Exercise 4.4.5. The grammar $S \rightarrow a S a \mid a a$ generates all even-length strings of a 's. We can devise a recursive-descent parser with backtrack for this grammar. If we choose to expand by production $S \rightarrow a a$ first, then we shall only recognize the string $a a$. Thus, any reasonable recursive-descent parser will try $S \rightarrow a S a$ first.
a) Show that this recursive-descent parser recognizes inputs $a a$, aaaa, and aaaaaaaa, but not aaaaaa.
b) What language does this recursive-descent parser recognize?

The following exercises are useful steps in the construction of a "Chomsky Normal Form" grammar from arbitrary grammars, as defined in Exercise 4.4.8.

Exercise 4.4.6. A grammar is ε-free if no production body is ε (called an ε-productiori).
a) Give an algorithm to convert any grammar into an e-free grammar that generates the same language (with the possible exception of the empty string - no e-free grammar can generate e). b) Apply your algorithm to the grammar $S a S b S \backslash b S a S \mid \varepsilon$. Hint: First find all the nonterminals that are nullable, meaning that they generate ε, perhaps by a long derivation.

Exercise 4.4.7. A single production is a production whose body is a single nonterminal, i.e., a production of the form $A \rightarrow B$.
a) Give an algorithm to convert any grammar into an ε-free grammar, with no single productions, that generates the same language (with the possible exception of the empty string) Hint: First eliminate ε-productions, and then find for which pairs of nonterminals A and B does $A \rightarrow B$ by a sequence of single productions.
b) Apply your algorithm to the grammar
$E \rightarrow E+T \mid T$
$T \rightarrow T^{*} F \mid F$
$F \rightarrow(E) \mid$ id
c) Show that, as a consequence of part (a), we can convert a grammar into an equivalent grammar that has no cycles (derivations of one or more steps in which $A \rightarrow A$ for some nonterminal A).

Exercise 4.4.8: A grammar is said to be in Chomsky Normal Form (CNF) if every production is either of the form $A \rightarrow B C$ or of the form $A \rightarrow a$, where A, B, and C are nonterminals, and a is a terminal. Show how to convert any grammar into a CNF grammar for the same language (with the possible exception of the empty string - no CNF grammar can generate ε).

Exercise 4.4.9. Every language that has a context-free grammar can be recognized in at most $\mathrm{O}\left(n^{3}\right)$ time for strings of length n. A simple way to do so, called the Cocke-Younger-Kasami (or CYK) algorithm is based on dynamic programming. That is, given a string $a_{1} a_{2} \ldots a_{\mathrm{n}}$ we construct an n-by-n table T such that $T_{i j}$ is the set of nonterminals that generate the substring $a_{i} a_{i+1} \ldots a_{j}$.If the underlying grammar is in CNF (see Exercise 4.4.8), then one table entry can be filled in in $\mathrm{O}(n)$ time, provided we fill the entries in the proper order: lowest value of $j-i$ first. Write an algorithm that correctly fills in the entries of the table.

