stack cannot be matched, a simple
iIdea Is to pop the terminal, issue a message saying that the
terminal was inserted, and continue parsing. In effect, this
approach takes the synchronizing set of a token to consist of
all other tokens.

[Error recovery In predictive parsing

E—TE

E' — +TE’ | ¢

T—-FT

T —*FT'| ¢

F— (E)|ID
Do>al...

| z

FIRST(ID)={a,...,z}
FIRST(F)={a,...,z,(}
FIRST(T’)={c,*}
FIRST(T)={a,...,z,(}
FIRST(E’)={¢c,+}
FIRST(E)={a,...,z,(}
FOLLOW(E)={$,)}
FOLLOW(T)={+,$,)}
FOLLOW(F)={*+,3,)}
FOLLOW(E)={$,)}
FOLLOW(T")={+,$,)}
FOLLOW(ID)={*,+,$,)}

Error recovery in predictive parsing

a z + * () $
E E-TE’ E—-TE’ E— TE’ | Synch Synch
E’ E'— +TE’ E'— ¢ E—¢
T T—FT T— FT’ | Synch T— FT’ | Synch Synch
T T—*FT T—e¢ T—¢
F F— ID F— ID | Synch Synch F—(E) | Synch Synch
ID | ID —a ID —z Synch Synch Synch Synch

Error recovery in predictive parsing

Here "synch" indicating synchronizing tokens obtained from
the FOLLOW set of the nonterminal.

If the parser looks up entry M[A,x] and finds that it is blank,
then the input symbol x is skipped.

If the entry is "synch," then the nonterminal on top of the stack
IS popped in an attempt to resume parsing.

If a token on top of the stack does not match the input symbol,
then we pop the token from the stack, as mentioned above.

Error recovery in predictive parsing

Stack Input Output Stack Input Output
E$ Ya*+b$ synch FTE'$ +b$ synch
ES$ a*+b$ E—->TE FTE'S b$ F—ID
TE'$S a*+b$ T—->FT IDTE'S |b$ ID—Db
FTE'S a*+b$ F—ID bT'E'$ b$

IDT'E’'$S |a*+b$ ID — a TE'$ $ T—¢
aT'E’$ a*+b$ E'$ $ E'— ¢
TE'$ *+b$ T—*FT $ $

*FTE'S | *+b$

