Flows. Variant 1.

1. Find a maximal flow and a minimal cut in the network with the following capacity matrix.

	a	b	c	d	e	t
s	18	14			9	
a		8	11	7		13
b				12		19
c		10			15	
d			17		21	
e						14
t						

2. Propose an algorithm to solve the maximal flow problem in a network with several sources and sinks. Give an example.
3. Find a minimal cost flow using the Ford-Falkerson algorithm for the network from the task 1 with the flow value equal to $2 / 3$ of the maximal flow value and with the follow1ng cost matrix.

	a	b	c	d	e	t
s	3	4			8	
a		2	6	4		7
b				5		8
c		3			6	
d			5		9	
e						4
t						

Flows. Variant 2.

1. Find a maximal flow and a minimal cut in the network with the following capacity matrix.

	a	b	c	d	e	t
s	9		11		11	
a		6		8		12
b						7
c	12				5	5
d					7	
e						9
t						

2. Propose an algorithm of a maximal flow search in a network with capacities of vertices and edges. Give an example.
3. Find a minimal cost flow using negative cost cycles for the network from the task 1 with the flow value equal to $2 / 3$ of the maximal flow value and with the follow1ng cost matrix.

	a	b	c	d	e	t
s	4		6		12	
a		3		2		7
b						2
c	3				3	1
d					2	
e						8
t						

Flows. Variant 3.

1. Find a maximal flow and a minimal cut in the network with the following capacity matrix.

	a	b	c	d	e	t
s	10	5			8	
a			5	3		4
b			4	5	10	
c				4		9
d					5	6
e						7
t						

2. Propose an algorithm of a maximal flow search in a network with capacities of vertices and edges. Give an example.
3. Find a minimal cost flow using minimal paths for the network from the task 1 with the flow value equal to $2 / 3$ of the maximal flow value and with the follow1ng cost matrix.

Flows. Variant 4.

1. Find a maximal flow and a minimal cut in the network with the following capacity matrix.

	a	b	c	d	e	t
s		5		15	9	
a				6		7
b	3		4		7	
c					8	3
d						18
e				9		5
t						

2. Propose an algorithm of a flow search in a network with upper and lower bounds of the flow in every edge. Give an example.
3. Find a minimal cost flow using negative cost cycles for the network from the task 1 with the flow value equal to $2 / 3$ of the maximal flow value and with the follow1ng cost matrix.

Flows. Variant 5.

1. Find a maximal flow and a minimal cut in the network with the following capacity matrix.

	a	b	c	d	e	t
s	10		8			
a		8	12	10		6
b					5	11
c				4	12	
d		5				9
e				6		7
t						

2. Propose an algorithm of a flow search in a network with upper and lower bounds of the flow in every edge. Give an example.
3. Find a minimal cost flow using minimal paths for the network from the task 1 with the flow value equal to $2 / 3$ of the maximal flow value and with the following cost matrix.

