
Assignment problem 

The assignment problem is a fundamental combinatorial optimization problem. In its most 

general form, the problem is as follows:  

The problem instance has a number of agents and a number of tasks. Any agent can be 

assigned to perform any task, incurring some cost that may vary depending on the agent-

task assignment. It is required to perform as many tasks as possible by assigning at most 

one agent to each task and at most one task to each agent, in such a way that the total cost 

of the assignment is minimized. 

 

Example. Four friends are going to have a party, and everybody can cook any dish. The table 

represents the costs of the dishes. The problem is to assign everybody to exactly one dish and to 

minimize the total cost. We choose exactly one element in every row and in every column. 

  Tasks 

  Salad Meat Rice Cake 

Agents 

William 10 45 8 17 

Henry 9 60 11 20 

Catherine 15 57 14 21 

Meghan 21 48 12 15 

 

Total cost: 9+45+12+21=87. 

Alternatively, describing the problem using graph theory:  

The assignment problem consists of finding, in a weighted bipartite graph, a matching of 

a given size, in which the sum of weights of the edges is a minimum. 
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https://en.wikipedia.org/wiki/Weighted_graph
https://en.wikipedia.org/wiki/Bipartite_graph
https://en.wikipedia.org/wiki/Matching_%28graph_theory%29


Linear programming problem: 

Variables: 

 

Objective function: 

 

Constraints: 

a) Every agent is assigned to exactly one task. 

 

b) Every task is assigned to exactly one agent. 

 

c) Non-negative variables. 

 

Dual LP problem. 

New variables correspond to the constraints: 

Variables for agents: 

 

Variables for tasks: 

 

Objective function: 

 

Constraints: 

 

 



Primal problem Dual problem 

 

 

 

 

 

 

 

 

 

Complementary slackness conditions 

 

So, if , then . For all edges  in the matching, . Any 

matching satisfying these condition minimizes the primal objective function and maximizes the 

dual objective function. 

Hungarian algorithm. 

Step 1. Reduce the matrix: find the minimum cost in every row and subtract it from all elements 

of the row. Then do the same with all columns. The obtained minimums are the values of the 

dual problem variables . 

     

8 10 45 8 17 

9 9 60 11 20 

14 15 57 14 21 

12 21 48 12 15 

 

 0 36 0 3 

8 2 37 0 9 

9 0 51 2 11 

14 1 43 0 7 

12 9 36 0 3 

 

 0 36 0 3 

8 2 1 0 6 

9 0 15 2 8 

14 1 7 0 4 

12 9 0 0 0 

Zeroes in the matrix correspond to constraints where . So, we can include the 

corresponding edges to the matching. In fact, now we have in the cells the reduced costs: 

 



Step 2. Construct any initial matching. Color cells with zeroes, having not more than one colored 

cell in every row and in every column. Further, we don’t need values of the variables, but we’ll 

use numbers of rows and columns. 

 1 2 3 4 

1 2 1 0 6 

2 0 15 2 8 

3 1 7 0 4 

4 9 0 0 0 

 

Step 3. If all rows and columns contain a colored zero, these zeroes provide a solution, go to the 

end. Otherwise, label a row without colored zeroes by 0. 

 1 2 3 4 

1 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 

 

Repeat the following actions. 

a) Label every unlabeled column containing an uncolored zero in labeled row  by . 

 1 2 3(3) 4 

1 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 

 

b) Label every unlabeled row containing a colored zero in labeled column  by . 

 

 1 2 3(3) 4 

1(3) 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 

 

If we label a column without colored zeros, goto Step 5. If there are no uncolored zeroes in 

labeled rows and unlabeled columns, goto Step 4. 

Step 4. Consider the intersection of all labeled rows and unlabeled columns. Find the minimum 

value in these cells. 

 1 2 3(3) 4 

1(3) 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 



Subtract  to all elements of the labeled rows and unlabeled columns. Add  to all elements of 

the unlabeled rows and labeled columns 

 1 2 3(3) 4 

1(3) 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 

 

Here . 

 1 2 3(3) 4 

1(3) 2−1 1−1 0 6−1 

2 0 15 2+1 8 

3(0) 1−1 7−1 0 4−1 

4 9 0 0+1 0 

 

Result: 

 1 2 3(3) 4 

1(3) 1 0 0 5 

2 0 15 3 8 

3(0) 0 6 0 3 

4 9 0 1 0 

 

Goto Step 3. 

Step 3.  

 1 2(1) 3(3) 4 

1(3) 1 0 0 5 

2 0 15 3 8 

3(0) 0 6 0 3 

4 9 0 1 0 

 

We labeled column 2 without colored zeroes, goto Step 5. 

 

Step 5. Construct an augmenting path: start with the column without uncolored zeroes, say , 

with label , include cell  into the path. Then consider row , it’s labeled by . If , 

stop. Otherwise, include cell  into the path and repeat the Step for column . 

 1 2(1) 3(3) 4 

1(3) 1 0 0 5 

2 0 15 3 8 

3(0) 0 6 0 3 

4 9 0 1 0 

 

Augmenting path:  (in violet). 

 

Step 6. Along the augmenting path, change the colors of zeroes: colored zeroes become 

uncolored, and vice versa, uncolored zeroes become colored. 



 1 2 3 4 

1 1 0 0 5 

2 0 15 3 8 

3 0 6 0 3 

4 9 0 1 0 

 

Goto Step 3. 

Step 3. All rows and columns contain a colored zero, these zeroes provide a solution, go to the 

end. 

  Tasks 

  Salad Meat Rice Cake 

Agents 

William 10 45 8 17 

Henry 9 60 11 20 

Catherine 15 57 14 21 

Meghan 21 48 12 15 

 

They have a happy party! The total cost is 9+45+14+15=83. 

 
 

Explanation of the algorithm. 

Step 3. 

A row (a column) without colored zeroes correspond to an unsaturated vertex of the matching. 

Zeroes correspond to edges that can be included into the matching (these edges are included in 

special spanning subgraph). Colored zeroes correspond to edges from the matching (thick lines). 

 1 2 3(3) 4 

1(3) 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 
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Labeling rows and columns, we construct an alternating tree − a tree in which the edges in every 

path starting in the root and ending in a leave are alternately out of and in the matching 

(uncolored and colored zeroes). In the picture, it is indicated by solid line. The root is vertex 3 in 

the left part. 

 1 2 3(3) 4 

1(3) 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 
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If there are no labeled rows with uncolored zeroes then we can’t proceed constructing the tree: in 

our subgraph, there are no other edges out of the matching, incident with marked vertices in the 

left part (3 and 1 orange, in our case). So, we update the values of the variables and modify the 

subgraph. All edges in matching should stay in the subgraph. 

 

Step 4. Consider the intersection of all labeled rows and unlabeled columns. Find the minimum 

value in these cells. 

 1 2 3(3) 4 

1(3) 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 

In fact, we consider all edges, starting in marked orange vertices and ending in unmarked green 

vertices.  
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To proceed with the tree, we need to include one of these edges to our special spanning 

subgraph. For this purpose, we recalculate the values of the variables, and hence, the reduced 

costs: 

 

We need to turn into zero at least one cost  where  correspond to a marked row (agent) and  

correspond to an unmarked row (task). As  should be non-negative, we find the minimum 

value of  say . Then, we update the variables and recalculate  

 

 Marked columns Unmarked columns 

Marked rows 

 

 

 

 

 

 

 

 

Unmarked rows 

 

 

 

 

 

 

 

 

Note that for all edges in matching, the ends are either both marked or both unmarked (according 

the procedure of the tree constructing). 
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As you can see, in both these cases the costs don’t change; so, the reduced costs of all edges in 

the matching stay zeroes. The same is true about edges from the tree; both their ends are marked. 

As for edges with marked orange end and unmarked green end, their costs stay non-negative, 

because  is the minimum cost among these edges; but some of them become zeroes. It allows 

us to proceed the tree constructing. 

Show the process by using matrices. 

 1 2 3(3) 4 

1(3) 2 1 0 6 

2 0 15 2 8 

3(0) 1 7 0 4 

4 9 0 0 0 

 

Here . 

 

 



 1 2 3(3) 4 

1(3) 2−1 1−1 0 6−1 

2 0 15 2+1 8 

3(0) 1−1 7−1 0 4−1 

4 9 0 0+1 0 

 

Result: 

 1 2 3(3) 4 

1(3) 1 0 0 5 

2 0 15 3 8 

3(0) 0 6 0 3 

4 9 0 1 0 

At the graph: 

1

2

3

4

1

2

3

4
 

After that, we goto Step 5 and proceed the tree constructing. 

 1 2(1) 3(3) 4 

1(3) 1 0 0 5 

2 0 15 3 8 

3(0) 0 6 0 3 

4 9 0 1 0 

 

We labeled column 2 without colored zeroes, it means, we came to green vertex 2 which is not 

covered by the matching. Goto Step 5. 
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Step 5. We have an augmented path – a path where the edges are alternately out of and in the 

matching, and the ends are not covered by the matching (in the table, we have uncolored and 

colored zeroes, in violet). 

 



 1 2(1) 3(3) 4 

1(3) 1 0 0 5 

2 0 15 3 8 

3(0) 0 6 0 3 

4 9 0 1 0 

 

Step 6. Along the augmenting path, change the colors of zeroes: colored zeroes become 

uncolored, and vice versa, uncolored zeroes become colored. As the number of uncolored zeroes 

exceed the number of colored ones, we increase the number of edges in the matching. 

 1 2 3 4 

1 1 0 0 5 

2 0 15 3 8 

3 0 6 0 3 

4 9 0 1 0 

At the graph: 
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We found a perfect matching satisfying the complementary slackness conditions:  

 

For all  =0. 


