Тема 9. Планарность графов

9.1. Плоские и планарные графы

Определение. Граф *укладывается* на некоторой поверхности, если его диаграмму можно нарисовать на этой поверхности без пересечения ребер.

Теорема об укладке графа в трехмерном пространстве. Всякий граф может быть уложен в трехмерном пространстве.

Доказательство. Расположим все вершины графа на одной прямой. Через эту прямую проходит бесконечное число различных плоскостей, так что если расположить все ребра графа в различных плоскостях, они не будут пересекаться.

Определение. Граф называется *планарным*, если его можно уложить на плоскости. **Определение.** Граф называется *плоским*, если он уложен на плоскости.

Определение. Область, ограниченная ребрами в лоском графе и не содержащая внутри себя вершин и ребер, называется *гранью*. Число ребер плоского графа G обозначается r(G). Внешняя часть плоскости также образует грань.

Неограниченная грань называется внешней, органиченые – внутренними.

Пример. Диаграммы планарного графа K_4 и его укладки на плоскости. Граф имеет 4 грани.

Число ребер, вершин и граней не являются независимыми величинами.

Теорема (формула Эйлера). В связном плоском графе p - q + r = 2.

Доказательство. Индукция по числу ребер q. База: q=0: p=1, r=1. Пусть теорема верна для всех графов с q ребрами. Добавим еще одно ребро. Если добавляемое ребро соединяет две существующие вершины, то $q'=q+1, \ p'=p, \ r'=r+1$. Тогда p'-q'+r'=p-(q+1)+(r+1)=p-q+r=2. Если добавляемое ребро соединяет существующую вершину с новой, то $q'=q+1, \ p'=p+1, \ r'=r$. Тогда p'-q'+r'=(p+1)-(q+1)+r=p-q+r=2.

Следствие 1. В связном планарном графе при p > 3 $q \le 3p - 6$.

Доказательство. Каждая грань ограничена по крайней мере тремя ребрами, каждое ребро ограничивает две грани, поэтому $3r \le 2q$. Имеем $2 = p - q + r \le p - q + 2q/3$. Отсюда $q \le 3p - 6$.

Следствие 2. В любом простом планарном графе существует вершина, степень которой не больше 5.

Доказательство. Без потери общности можно считать граф плоским, связным и содержащим по крайней мере три вершины. Если степень каждой вершины не меньше 6, то $6p \le 2q \ (3p \le q)$. Используя следствие 1, получаем противоречие: $3p \le 3p - 6$.

Теорема о графах K_5 и $K_{3,3}$. Графы K_5 и $K_{3,3}$ непланарны.

Доказательство от противного. В графе K_5 p=5, q=10. Если K_5 планарен, то по следствию из предыдущей теоремы $q\leq 3p-6\Rightarrow 10\leq 9.$ Противоречие.

В графе $K_{3,3}$ p=6, q=9. В этом графе нет треугольников, значит, если он планарен, то в его плоской укладке каждая грань ограничена по меньшей мере четырьмя ребрами и, следовательно, $4r \leq 2q$. По формуле Эйлера 6-9+r=2, откуда r=5. Имеем $4r=20\leq 2q=18$. Противоречие.

Рассмотрим следующие операции над графом.

Bключение вершины в ребро. Пусть имеется граф G(V, E). Пусть u, w – смежные вершины. Тогда результатом включения вершины в ребро будет граф

$$G'(V', E') : V' = V \cup v; E' = \{E \cup (v, w) \cup (v, u)\} \setminus (u, w).$$

Удаление вершины степени 2. Пусть имеется граф G(V, E) и $\exists v \in V : d(v) = 2$. Пусть u, w – вершины, смежные с v. Тогда результатом удаления вершины будет граф

$$G'(V', E') : V' = V \setminus v; E' = \{E \cup (u, w)\} \setminus \{(v, w) \cup (v, u)\}.$$

Определение. Графы называются *гомеоморфными*, если графы, полученные из них включением вершин в ребро и удалением вершин степени 2, изоморфны.

Пример. Все эти графы гомеоморфны.

Теорема Понтрягина—**Куратовского**. Граф планарен, если и только если он не содержит подграфа, гомеомерфного K_5 или $K_{3,3}$.

9.2. Толщина графа

В электротехнике части цепей наносятся на одну сторону непроводящей пластины (печатная плата). Поскольку проводники не изолированы, они не могут пересекаться, и соответствующие графы должны быть планарными. Требуется знать, сколько печатных плат понадобится для формирования всей сети. С этой целью вводится понятие толщины графа.

Определение. Толщина графа t(G) – наименьшее число планарных графов, наложение которых дает G.

Толщина графа является мерой его «непланарности» – например, толщина планарного графа равна единице, а толщина графов K_5 и $K_{3,3}$ равна двум.

Оценку снизу для толщины графа легко получить при помощи теоремы Эйлера. Часто эта довольно грубая оценка оказывается истинным значением толщины.

Введем следующие обозначения: [x] — наибольшее целое число, не превосходящее x, $\{x\}$ — наименьшее целое число, не превосходящее x.

Теорема о нижней границе толщины графа. Толщина t(G) графа G удовлетворяет следующим неравенствам:

$$t(G) \ge \left\{\frac{q}{3p-6}\right\}, \quad t(G) \ge \left\lceil\frac{q+3p-7}{3p-6}\right\rceil.$$

Доказательство. Первое соотношение вытекает из следствия 1, а второе следует из первого с помощью легко доказываемого соотношения $\{a/b\}=[(a+b-1/b],$ где a,b-1целые числа.

9.3. Укладка графа на плоскости

Критерии планарности графа не всегда просты в практическом применении и не дают информации о том, как строить укладку графа на плоскости, если он оказывается планарным. Все это вызвало появление алгоритмов, которые проверяют граф на планарность и строят его плоскую укладку.

Рассмотрим один из алгоритмов, который представляет собой процесс последовательного присоединения к некоторому уложенному подграфу G' графа G новой цепи L. Процесс присоединения продолжается до тех пор, пока не будет построен плоский граф, изоморфный G, или присоединение новой цепи окажется невозможным, что будет свидетельствовать о непланарности графа G.

Пусть имеется некоторая плоская укладка подграфа G' = (V', E') графа G = (V, E).

Определение. Сегментом G_i относительно G' = (V', E') называется подграф графа G = (V, E) следующих двух видов:

- 1) ребро e = (u, v) такое, что $e \notin E'$, $u, v \in V'$;
- 2) Связная компонента графа $G \setminus G'$, дополненная всеми ребрами графа G, соединяющими эту компоненту с подграфом G', и концами этих ребер.

Определение. Вершина u сегмента G_i называется контактной, если $u \in V'$.

Граф G' – плоский, значит, он разбивает плоскость на грани.

Определение. Допустимой гранью для сегмента G_i относительно G' называется грань γ графа G', содержащая все контактные вершины сегмента G_i

Обозначим через $\Gamma(G_i)$ множество допустимых граней для G_i . Для непланарных графов может быть $\Gamma(G_i) = \emptyset$. Рассмотрим простую цепь L сегмента G_i , соединяющую две контактные вершины этого сегменты и не содержащую других контактных вершин. Такие цепи называются α -цепями. Всякая α -цепь может быть уложеа в любую грань, допустимую для данного сегмента.

Определение. Два сегмента G_i и G_j называются конфликтующими, если:

- 1) $\theta = \Gamma(G_i) \cap \Gamma(G_i) \neq \emptyset$;
- 2) существуют две α -цепи $L_i \in G_i$ и $L_j \in G_j$, которые нельзя уложить без пересечений одновременно ни в какую грань $\gamma \in \theta$.

Пусть \tilde{G} – плоская укладка некоторого подграфа графа G. Для каждого сегмента G_i относительно \tilde{G} находим множество допустимых граней. Тогда возможны следующие три случая:

- А) существует сегмент G_i , для которого $\Gamma(G_i) = \emptyset$, тогда исходный граф G непленарен;
- Б) для некоторого сегмента G_i существует единственная допустимая грань Γ , тогда располагаем любую α -цепь сегмента G_i в грани Γ , при этом грань Γ разобьется на две грани;
- В) $|\Gamma(G_i)| \geq 2$ для всех G_i , тогда располагаем любую α -цепь сегмента G_i в любой допустимой грани.

Если на очередном шаге множество сегментов пусто, то построена укладка графа на плоскости.

Алгоритм укладки планарного графа на плоскости

- *Шаг 1.* Выбираем любой простой цикл μ графа G. Укладываем этот цикл на плоскости и полагаем $\tilde{G}=\mu$.
- *Шаг 2.* Находим все грани графа \tilde{G} и все сегменты G_i относительно \tilde{G} . Если множество сегментов пусто, то укладка графа G на плоскости построена, конец.
- *Шаг 3.* Для каждого сегмента G_i определяем множество допустимых граней $\Gamma(G_i)$. Если найдется сегмент G_i , для которого $\Gamma(G_i) = \emptyset$, то исходный граф не планарен, конец.
- *Шаг 4.* Если существует сегмент G_i , для которого имеется единственная допустимая грань γ , то идем на шаг 6. Иначе идем на шаг 5.
 - UIaг 5. Для некоторого сегмента G_i выбираем произвольную допустимую грань γ .
- *Шаг 6.* Произвольная α -цепь L сегмента G_i помещаем в грань γ . Полагаем $\tilde{G}=\tilde{G}\cup L$ и идем на шаг 2.

Интуитивно понятно, что любой планарный граф можно уложить на сфере, и обратно. Это замечание позволяет понять, что планарный граф можно уложить на плоскости несколькими способами.

Теорема. Для любой выделенной грани f плоского графа найдется изоморфный ему плоский граф, у которого грань, соответствующая грани f, будет внешней.

 \mathcal{L} оказательство. Пусть f — невнешняя грань плоского графа G. Уложим граф на сфере и выделим внутри грани f некоторую точку («северный полюс»). Проведем касательную плоскость к сфере через «южный полюс» и спроецируем граф на эту плоскость из «северного полюса». В результате получим плоский граф, изоморфный G, у которого f — внешняя грань.

Следствие. Для любого выделенного ребра плоского графа найдется такая укладка этого графа на плоскости, что выделенное ребро будет принадлежать внешней грани.