
Assignment problem

The assignment problem is a fundamental combinatorial optimization problem. In its most

general form, the problem is as follows:

The problem instance has a number of agents and a number of tasks. Any agent can be

assigned to perform any task, incurring some cost that may vary depending on the agent-

task assignment. It is required to perform as many tasks as possible by assigning at most

one agent to each task and at most one task to each agent, in such a way that the total cost

of the assignment is minimized.

Example. Four friends are going to have a party, and everybody can cook any dish. The table

represents the costs of the dishes. The problem is to assign everybody to exactly one dish and to

minimize the total cost. We choose exactly one element in every row and in every column.

 Tasks

 Salad Meat Rice Cake

Agents

William 10 45 8 17

Henry 9 60 11 20

Catherine 15 57 14 21

Meghan 21 48 12 15

Total cost: 9+45+12+21=87.

Alternatively, describing the problem using graph theory:

The assignment problem consists of finding, in a weighted bipartite graph, a matching of

a given size, in which the sum of weights of the edges is a minimum.

William

Henry

Catherine

Meghan

Salad

Meat

Rice

Cake

https://en.wikipedia.org/wiki/Weighted_graph
https://en.wikipedia.org/wiki/Bipartite_graph
https://en.wikipedia.org/wiki/Matching_%28graph_theory%29

Linear programming problem:

Variables:

Objective function:

Constraints:

a) Every agent is assigned to exactly one task.

b) Every task is assigned to exactly one agent.

c) Non-negative variables.

Dual LP problem.

New variables correspond to the constraints:

Variables for agents:

Variables for tasks:

Objective function:

Constraints:

Primal problem Dual problem

Complementary slackness conditions

So, if , then . For all edges in the matching, . Any

matching satisfying these condition minimizes the primal objective function and maximizes the

dual objective function.

Hungarian algorithm.

Step 1. Reduce the matrix: find the minimum cost in every row and subtract it from all elements

of the row. Then do the same with all columns. The obtained minimums are the values of the

dual problem variables .

8 10 45 8 17

9 9 60 11 20

14 15 57 14 21

12 21 48 12 15

 0 36 0 3

8 2 37 0 9

9 0 51 2 11

14 1 43 0 7

12 9 36 0 3

 0 36 0 3

8 2 1 0 6

9 0 15 2 8

14 1 7 0 4

12 9 0 0 0

Zeroes in the matrix correspond to constraints where . So, we can include the

corresponding edges to the matching. In fact, now we have in the cells the reduced costs:

Step 2. Construct any initial matching. Color cells with zeroes, having not more than one colored

cell in every row and in every column. Further, we don’t need values of the variables, but we’ll

use numbers of rows and columns.

 1 2 3 4

1 2 1 0 6

2 0 15 2 8

3 1 7 0 4

4 9 0 0 0

Step 3. If all rows and columns contain a colored zero, these zeroes provide a solution, go to the

end. Otherwise, label a row without colored zeroes by 0.

 1 2 3 4

1 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

Repeat the following actions.

a) Label every unlabeled column containing an uncolored zero in labeled row by .

 1 2 3(3) 4

1 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

b) Label every unlabeled row containing a colored zero in labeled column by .

 1 2 3(3) 4

1(3) 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

If we label a column without colored zeros, goto Step 5. If there are no uncolored zeroes in

labeled rows and unlabeled columns, goto Step 4.

Step 4. Consider the intersection of all labeled rows and unlabeled columns. Find the minimum

value in these cells.

 1 2 3(3) 4

1(3) 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

Subtract to all elements of the labeled rows and unlabeled columns. Add to all elements of

the unlabeled rows and labeled columns

 1 2 3(3) 4

1(3) 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

Here .

 1 2 3(3) 4

1(3) 2−1 1−1 0 6−1

2 0 15 2+1 8

3(0) 1−1 7−1 0 4−1

4 9 0 0+1 0

Result:

 1 2 3(3) 4

1(3) 1 0 0 5

2 0 15 3 8

3(0) 0 6 0 3

4 9 0 1 0

Goto Step 3.

Step 3.

 1 2(1) 3(3) 4

1(3) 1 0 0 5

2 0 15 3 8

3(0) 0 6 0 3

4 9 0 1 0

We labeled column 2 without colored zeroes, goto Step 5.

Step 5. Construct an augmenting path: start with the column without uncolored zeroes, say ,

with label , include cell into the path. Then consider row , it’s labeled by . If ,

stop. Otherwise, include cell into the path and repeat the Step for column .

 1 2(1) 3(3) 4

1(3) 1 0 0 5

2 0 15 3 8

3(0) 0 6 0 3

4 9 0 1 0

Augmenting path: (in violet).

Step 6. Along the augmenting path, change the colors of zeroes: colored zeroes become

uncolored, and vice versa, uncolored zeroes become colored.

 1 2 3 4

1 1 0 0 5

2 0 15 3 8

3 0 6 0 3

4 9 0 1 0

Goto Step 3.

Step 3. All rows and columns contain a colored zero, these zeroes provide a solution, go to the

end.

 Tasks

 Salad Meat Rice Cake

Agents

William 10 45 8 17

Henry 9 60 11 20

Catherine 15 57 14 21

Meghan 21 48 12 15

They have a happy party! The total cost is 9+45+14+15=83.

Explanation of the algorithm.

Step 3.

A row (a column) without colored zeroes correspond to an unsaturated vertex of the matching.

Zeroes correspond to edges that can be included into the matching (these edges are included in

special spanning subgraph). Colored zeroes correspond to edges from the matching (thick lines).

 1 2 3(3) 4

1(3) 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

1

2

3

4

1

2

3

4

Labeling rows and columns, we construct an alternating tree − a tree in which the edges in every

path starting in the root and ending in a leave are alternately out of and in the matching

(uncolored and colored zeroes). In the picture, it is indicated by solid line. The root is vertex 3 in

the left part.

 1 2 3(3) 4

1(3) 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

1

2

3

4

1

2

3

4

If there are no labeled rows with uncolored zeroes then we can’t proceed constructing the tree: in

our subgraph, there are no other edges out of the matching, incident with marked vertices in the

left part (3 and 1 orange, in our case). So, we update the values of the variables and modify the

subgraph. All edges in matching should stay in the subgraph.

Step 4. Consider the intersection of all labeled rows and unlabeled columns. Find the minimum

value in these cells.

 1 2 3(3) 4

1(3) 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

In fact, we consider all edges, starting in marked orange vertices and ending in unmarked green

vertices.

1

2

3

4

1

2

3

4

To proceed with the tree, we need to include one of these edges to our special spanning

subgraph. For this purpose, we recalculate the values of the variables, and hence, the reduced

costs:

We need to turn into zero at least one cost where correspond to a marked row (agent) and

correspond to an unmarked row (task). As should be non-negative, we find the minimum

value of say . Then, we update the variables and recalculate

 Marked columns Unmarked columns

Marked rows

Unmarked rows

Note that for all edges in matching, the ends are either both marked or both unmarked (according

the procedure of the tree constructing).

1

2

3

4

1

2

3

4

As you can see, in both these cases the costs don’t change; so, the reduced costs of all edges in

the matching stay zeroes. The same is true about edges from the tree; both their ends are marked.

As for edges with marked orange end and unmarked green end, their costs stay non-negative,

because is the minimum cost among these edges; but some of them become zeroes. It allows

us to proceed the tree constructing.

Show the process by using matrices.

 1 2 3(3) 4

1(3) 2 1 0 6

2 0 15 2 8

3(0) 1 7 0 4

4 9 0 0 0

Here .

 1 2 3(3) 4

1(3) 2−1 1−1 0 6−1

2 0 15 2+1 8

3(0) 1−1 7−1 0 4−1

4 9 0 0+1 0

Result:

 1 2 3(3) 4

1(3) 1 0 0 5

2 0 15 3 8

3(0) 0 6 0 3

4 9 0 1 0

At the graph:

1

2

3

4

1

2

3

4

After that, we goto Step 5 and proceed the tree constructing.

 1 2(1) 3(3) 4

1(3) 1 0 0 5

2 0 15 3 8

3(0) 0 6 0 3

4 9 0 1 0

We labeled column 2 without colored zeroes, it means, we came to green vertex 2 which is not

covered by the matching. Goto Step 5.

1

2

3

4

1

2

3

4

Step 5. We have an augmented path – a path where the edges are alternately out of and in the

matching, and the ends are not covered by the matching (in the table, we have uncolored and

colored zeroes, in violet).

 1 2(1) 3(3) 4

1(3) 1 0 0 5

2 0 15 3 8

3(0) 0 6 0 3

4 9 0 1 0

Step 6. Along the augmenting path, change the colors of zeroes: colored zeroes become

uncolored, and vice versa, uncolored zeroes become colored. As the number of uncolored zeroes

exceed the number of colored ones, we increase the number of edges in the matching.

 1 2 3 4

1 1 0 0 5

2 0 15 3 8

3 0 6 0 3

4 9 0 1 0

At the graph:

1

2

3

4

1

2

3

4

We found a perfect matching satisfying the complementary slackness conditions:

For all =0.

