Finite automata. Variant 1.

1. Describe the behavior of the NFA if the input string is 0110 . Construct a DFA equivalent to the NFA.

2. Construct a regular expression specifying the same language as the language accepted by the DFA from the task 1.
3. Construct a NFA accepting the language specified by the regular expression $0\left(1+0^{*}\right) 1^{*}$.
4. Construct a finite automata accepting numbers in ternary notation divisible by five.

Finite automata. Variant 2.

1. Describe the behavior of the NFA if the input string is 0110 . Construct a DFA equivalent to the NFA.

2. Construct a regular expression specifying the same language as the language accepted by the DFA from the task 1.
3. Construct a NFA accepting the language specified by the regular expression $0 *(1+01+10) 1 * 0$.
4. Construct a finite automata accepting numbers in binary notation divisible by five.

Finite automata. Variant 3.

1. Describe the behavior of the NFA if the input string is 0110 . Construct a DFA equivalent to the NFA.

2. Construct a regular expression specifying the same language as the language accepted by the DFA from the task 1.
3. Construct a NFA accepting the language specified by the regular expression $\left(1+0^{*}\right) 1^{*}\left(10+01^{*}\right)$.
4. Construct a finite automata accepting numbers in ternary notation divisible by four.

Finite automata. Variant 4.

1. Describe the behavior of the NFA if the input string is 0110 . Construct a DFA equivalent to the NFA.

2. Construct a regular expression specifying the same language as the language accepted by the DFA from the task 1.
3. Construct a NFA accepting the language specified by the regular expression $0\left(1+0^{*}+01\right)(1+00)^{*}$.
4. Construct a finite automata accepting numbers in binary notation divisible by six.
