
1

TOMSK POLYTECHNIC UNIVERSITY

S.N. Torgaev

MICROPROCESSOR CONTROL SYSTEMS

PART 1.THE INTEL 8080 MICROPROCESSOR

AND 8051 MICROCONTROLLER

It is recommended for publishing as a study aid

by the Editorial Board of Tomsk Polytechnic University

Tomsk Polytechnic University Publishing House

2013

2

UDC 681.322
BBC 32.973.26-04

Т60

Torgaev S.N.

Т60 Microprocessor control systems. Part1. The Intel 8080 microprocessor

and 8051 microcontroller / S.N. Torgaev; Tomsk Polytechnic University. –

Tomsk: TPU Publishing House, 2013. – 126 p.

The basic principles of operation of Intel 8080 microprocessor, its internal structure and as-

sembly programming are discussed. The differences between microprocessor and microcontrollers

are shown and basic blocks of microcontrollers and their initialization are described.

UDC 681.322

BBC 32.973.26-04

Reviewers

associate professor of the Tomsk Polytechnic University

F.A. Gubarev

senior staff scientist of the Institute of Atmosphere Optics SB RAS

D.V. Shiyanov

© STE HPT TPU, 2013

© Torgaev S.N., 2013

© Design. Tomsk Polytechnic University

Publishing House, 2013

3

INTRODUCTION

Nowadays it is difficult to find an area in our lives where microproces-

sors and microcontrollers are not used. An understanding of physical and log-

ical principles in the simplest microprocessors and microcontrollers is essen-

tial for the development of various control devices based on them.

This manual focuses on the principles of operation of microprocessors

and basic blocks (timers, I/O ports, memory and others) of modern microcon-

trollers, Intel 8080 microprocessor and 8051 microcontroller being used as

examples. A detailed description of the microprocessor operation during the

program execution and the purpose of building blocks within its structure is

given.

4

PART 1. POSITIONAL NOTATIONS

In positional notation the numerical value of a digit depends on its posi-

tion in the sequence of numbers.

In general, the sequence of numbers is as follows [1]:

1 2 1 0......n nx a a a a  ,

where 0 1ka b   , and b is a base.

At present the positional notations with bases b = 2, 10, 16 are the most

common.
If b > 10 for denoting a number of the corresponding value, the notation

conforming to numbers 10, 11, etc. is used. For example, in hexadecimal sys-

tem such symbols are represented by letters:

10

11

12

13

14

15.

A

B

C

D

E

F













Example 1.1:

10

2

8

16

535 decimal system

0001 0111 0001 0111 0001 0111 binary system

537 octal system

8 8 0 8 hexadecimal system

b bx

CA CAh x CA



  



  

A positive integer x in positional base-b system is represented as a finite

linear combination of powers of b.
1

0

n
k

k

k

x a b




 ,

where 0 1ka b   .

5

Example 1.2:
2 1 0

10

7 6 5 4 3

2

2 1 0

2 1 0

8

2 1 0

16

539 5 10 3 10 9 10 500 30 9 539

0001 0111 0 2 0 2 0 2 1 2 0 2

1 2 1 2 1 2 16 4 2 1 23

537 5 8 3 8 7 8 320 24 7 351

8 8 16 12 16 10 16 2048 192 10 2250CA

         

          

          

         

         

 Microprocessor technology operates on binary numbers. Regardless of

the numbers in the user program, the microprocessor always converts them

into a sequence of binary digits 0 and 1.

The following abbreviations are used to indicate the formats of binary

numbers [1].

 Bit – a binary digit, which has two values (0, 1).

Two bits can represent only four numbers (00, 01, 10, 11).

n bits can represent 2
n
 numbers.

 Tetrad – a combination of four bits, it describes the 16 combina-

tions of numbers. This combination coincides with the number

of digits in the base-16 system. Thus any combination of the tet-

rad can be represented by 4 bits in a binary system or by one

number or letter in the base-16 system:

Base-10 Base-2 Base-16

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

6

 Byte – 8 bits. Byte allows us to describe 256 different numbers.

The bits in a byte are numbered from right to left starting from

zero. The smallest number in base-16 system is written as 0016,

and the largest one is written as FF16.

Example 1.3:

2 16

2

2

0001 0111 17

00011100 1

1010 1111 0

Ch

AFh







 Word – a combination of 16 bits or 2 bytes. The word contains

2
16

 = 65536 combinations.

For a brief description of large powers of 2 (which is used to character-

ize the memory size) special symbols are used. The size of 2
10

 is represented

by the letter K, which reads "KB" (kilobytes). The size of 2
20

 is represented

by the letter M, which reads "MB" (megabyte), the number 2
30

 is represented

by G, which reads " GB" (gigabyte).

1.1. CONVERSION FROM BASE-10 TO OTHER POSITIONAL

NOTATIONS

To convert a decimal number x to the number base-b system it is neces-

sary to consistently divide the original number x and derived quotients by b

until the quotient is zero. The desired representation of a sequence of modulo

from operations of division, where the first digit of the modulo is the least

significant bit of the desired number.

Example 1.4:

Converting the number 23 to the base-2 system:

 

 

 

 

 

10 2

23/ 2 11 excess1

11/ 2 5 excess1

5/ 2 2 excess1

2 / 2 1 excess0

1/ 2 0 excess1

23 0001 0111













Converting the number 2250 to the base-16 system yields:

7

 

 

 

10 16

2250/16 140 excess10

140/16 8 excess12

8/16 0 excess8

2250 8CA









1.2. SIGNED BINARY NUMBERS

For representing the sign, high-order bit (or MSB) is used. To represent

the positive number the significant bit is set equal to zero; for negative num-

bers, this bit is set to 1 [1].

For writing signed numbers it is necessary to set its format, i.e. the

number of bits reserved for writing a signed number. Typically, this format

consists of eight bits. In the true form the MSB is used as a sign bit, and the

remaining low-order bits (or LSB) are used to indicate the module of number.

Example 1.5:

2 10

2 10

2 10

0001 0111 23

1001 0111 175 unsigned

1001 0111 23 signed



 

  

The maximum positive number in the true form in a base-2 system is

written as 01111111 = 12710.

The minimum negative number in true form in a base-2 system is writ-

ten as 11111111 = -12710

The true form was used at the early stages of development of micropro-

cessors. Now only a complement-on-two is used to write the signed numbers.

The positive numbers in complement-on-two encoding coincide with the true

form and for encoding negative numbers a special rule is introduced. For ob-

taining the complement-on-two of negative numbers in the format of n bits it

is necessary to write n-bit module of number, then we invert all the bits and

add one to this number.

Example 1.6:

2 10

2

2 10

2 10

2 10

0001 0111 23

Inversion 1110 1000

Addition of one 1110 1001 23

1110 1001 233 -unsigned

1110 1001 =-23 -signed





 



And
2 1011111111 1  .

8

1.3. FIXED-POINT NUMBERS

Writing any fractional part of x in base-b positional system with a fixed

point is based on the idea of representing the numbers in the polynomial form

[1].
1 2 3

1 2 3 ... m

mx a b a b a b a b   

        .

When converting a fractional part of numbers from the base-10 system

to the base-b system the following algorithm is typically used:

1. The fractional part is multiplied by b, and the integer part is discarded;

2. The newly obtained fractional part is multiplied by b, etc.;

3. This procedure continues until the fractional part becomes zero;

4. The integer parts are written after the decimal point in the order they

have been received (left to right). So if the integer part is 0, then we

write "0" and if the integer part is 1, then we write "1".

5. The result can be a terminating fraction or periodical fraction in the

base-b system. Therefore, when the fraction is periodic, it is necessary

to break off the multiplication at any step and be content with an ap-

proximate notation of the original number in the base-b system.

Example 1.7: Write the number 521.4375 in base-2 system.

Converting the integer part of number:

 

 

 

 

 

 

 

 

 

 

10 2

521/2=260 excess1

260/2=130 excess0

130/2=65 excess0

65/2=32 excess1

32/2=16 excess0

16/2=8 excess0

8/2=4 excess0

4/2=2 excess0

2/2=1 excess0

1/2=0 excess1

521 =10 0000 1001

 Converting the fractional part of number:

9

10 2

0.4375 2 0.875 0

0.875 2 1.75 1

0.75 2 1.5 1

0.5 2 1 1

.4375 .0111

write

write

write

write

 

 

 

 



 Thus, a complete notation of the number 521.4375 in base-2 system

would be
2 160010 0000 1001.0111 209.7 . Then we check:

2

9 3 0 1 2 3 4

0010 0000 1001.0111

1 2 1 2 1 2 0 2 1 2 1 2 1 2

512 8 1 0.25 0.125 0.0625 521.4375

x                  

      

.

Example 1.8: Write in base-2 system the number 1.94.

Converting the integer part of number:

 

10 2

1/ 2 0 excess1

1 0001





 Converting the fractional part of number:

10 2

0.94×2=1.88 write 1

0.88×2=1.76 write1

0.76×2=1.52write 1

0.52×2=1.04 write 1

0.04×2=0.08 write 0

0.08×2=0.16write 0

etc.

.94 =.111100

Thus, a complete notation of the number 1.94 in base-2 system is

2 160001.1111 1.F . We check:

2

0 1 2 3 4

0001.1111

1 2 1 2 1 2 1 2 1 2

1 0.5 0.25 0.125 0.0625 1.9375

x              

     

.

1.4. FLOATING POINT NUMBERS

It is often necessary to process very large numbers (e.g. the distance be-

tween stars) or very small numbers (for example, the size of atoms or elec-

trons). In such calculations we would have to use a great number of bits. For

such calculations fixed-point numbers are ineffective [1].

10

In decimal arithmetic for writing such numbers the algebraic form is

used. This number is written as the mantissa multiplied by 10 in the power

that shows the number exponent.

Example 1.9:
25 300.2 10 or 0.16 10  .

This form is also used for the notation of binary numbers. This notation

is called a floating point number. In this form mantissa cannot be more than

one, and zero cannot be written after the decimal point in the mantissa.

There is the standard IEEE 754 for the representation of single-precision

(float) and double-precision (double) numbers. To write the floating-point

single precision number a 32-bit word is required. To write the double preci-

sion number a 64-bit word is required. The number is commonly saved in

several neighboring cells of memory. The formats of single precision float-

ing-point and double-precision floating-point numbers are shown in Fig. 1.

Fig. 1.1. Formats of floating-point numbers

The letter S is a sign of numbers, 0 is a positive number, 1 is a negative

number. Е is a biased exponent of number.

The biased exponent is required not to introduce another sign in the

number. The biased exponent is always a positive number. There are eight

bits for single-precision and 11 bits for double-precision for the biased expo-

nent. For single-precision, the biased exponent equals 127, and for double

precision it is 1023. In decimal mantissa the digits 1-9 can be used and in bi-

nary mantissa - only 1. Therefore, there is not a single bit after the binary

point in the floating-point number. The unit is meant as a binary comma. In

addition, it is assumed in the format of floating point numbers that the man-

tissa is always more than 1. So, the mantissa is in the range from 1 to 2.

The number in its binary floating-point code can be calculated from:

   1 1. 2
S Ex m    .

11

Properties of the floating-point numbers:

1. Normalized form of any non-zero number can be represented in a sin-

gle form. The disadvantage of such a notation is the fact that it is im-

possible to represent the number 0.

2. Since the MSB of the binary number written in the normalized form is

always equal to 1, it can be turned down. This rule is used in the IEEE

754.

3. In contrast to integers, floating-point numbers (double, for example)

have a quasi-uniform distribution.

4. Because of Property 3, floating-point numbers have a constant relative

error (in contrast to integers, which have a constant absolute error).

5. Not all real numbers can be represented as a floating-point number.

6. In the double format the numbers from×10
-308

 to.7×10
-307

 can be repre-

sented.

Here is an example of calculations of numbers in a binary code.

Example 1.10: Determine the floating point number consisting of four bytes:

11000001 01001000 00000000 00000000

 Sign bit equal to 1 shows that the number is negative;

 The biased exponent 10000010 in decimal form corresponds to the

number 130. Subtracting 127 from 130, we get the number 3.

 Mantissa: 1.100 1000 0000 0000 0000 0000

 So the decimal number is:
2 101100.1 12.5 .

Check:

   
1 130 127 31 1.1001000 2 1.5625 2 12.5x          .

12

PART 2. MICROPROCESSORS AND MICROPROCESSOR SYS-

TEMS

2.1. BASIC CONCEPTS

Microprocessor – a software-controlled device that processes digital in-

formation and controls it.

Microprocessor-based hardware – a set of compatible chips, such as

a microprocessor chip RAM, non-volatile memory, input-output devices, etc.

Microprocessor system – a computer or control system based on mi-

croprocessor – based hardware.

Microcomputer with little computational resources and simplified com-

mand system, performing logic control of various devices, is called micro-

controller.

In microprocessor systems, the processing of all information and control

of computation process is performed by a microprocessor. It is the micropro-

cessor that performs all arithmetic and logic operations (addition, multiplica-

tion, shift, comparison, etc.), the temporary storage of program code and da-

ta, the data transfer between peripheral devices, etc. All the additional func-

tions such as the storage of programs and data, communication between de-

vices of microprocessor system, communication with a personal computer

and others are performed by peripheral devices.

The microprocessor performs all operations sequentially. At present

there are a large number of processors capable of performing multiple opera-

tions in parallel. The disadvantage of serial operations is that the run-time of

the program, strongly depending on the complexity and speed of the micro-

processor system, will be significant.

The control program describes all operations that will be performed by

the microprocessor. The program consists of the commands, the digital codes

(operational codes), that ‘report’ to the microprocessor which operation

should be performed. A set of commands that a microprocessor can perform

forms its command system.

In 1945 John von Neumann offered the basic program control princi-

ples:

1. The computer must operate completely electronically;

2. Application of the binary system, where bits – or binary digits – can

only have the value “0” or “1”. He also proposed the bit as a measur-

ing unit for computer memory;

3. The use of an arithmetical unit;

4. The use of a central processing unit;

5. Storage and control of a program and data storage.

13

2.2. CLASSIFICATION OF MICROPROCESSORS

In Fig. 2.1 the classification of microprocessors is presented:

Fig 2.1. Classification of microprocessors

14

1. By the number of large-scale integrated circuits (LSIs) the microproces-

sors are divided into [2]:

• single-chip microprocessors;

• multichip microprocessors;

• multichip sectional microprocessors.

Single-chip microprocessors consist of one LSI or VLSI (very large-

scale integrated circuit). The possibility of single-chip microprocessors is

limited by the characteristics of the crystal and the case.

The multi-chip microprocessor is divided into the functional blocks.

These functional blocks are implemented in the form of individual LSI or

VLSI. All blocks of the microprocessor perform specific functions and can

work independently.

Typically, a multichip processor is divided into the following functional

blocks: an operating processor, a control processor and an interface proces-

sor.

The operating processor performs data processing. And the control pro-

cessor is used for fetching, decoding, address computation and also for de-

termining the sequence of commands. The interface processor is used to con-

nect the memory with various peripheral and other devices and to provide

direct memory access mode (DMA).

2. By their application the processors are divided into (Fig. 2.2) [2]:

 General purpose microprocessors;

 Specific microprocessors.

Fig. 2.2. Classification of microprocessors by application

15

General purpose microprocessors are designed for a wide range of tasks.

The specific microprocessors targeted for specific functions can significantly

increase the productivity. The field of application of specific microprocessors

is wide. Typically, they are used for the control of complex technical devices

and processes in manufacturing, transportation, communications, military in-

dustry, medicine, etc. A particular class of specific microprocessors are digi-

tal signal processors that have a high performance in analog signals pro-

cessing.

Digital signal processors have the following characteristics:

 Multiply-accumulate units;

 Multiple access memory architecture;

 Specialized addressing modes: circular addressing, bit-

reverse addressing;

 Residual control / predicated execution;

 Hardware loops / zero-overhead loops;

 Restricted interconnectivity between registers and func-

tional units;

 Encoding restrictions.

3. By the form of processed input signals two types are distinguished [2]:

 digital microprocessors;

 analog microprocessors.

In analog microprocessors, input signals are previously digitized. After

that the processing is carried out in digital form and the result is converted

into the analog form at the output.

4. By the temporal organization the microprocessors are classified into [2]:

 synchronous microprocessors;

 asynchronous microprocessors.

5. By the number of running programs the foolowing types are distin-

guished [2]:

 single-program microprocessors;

 multi-program microprocessors.

Single-program microprocessors can perform only one program, and the

implementation of the following programs is possible only after previous

one. In the multi-program microprocessor, several programs can be per-

formed at the same time, which allows to control a large number of sources

and receivers of information.

16

2.3. THE CHARACTERISTICS OF MICROPROCESSORS

The main characteristics of microprocessor are:

1. The power of microprocessor. The power of microprocessor is its capa-

bility to process data. As a rule, this parameter is estimated by three

main characteristics:

 Data word size (the number of bits that can be processed at the

same time). Data word size can be 4, 8, 16, 32 and 64 bits. This

parameter is one of the main characteristics of microprocessors;

 The number of addressable memory words or address bus size.
It characterizes the capability of a microprocessor in accessing

its memory. For 16-bit address bus the number of addressable

memory words will be 2
16

 = 65536 = 65К and for 20-bit address

bus - 2
20

 = 1048576 = 1М. Each word in the memory has a num-

ber of its location that is called address. To get the words from

the memory, computer refers to the corresponding address.

Memory addresses start at zero and are represented in binary

form. The different types of computers have different maximum

memory addresses and it specifies the computing power of the

microprocessor;

 Speed. Most often, this parameter is stated as the time required

for the microprocessor to execute one operation, in terms of the

clock rate, or the access time;

2. The type of microelectronic technology used in the microprocessor

manufacturing: p-channel MOS, n-channel MOS, CMOS, silicon-on-

sapphire, bipolar TTL, Schottky TTL, I
2
L, ECL;

3. The number of crystals forming the microprocessor, the number of el-

ements (transistors) on the crystal, the crystal dimensions;

4. Package dimensions and number of pins;

5. Form of control: in-system or micro-programming;

6. Efficiency of the command system, which is specified by the number of

commands, possible addressing modes, the availability of commands

working with stack memory and commands working with bits, decimal

numbers, floating point numbers, etc.;

7. The number of interrupt levels;

8. The possibility of working in direct memory access (DMA) mode;

9. The number of power supply voltages;

10. Power consumption and signal parameters;

11. Service conditions (operating temperature range, relative humidity,

etc.);

17

12. Price of microprocessor.

2.4. THE MICROPROCESSOR ARCHITECTURE

The microprocessor architecture is a logical organization of the micro-

processor, which specifies its possibility of using it for hardware and soft-

ware realization of the functions needed to build microprocessor systems.

The term “microprocessor architecture” characterizes:

 the set of components the microprocessor consists of, and the connec-

tions between them;

 the presentation medium and data formats;

 addressing to all (software available) structure elements that are avail-

able to the user (addressing to the registers, RAM cells and permanent

memory, peripherals);

 command system of microprocessor;

 characteristics of control word and signals generated by the micropro-

cessor and received by it;
 the response to external signals (interrupt processing circuitry, etc.).

There are two types of microprocessors: RISC (Reduced Instruction Set

Computing) and CISC (Complex Instruction Set Computing).

1. Complex Instruction Set Computer (CISC):

 large number of complex addressing modes;

 many versions of instructions for different operands;

 different execution times for instructions;

 few processor registers;

 microprogrammed control logic.

2. Reduced Instruction Set Computer (RISC):

 one instruction per clock cycle;

 memory accesses by dedicated load/store instructions;

 few addressing modes;

 hard-wired control logic.

Modern microprocessors have RISC-core and CISC-cover.

The processors with the MISC (Minimum Instruction Set Compu-

ting) type architecture with a minimal set of commands and a very high

speed are currently being developed.

Figure 2.3 shows a simplified architecture for a standard von Neumann

processor. When an instruction is processed in such a processor, units of the

processor not involved at each instruction phase wait idly until control is

passed on to them. Increase in processor speed is achieved by making the in-

18

dividual units operate faster, but there is a limit on how fast they can be made

to operate [3].

Fig. 2.3. A simplified architecture for standard microprocessors

The principal feature of the Harvard architecture is that the program and

data memories lie in two separate spaces, permitting a full overlap of instruc-

tion fetch and execution [3].

Typically, each instruction involves three steps:

• instruction fetch;

• instruction decode;

• instruction execute.

In a standard processor, without Harvard architecture, the program in-

structions (that is, the program code) and the data (operands) are held in one

memory space; see Fig. 2.4. Thus the fetching of the next instruction while

the current one is executing is not allowed, because the fetch and execution

phases each require memory access [3].

19

Fig. 2.4. Instruction fetch, decode and execute in a non-Harvard architecture with single

memory space.

In a Harvard architecture (Fig. 2.5), since the program instructions and

data lie in separate memory spaces, the fetching of the next instruction can

overlap the execution of the current instruction; see Fig. 2.6. Normally, the

program memory holds the program code, while the data memory stores vari-

ables [3].

Fig. 2.5. Standard Harvard architecture

20

Fig. 2.6 Instruction fetch, decode and execute in Harvard architecture

2.5. BUS ORGANIZED STRUCTURE

To obtain maximum versatility and easy communication protocols, the

bus organized structure of connections between devices within the system is

used in microprocessor systems [4].

Fig. 2.7. Typical structure

In the typical structure of communication (Fig. 2.7) all signals and codes

are transmitted between devices via separate lines. Each device included in

the system transmits its signals and codes independently of other devices. In

this case, the system has a lot of lines and different communication protocols.

21

Fig. 2.8. Bus organized structure

In the bus organized structure (Fig. 2.8) all signals are transmitted be-

tween devices via the same lines of communication, but at different times (it

is called a multiplexed transmission). And all the transmission lines can

transmit addresses, data and control signals in both directions (it is called bi-

directional transmission). As a result, the number of lines is significantly re-

duced, and the interchange rules (or protocols) are simplified. Group com-

munication lines are called a bus [4].

With the bus organized structure it is easy to send all information flows

in the right direction, for example, they can pass through a single processor

and this is very important for the microprocessor system. However, with the

bus organized structure all information is transmitted sequentially in time,

which reduces the system performance compared to the classical structure.

One of the advantages of the bus organized structure is that all devices

connected to the bus must transmit and receive information by the same rules

(protocols for information exchange). So, all components of system should be

uniform, standardized.

A significant disadvantage of the bus structure is related to the fact that

all the devices are connected to each line in parallel. Therefore, any failure of

any device can put the entire system out of operation. For this reason, check-

out of bus structure system is rather complicated and usually requires special

equipment [4].

22

Fig. 2.9. Output types of digital microcircuits

In systems with bus structure all three existing types of output stages of

digital microcircuits are used:

• Standard output (Fig. 2.9,а);

• Output with open collector (Fig. 2.9,b);

• Three-stages output (Fig. 2.9,c).

Digital microcircuits with open collector and three-stages output allow

us to connect several outputs of microcircuits into multiplexed (Fig. 2.10,a)

or bidirectional lines (Fig. 2.10,b).

Fig. 2.10. Types of interconnections: a) multiplexed and b) bidirectional

23

2.6. THE STRUCTURE OF MICROPROCESSOR SYSTEM

Figure 2.11 shows a typical structure of microprocessor system.

Fig. 2.11. The typical structure of microprocessor system

The central part of this structure is the microprocessor which performs

ordinary operations:

1. arithmetic and logical operations with data;

2. control process of software for information processing;

3. organization of the communication of all devices in the system.

Microprocessor operation is specified by the synchronization signals.

Individual functional blocks are standardized and finished modules with their

control circuits and these blocks are constructed as one or several crystals of

LSI or ICI.

Inter-module communication and interchange of information between

modules are made via collective buses that are available to all the main mod-

ules of the system. At any moment in time only two modules of the system

can exchange information. The exchange of information between the differ-

ent modules occurs at different times.

The main principle requires:

 Information and logical compatibility of modules, which is realized

through the use of common ways of presenting information;

 Control algorithm of interchange;

 Instruction formats;

 Synchronization method.

The memory section of the system is a place where digital data in binary

form (l and 0) are stored. The memory consists of cells organized in 8-bit

groups. Each byte is given a unique numeric address, which represents its lo-

24

cation. Data are written into memory and read out of memory, based solely

on their address.

Microprocessor systems usually have two kinds of addressable memory.

The first is random-access memory (RAMM), which allows the computer to

read and write data at any of its addresses (it is also called read/write memory

or RWM). All data in this type of memory are lost when the power is turned

off and is called volatile memory. The second type of memory is read-only

memory (ROM), which is similar to RAM except that new data cannot be

written in; all data in ROM are loaded at the factory and cannot be changed

by the programmer. This memory does not lose its data when power is turned

off and is called non-volatile memory, Most microprocessor systems have

both RAM and ROM. RAM is used for temporary program storage and as a

temporary scratch-pad memory for the CPU. ROM is used to store programs

and data that need to be always available. Actually, many microprocessor

systems use an EPROM (erasable programmable read-only memory) or an

EEPROM (electrically erasable programmable ROM) instead of a ROM for

long-term memory. EPROMS can be erased with a strong UV light and re-

programmed. EEPROMS can be erased and reprogrammed electrically [5].

The input-output (I/O) section of the system allows it to interface with

the outside circuits. The input section is the channel through which new pro-

grams and data are put into the system. And the output section allows the mi-

croprocessor to communicate its results. An I/O interface is called a port. An

input port is a circuit that connects input devices to the system; examples of

input devices are keyboards, sensors, and others. An output port is a circuit

that connects the system to output devices. Examples of output devices are

indicator lamps, actuators, and others [5].

Typically, a bus consists of 50 to hundreds of separate lines. On any bus

the lines are grouped into three main function groups: data, address, and con-

trol. There may also be power distribution lines for attached modules.

The address bus is a group of wires that carries an address (in binary

form) from the microprocessor to the memory and I/O circuits.

The address bus is used to determine the address (number) of the device

with which the processor communicates presently. Each device (except the

microprocessor), to each memory cell in the microprocessor system its own

address is assigned. When the code of some addresses is exposed to the pro-

cessor address bus, a device to which this address is assigned, understands

that it is due to communicate. The address bus can be unidirectional or bidi-

rectional [5].

The data bus is a main bus that is used to transfer information between

all the devices of the microprocessor system. Usually, in the process of in-

25

formation transfer the processor transmits data to some device or memory or

receives data from the device or from any memory cell. But the transfer of

information between devices without the microprocessor is also possible. The

data bus is always bidirectional.

The control bus, unlike the address bus and the data bus, consists of sep-

arate control lines. Each of these signals has its own function during the in-

terchange of information. Some signals are used for gating the transferred or

received data (that is, determining moments, when the information code is on

the data bus). Other control signals can be used to confirm that the data have

been received, to reset all devices to the initial state, to clock all devices, etc.

Control bus lines can be unidirectional or bidirectional [5].

Power bus is necessary to power the system. It consists of supply lines

and the common wire. In a microprocessor system, there can be one power

supply (usually +5 V, 3.3 V or 1.8 V) and also additional power supplies

(usually even-5 V, +12 V and -12 V). Each of them has its own voltage supply

line connection. All devices connected to these lines are in parallel.

The peripherals used in microprocessor systems include displays, print-

ing devices, analog to digital converters, digital to analog converters, etc.

The peripherals are connected to the buses of the microprocessor, not di-

rectly but through a programmable peripheral adapter (PAP) or a program-

mable connected adapter (PCA). A programmable peripheral adapter is nec-

essary to transfer information in parallel code, whereas a programmable con-

nected adapter is necessary to transfer information in serial code. Software

configurable adapters make the input-output information system of micropro-

cessor system more flexible and functional.

A common interface for memory and peripherals is necessary because

of the limited number of pins (narrow interface), usually not more than 40, of

microprocessor package.

Since the microprocessor interface is narrow it is necessary to use bidi-

rectional data transmission lines, which is accompanied by the complication

of buffer circuits. It is also necessary to use the time multiplexing of buses.

Bus multiplexing allows one to transfer various information: address, data or

commands. However, this requires the presence of special lines transferring

identification information and reduces the information rate.

26

PART 3. INTEL 8080 MICROPROCESSOR

The Intel 8080 is a complete 8-bit parallel central processing unit. It is

designed on a single LSI chip using Intel’s n-channel silicon gate MOS pro-

cess. This offers the user a high performance solution for control and pro-

cessing applications. Figure 3.1 shows the block diagram of I8080 micropro-

cessor [6].

Fig. 3.1. The block diagram of i8080 microprocessor

There are three internal buses in Intel 8080 microprocessor: a data bus,

an address bus and a control bus.

 Address Bus: The address bus provides addressing to the memory (up

to 64K 8-bit words) and to the 256 input and 256 output devices. А0 is

the least significant address bit.

 Data Bus: The data bus provides bi-directional communication be-

tween the CPU, memory, and I/O devices for processing instructions

and data. Also, during the first clock cycle (state) of each machine cy-

27

cle, the Intel 8080A outputs a status word describing the current ma-

chine cycle, on the data bus. D0 is the least significant bit.

 Control bus consists of 10 lines that are used to transmit control sig-

nals which determine the nature and functioning of the components of

the CPU.

А) group of control signals of the state of microprocessor:

1. RESET input signal. While the RESET signal is activated, the content

of the program counter is cleared. After RESET, the program will start at

location 0 in memory. The INTE and HLDA flip/flops are also reset. Note

that the flags, accumulator, stack pointer, and registers are not cleared;

2. READY input signal. The READY signal indicates to the 8080 that val-

id memory or input data is available on the 8080 data bus. This signal is

used to synchronize the CPU with slower memory or I/O devices. If after

sending an address out the 8080 does not receive a READY input, the

8080 will enter a WAIT state for as long as the READY line is low.

READY can also be used to single step the CPU.;

3. WAIT output signal. The WAIT signal acknowledges that the CPU is

in a WAIT.

B) Signals group of control of the data and address buses:

1. DBIN input signal. The DBIN signal indicates to external circuits that

the data bus is in the input mode. This signal should be used to enable the

gating of data onto the 8080A data bus from memory or I/O;

2. WR output signal. The WR signal is used for memory WRITE or I/O

output control. The data on the data bus are stable while the WR signal is

active low (WR = 0);

3. HOLD input signal. The HOLD signal requests the CPU to enter the

HOLD state. The HOLD state allows an external device to gain control of

the 8080 address and data bus as soon as the 8080 has completed its use

of these buses for the current machine cycle. It is recognized under the

following conditions:

• the CPU is in the HALT state;

• the CPU is in the T2 (second state) or TW (wait state) state and

the READY signal is active. As a result of entering the HOLD state the

microprocessor Address bus (A15-A0) and Data bus (D7-D0) will be in

their high impedance state;

• The CPU acknowledges its state with the HOLD

ACKNOWLEDGE (HLDA) pin.

28

4. HLDA output signal. The HLDA signal appears in response to the

HOLD signal and indicates that the data and address bus will go to the

high impedance state. The HLDA signal begins at:

• T3 for READ memory or input;

• The Clock Period following T3 for WRITE memory or

output operation. In either case, the HLDA signal appears after the rising

edge of φ2.

C) group of interrupt signals:

1. INT input signal. The CPU recognizes an interrupt request on this line

at the end of the current instruction or while halted. If the microprocessor

is in the HOLD state or if the Interrupt Enable flip/flop is reset it will not

honor the request;

2. INTE output signal. Indicates the content of the internal interrupt ena-

ble flip/flop. This flip/flop can be set or reset by the Enable and Disable

Interrupt instructions and inhibits interrupts from being accepted by the

CPU when it is reset. It is automatically reset (disabling further inter-

rupts) at time T1 of the instruction fetch cycle (M1) when an interrupt is

accepted and is also reset by the RESET signal.

D) Synchronization lines and supply

There are three synchronization lines in Intel 8080: φ1, φ2 and SYNC.

Clock phases φ1 and φ2 are two externally supplied clock phases, (non

TTL compatible).

Synchronizing signal SYNC. The SYNC pin provides a signal to indi-

cate the beginning of each machine cycle.

Supply pins: +5 V, +12 V, -5V, GND.

Figure 3.2 shows the pin designations of I8080 microprocessor [6].

29

Fig. 3.2. The pin designations of I8080 microprocessor

3.1. ARITHMETIC LOGIC UNIT (ALU)

The ALU contains the following registers [6]:

• An 8-bit accumulator (ACC);

• An 8-bit temporary accumulator;

• A 5-bit flag register: zero, carry, sign, parity and auxiliary carry;

• An 8-bit temporary register (TMP).

Arithmetic, logical and rotate operations are performed in the arithmetic

logic unit. The ALU is fed by the temporary register, the temporary accumu-

lator and carry flip-flop. The result of the operation can be transferred to the

internal bus or to the accumulator; the arithmetic logic unit also feeds the flag

register.

The temporary register receives information from the internal bus and

can send all or portions of it to the arithmetic logic unit, the flag register and

the internal bus.

The accumulator (ACC) can be loaded from the ALU and the internal

bus and can transfer data to the temporary accumulator (ACT) and the inter-

nal bus. The contents of the accumulator (ACC) and the auxiliary carry flip-

flop can be tested for decimal correction during the execution of the DAA in-

struction.

The functions of the arithmetic logic unit depend on the type of micro-

processor, but the most common are the following: addition, subtraction, log-

ical multiplication (AND), logical addition (OR), XOR, inversion, shifts to

the right and to the left, increment and decrement.

30

3.2 MICROPROCESSOR REGISTERS

Registers are an important part of any microprocessor as they take part

in the implementation of the basic logic functions, and are divided into spe-

cial registers and general purpose registers (GPR) [6].

The number and function of registers depend on the architecture of the

microprocessor. Intel 8080 has software-accessible 8-bit registers:

 accumulator;

 general purpose registers – B,C,D,E,H,L;

 flag register F.

 It also has software -accessible 16-bit special registers:

 program counter (PC);

 stack pointer (SP);

 indirect address double register HL: H – high byte address regis-

ter, L – low byte address register;

And software-inaccessible registers:

 8-bit temporary registers T, W, Z;

 8-bit instruction register IR;

 16-bit address register RA.

We can also use the registers B,C and D,E as the double registers BC

and DE.

3.3 ACCUMULATOR

Accumulator is the main register of microprocessor. Most arithmetic

and logical operations are carried out by using the arithmetic logic unit and

accumulator. Performance of any of these operations with two data words

(operands) implies the placement of one of them in the accumulator, and the

other in memory or another register. Thus, the result of addition of two words

B and D located in the accumulator and memory, respectively, is placed into

the accumulator, rewriting the word B. Therefore, the result of an ALU opera-

tion is always placed in the accumulator, and the initial content is lost [6].

Another function of an accumulator is a “programmable data transfer”

from one part of the microprocessor to another. Performance of a "program-

mable data transfer" (data transfer) is carried out in two stages:

1. the data transfer from the source to the accumulator;

2. the data transfer from the accumulator to the receiver.

Also the microprocessor can perform some operations on the data di-

rectly in the accumulator. For example, the accumulator can be cleared by

writing binary zeros into all its bits and can be set in one state by writing the

31

binary ones into all bits. The contents of the accumulator can be shifted to the

left or to the right, can be inverted, etc.

There are no instructions for direct addressing of accumulator. An oper-

ation code indicates the use of an accumulator .

3.4. PROGRAM COUNTER (PC)

Program counter is one of the most important registers. As is known, a

program is a sequence of instructions stored in the memory of a microcom-

puter, and they serve to instruct the microprocessor how to perform the task.

If the instructions are fed in the correct order, the task is performed correctly.

The program counter monitors which command is executed and which in-

struction will be executed next. Often the program counter has much more

bits than the data word of microprocessor. Thus, in most 8-bit microproces-

sors, for addressing the memory of 65K, the number of bits of the program

counter is 16. In any of the 65536 memory cells of micro-computers there

can be general information about a particular step of the program, i.e. within

the range of values between 0 and 65535 the program can begin and end in

any cell. To access any of these addresses the program counter must have 16

bits. Wherever the instruction is settled they follow each other in a cer-

tain order [6].

When a microprocessor starts to work, the data from the memory area

specified by the manufacturer of microprocessor is loaded in the program

counter. Before starting the program it is necessary to place the starting ad-

dress of the program in the memory area specified by the manufacturer.

When the program starts the first value of the program counter will be this

predetermined address. Unlike the accumulator the program counter cannot

execute various types of operations.

Before the program starts it is necessary to load the program counter by

the address of the memory where the first instruction of the program is locat-

ed. Address register and memory address bus are located below the program

counter. The memory address, where the first instruction is located, is sent

from the program counter into the memory address register (RA), and the

contents of both registers are identical [6].

Address location of the first program instruction is sent onto the address

bus to the memory control circuit, as a result, the memory contents is read.

Memory sends this instruction in a special register of microprocessor, called

the instruction register (IR). After reading the instruction from memory, the

microprocessor automatically increments the contents of the program coun-

ter. The program counter is incremented at the very moment when the micro-

processor begins to execute an instruction. Consequently, the program coun-

32

ter indicates the address of the next instruction. The program counter holds

the address of the next instruction during the time of execution of the current

command. This is important because for programming micro-computers you

may find it necessary to use the current counter value. It should be clearly

understood that at any given time program counter does not indicate the ad-

dress of current command and one after [6].

Fig. 3.3. Reading from memory structure

3.5. ADDRESS REGISTER

With each access to the micro-computer memory the address register

indicates the address of the memory cell, which is to be used by the micro-

processor. The output of this register is called the address bus and is used to

select the memory cell or in some cases to select the input-output port.

During the sub-cycle of the instruction fetch from the memory, the ad-

dress register and program counter have the same contents, i.e. the address

register indicates the location of the instruction extracted from the memory.

After decoding the command the program counter is incremented. The

memory address register is not incremented.

During the sub-cycle of performance of the command the value of the

address register depends on the current command. If the microprocessor must

perform another memory access, the address register is to be reused in the

process of this command. For some instructions addressable memory is not

required (accumulator cleaning) and the address register is used only once.

33

Because the address register is connected to the internal data bus of the

microprocessor, it can be downloaded from various sources. Most micropro-

cessors have instructions that allow us to download the contents of this regis-

ter from the program counter, general-purpose register or a memory cell [6].

3.6 INSTRUCTION REGISTER (IR)

The instruction register is intended for the storage of the current com-

mand that is being executed, and this function (storage) is performed by the

microprocessor automatically with the start of fetching-executing cycle, that

is called machine cycle. The instruction register is connected to the internal

data bus, however, it only receives data and cannot send data to the bus. Alt-

hough the functions of the instruction register are limited, its role in the mi-

croprocessor is great as the output of this register is a part of the instruction

decoder. So, the first instruction is fetched from the memory, then the counter

is configured to specify the instruction to be executed. After removing the in-

struction from the memory the copy of instruction is put on the internal data

bus and sent to the instruction register. After that the instruction decoder

reads the contents of the instruction register (IR) and informs the micropro-

cessor what to do to execute the command. The number of bits of the instruc-

tion register depends on the type of microprocessor and usually coincides

with the number of bits of the data word.

Example 3.1: Execution of a program:

JMP 0800h

MOV B,C

ADI 0C0h

The program memory is as follows:

Address Code of opera-

tion

0000h JMP (0C3h)

0001h 00 LB

0002h 08 HB

0003h …

0004h …

0800h MOV B,C

0801h ADI

0802h C0

34

0803h 00

0804h …

 After starting the system, or reset (RESET), the program counter

is loaded by zero address. (PC) ← 0000h;

 This address is copied to the address register. And the code of

operation of the first command is read into the instruction regis-

ter: (IR) ← 00C3h;

 After that, the instruction decoder reads the contents of the in-

struction register (IR) and informs the microprocessor what

should be done, and the address of the next instruction is written

into the program counter: (PC) ← 0003h. The sequential reading

of the code of operation and operands of the command occurs by

incrementing the value of the address register;

 An instruction JMP provides a transition into the memory to the

address 0800h, therefore, when it is executed a jump address is

written in the program counter: (PC) ← 0800h;

 Then the code of operation located at 0800h is written to the in-

struction register . Since there is a single-byte instruction in this

address, then 0801h is written to the program counter: (PC) ←

0801h;

 After the performance of the MOV command the code of opera-

tion of addition of the accumulator with 0C0h (ADI 0C0h) is

written into the instruction register . The instruction decoder, an-

alyzing that this command is a three-byte, writes 0804h to the

program counter: (PC) ← 0804h. So the code of operation and

operands of the command will sequentially read incrementing

the value of the address register;

 etc.

3.7. FLAG REGISTER (F). STATUS REGISTER.

Flag Register is a specialized register. It is a set of memory cells (flip-

flops) showing the state of the microprocessor. Each memory cell is a trigger,

but the programmers prefer to call them flags. Each bit of this register con-

tains the information that reflects the result of the last instruction of the pro-

gram. This information is used for conditional jumps. In Intel 8080 micro-

processor individual condition code bits are defined as shown in Table 3.1

[6].

35

Table 3.1. Flag register of Intel 8080

Name Rank Description

S 7 Sign. If the most significant bit of the result of the operation

has the value 1, this flag is set; otherwise it is reset..

Z 6 Zero. If the result of an instruction has the value 0, this flag

is set; otherwise it is reset.

- 5 Not used and set to 0.

AC 4 Auxiliary Carry: If the instruction caused a carry out of bit 3

and into bit 4 of the resulting value, the auxiliary carry is set;

otherwise it is reset. This flag is affected by single precision

additions, subtractions, increments, decrements, compari-

sons, and logical operations, but is principally used with ad-

ditions and increments preceding a DAA (Decimal Adjust

Accumulator).

Example: Addition of two one-byte numbers.

The auxiliary carry flag is affected by all add, subtract, in-

crement, decrement, compare, and all logical AND, OR, and

exclusive OR instructions.

The auxiliary carry flag and the DAA instruction allow us to

treat the value in the accumulator as two 4-bit binary coded

decimal numbers. Thus, the value 0001 1001 is equivalent to

19, if this value is interpreted as a binary number, it has the

36

value 25. The following example shows that adding one to

this value produces a non-decimal result:

The DAA instruction converts hexadecimal values such as

the A in the preceding example back into binary coded deci-

mal format. The DAA instruction requires the auxiliary carry

flag since the binary coded decimal format makes it possible

for arithmetic operations to generate a carry from the low-

order 4-bit digit into the high-order 4-bit digit. The DAA per-

forms the following addition to correct the preceding exam-

ple:

- 3 Not used and set to 0.

P 2 Parity. If the modulo 2 sum of the bits of the result of the

operation is 0, (i.e., if the result has even parity), this flag is

set; otherwise it is reset (i.e., if the result has odd parity).

- 1 Not used and set to 1.

C 0 Carry. The carry flag is commonly used to indicate whether

an addition causes a ‘carry’ into the next higher older digit.

The carry flag is also used as a ‘borrow’ flag in subtractions.

The carry flag is also affected by the logical AND, OR, an I

exclusive OR instructions. These instructions set ON or OFF

particular bits of the accumulator.

The rotate instructions, which move the contents of the ac-

37

cumulator one position to the left or right, treat the carry bit

as though it were a ninth bit of the accumulator.

Example: Addition of two one-byte numbers.

An addition that causes a carry out of the high order bit sets

the carry flag to 1, an addition that does not cause a carry re-

sets the flag to zero.

The contents of the accumulator and flag register F are called processor

status word (PSW). The presence of the carry flag allows one to organize at

low bit processor the processing of data of any length by sequential treatment

with byte operands. Also this register is used to create a closed loop by con-

necting the MSB and the LSB of the accumulator, which is necessary for the

cyclic shift of the contents of the accumulator to the right or left according to

the program.

3.8. BUFFER REGISTER OF ALU

Buffer ALU register is intended for temporary storage of one data word.

This register is needed due to the absence of storage unit in the ALU. Arith-

metic logic unit includes only combinational circuits, and therefore when re-

ceiving the initial data at the input of ALU, the result data immediately ap-

pears at its output as a result of the operations of this program. ALU must re-

ceive data from the internal bus of microprocessor, modify them, then put the

processed data into the accumulator. But it is impossible without data tempo-

rary register. Buffer registers are available to the programmer.

Into buffer temporary register data can come only from the internal data

bus, and into accumulator buffer the data can come from the output of the

arithmetic-logical unit. Accumulator buffer allows one to avoid a situation

when the input and output of the ALU are connected to the same point simul-

taneously [6].

3.9. GENERAL PURPOSE REGISTERS, REGISTER PAIRS

38

General purpose registers and register pairs are used to store the oper-

ands, intermediate and final results, etc. The HL register pair occupies a spe-

cial place in Intel 8080 microprocessor and is called data/address register. It

consists of two 8-bit registers which may be used together or separately.

They are labeled H and L, respectively, high and low bytes. When these

two registers are used together we refer to a pair of HL. Registers H and L

are universal similarly to the accumulator in the sense that they can be incre-

mented, decremented, loaded with data and be a source of data. A pair of HL

can also serve as an address register and store the destination address in the

placement of data in memory, or the source of address in the commands of

loading the accumulator. Thus, the registers H and L can be used to organize

data manipulation and as an address pointer [6].

3.10. STACK POINTER (SP)

Stack is a reserved area of memory used to keep track of the program

internal operations including functions, return addresses, passed parameters,

etc [6].

The stack pointer SP is a 16-bit counter register, the contents of which

is always the address. The function of stack is to save the current contents of

the registers when the main program is interrupted. Figuratively speaking, a

stack can be represented as written values on separate sheets of paper and

folding them stacked. Removing always occurs in the reverse order. In other

words, the principle of “last in - first out” (LIFO). At any time, the stack can

include additional information. Using the stack we can organize nested sub-

routines. In this case, the main program calls a subroutine that can cause a

new subroutine, etc. When we call the first subroutine, the return address to

the main program is pushed to the stack. When we call the second subroutine,

the return address to the first is again pushed to the stack, etc. As one per-

forms subroutines the return address is popped from the stack as soon as it

returns to the main program (Fig. 3.4).

39

Fig. 3.4. Subroutines

However, the main purpose of the stack is to serve interrupts. When an

interrupt takes place the contents of the PC and F as well as all current data

from different registers are sequentially pushed into the stack. When an inter-

rupt is completed, the program returns to the top of the stack and takes the

data from the surface, respecting the principle of "last in - first out" (LIFO).

Data are popped from the stack as long as the position is not restored before

the interrupt, and as a result, the program returns to the final discontinued op-

erations.

The microprocessor may have special registers for storing data, but

more often it uses a designated sequence of memory cells. The Intel 8080 mi-

croprocessor as a stack uses a random area of RAM, and in the microproces-

sor only 16-bit register SP is placed. This register indicates the memory ad-

dress of the top of the data list. The stack area is filled from higher to lower

addresses, i.e. we can say that the stack grows up. Each call to the stack for

writing the data is accompanied with the automatic reduction (decrement) of

the contents of the stack pointer by 1, and each call to pop information from

the stack is accompanied with the increment of stack pointer, i.e. addition of

1 to the contents of the stack pointer (Fig. 3.5).

40

Fig. 3.5. Loading the stack of Intel 8080

Location of the stack is determined by the programmer. The stack point-

er is loaded by the highest address, which is a top of the stack 220Ah (Fig.

3.6). Data can be written into the stack using the commands PUSH or CALL.

And they can be read from the stack by the commands POP or RET (return).

Fig. 3.6. Stack

41

The algorithm for loading the stack (PUSH) is as follows (for example,

pushing the contents of a register pair HL to the stack, Fig. 3.9):

1. The stack pointer is decremented from 220Ah to 2209h;

2. SP points to a memory cell 2209h on the address bus and a higher byte

of data is pushed into stack;

3. The stack pointer is decremented from 2209h to 2208h;

4. SP points to a memory cell 2208h on the address bus and a lower byte

of data is pushed into stack;

Fig. 3.9. Pushing the data from HL double register into stack

3.11. CONTROL CIRCUIT

The role of the control circuits on the chip is extremely important. The

control circuit supports functioning sequence of all parts of microprocessor

system. By means of the control circuits the next instruction is fetched from

the instruction register, it is determined what has to be done with the data,

and then generates a sequence of actions to implement the task.

Usually the operation of control circuits is programmed. One of the

main functions of the control circuits is decoding the command located in the

instruction register by the instruction decoder, which as a result gives the sig-

nals needed to execute the command.

One of the important input control lines that connects the microproces-

sor and external devices is a flow line with the clock generator which syn-

chronizes microprocessor.

The control circuits perform some other special functions, such as con-

trol of interrupt processes. Interrupt is a kind of request incoming on the con-

trol circuit from different input-output devices. Interrupt occurs due to the

42

need of using the internal data bus of microprocessor by external devices.

The control circuit determines when and in what sequence different devices

can use the internal data bus [6].

3.12. STATUS WORD REGISTER

Fig. 3.10. Loading of status register

For the normal functioning of the microprocessor system, the control

signals generated by the microprocessor are not enough. Microprocessor

system in each machine cycle should be better informed about the state of

microprocessor. For the case of narrow interface, when the external outputs

for display of the internal state (status byte) of microprocessor are not

enough, the multiplexing of data bus and the representation of the internal

state in the external status word register are used.

The SYNC signal identifies the first state (T1) in every machine cycle.

As shown in Fig. 3.10, the SYNC signal is related to the leading edge of the

Y2 clock. There is a delay (tDC) between the low-to-high transition of Y2 and

the positive-going edge of the SYNC pulse. There is also a corresponding de-

lay (also tDC) between the next 02 pulse and the falling edge of the SYNC

signal. Status information is displayed on D0-D7 during the same Y2 to Y1 in-

terval. Switching of the status signals is likewise controlled by Y2.

43

The rising edge of Y2 during T1 also loads the processor's address lines

(A0-A15). These lines become stable within a brief delay (tDA) of the Y2 clock-

ing pulse, and they remain stable until the first Y2 pulse after state T3. This

gives the processor ample time to read the data returned from memory.

If for any instruction the first clock cycle is the instruction fetch cycle,

the other machine cycles can be in fairly random order, as determined by the

operation code. Total Intel 8080 has 10 types of machine cycle and,

accordingly, 10 codes of the status word, identifying these cycles. Each bit of

the status word is put on the appropriate control input adapter or interface

circuits with input/output device, thereby determining their mode of

functioning in accordance with the current state of microprocessor.

Table 3.2. Status bit definitions

 D7 D6 D5 D4 D3 D2 D1 D0

MEMR IN M1 OUT HLTA STACK ~WO INTA

1 1 0 1 0 0 0 1 0 Instruction

fetch

2 1 0 0 0 0 0 1 0 Memory

read

3 0 0 0 0 0 0 0 0 Memory

write

4 1 0 0 0 0 1 1 0 Stack read

5 0 0 0 0 0 1 0 0 Stack write

6 0 1 0 0 0 0 1 0 Input read

7 0 0 0 1 0 0 0 0 Output write

8 0 0 1 0 0 0 1 1 Interrupt

acknowledge

9 1 0 0 0 1 0 0 0 Halt

acknowledge

10 0 0 1 0 1 0 1 1 Interrupt

acknowledge

while halt

Thus, in a “narrow interface” the control of microprocessor system is

implemented by generating a control action at two levels:

1. The control signals level ~ WR, DBIN, etc. (these signals are in each

state);

2. Generating a status byte in each machine cycle.

The outputs of status register and control lines of microprocessor

package form a control bus of microprocessor system. Twelve bus lines

44

provide the ability to control the microprocessor system with a complex of

multi-function peripherals. The use of time division multiplexing of data bus

for output of external status register control signals of microprocessor system

reduces the system performance by 40%.

3.13. TIMING AND SYNCHRONIZATION OF THE

MICROPROCESSOR SYSTEM

Every machine cycle within an instruction cycle consists of three to five

active states (referred to as T1-T5 or TW). The actual number of states depends

upon the instruction being executed, and on the particular machine cycle

within the greater instruction cycle. The state transition diagram in Fig.3.11

shows how the Intel 8080 proceeds from state to state in the course of a

machine cycle. The diagram also shows how the READY, HOLD, and

INTERRUPT lines are sampled during the machine cycle, and how the

conditions on these lines may modify the basic transition sequence. In the

present discussion, we are concerned only with the basic sequence and with

the READY function. The HOLD and INTERRUPT functions will be

discussed later.

The first and required for all instructions is the machine cycle M1, which

fetches the operational code from memory. In turn, each machine cycle

requires three or five clock cycles: T1, T2, T3, T4, T5, two of which T1 and T2

are sent to the memory address, one T3, leads to the reading of the command

or data from the memory , T4 and T5 correspond to executing of an instruction

(see Fig. 3.12). Timing diagram defines the basic instruction cycle of

microprocessor at a time when there is an external control signal READY,

informing about the availability of peripheral equipment to the exchange with

the microprocessor. In the first clock cycle T1 microprocessor puts on address

bus the next instruction address. Instruction fetch cycle begins.

Simultaneously, on the synchronization line signal SYNC appears. And this

signal:

1. Identifies information on the data bus as a status byte and loads it into

the external status register;

2. Indicates the beginning of the machine fetch cycle.

45

Fig. 3.11. The state transition diagram

46

Fig. 3.12. The time diagrams of microprocessor:

I – Formation of the control word

II – Testing of control signals, RAEDY, HLTA, HOLD, INT

III – Stopping or waiting of READY signal (not required)

IV – Fetching of data, instruction or writing data

V – Executing of command (not required)

After synchronization signal the data bus is in the input mode, as

evidenced by signal DBIN (read) on control bus line. In cycle T2

microprocessor checks an external device ready for exchange if the adapter

memory or the external device generates a signal READY. Microprocessor

goes into sleep mode. In this state, the microprocessor will be for as long as

the control line READY does not appear, which would indicate that the

memory or peripherals are ready to exchange. In cycle T3 should be read or

written words in memory, cycles T4 and T5 set for the execution of the

operation specified by the instruction code.

3.14. OPERATION OF MICROPROCESSOR

We consider the actions that a microprocessor produces during the

execution of program instructions.

А) Instruction cycle

In the Intel 8080 each instruction is executed in one to five machine

cycles, which are called the processor cycles.

47

The number of instruction cycles is determined by the number of

references to the external subsystems (memory, I/O and others) for the

exchange of information between the microprocessor and the external

addressable register. The only exception is the instruction DAD, performed in

three machine cycles with reference to the memory only 1 machine cycle.

The first and required machine cycle of all instructions is fetching of

operational code. Machine cycle consists of two phases. At the stage of

required phase, called addressing phase, microprocessor addresses via the

external register identifies and communicates between him and the

microprocessor on the data bus. Not required phase, called executing phase,

is decoding phase and the internal restructuring of the data phase.

Machine cycle consists of 3-5 states T called functional states or states

of microprocessor. States are defined the time interval between two

consecutive rising edges of clock signals Y1, and their number is determined

by the content in the microprocessor command being executed. Cycles can

consist of 4-18 states.

The first three states of the microprocessor are unified and form an

addressing phase. Addressing of external source register or recipient register

is carried out in T1. On the rising edge of the signal Y2 a microprocessor sets

address signals on address bus (nominal delay stabilization of address signals

is 200 ns, 270 ns max.) They remain stable until the rising edge of the clock

Y2 follows the tact T3 of current machine cycle. The source of address can be

the following registers: PC, SP, BC, DE, HL, WZ.

T2, which always follows the T1, is taken to verify the necessary

reactions to some control signals that affect the functioning of the

microprocessor. On the rising edge of the signal Y2 external signals READY,

DMA HOLD and an internal stop HLTA signal are verified. Also in T2 of

the last machine cycle of each instruction the level of external interrupt

request signal INT is checked. Now we assume that these signals have such

levels that do not alter the normal flow of machine cycle (READY = 1,

HOLD = 0, HLTA = 0, INT = 0).

Depending on the features of the current machine cycle, the following

actions will be performed in the T2 state:

1. If the current machine cycle is associated with an approaching to the

memory, then the increment of the PC will be. PC = PC+1;

2. If the current machine cycle is associated with reading (input) of data

to the microprocessor, then the rising edge of the read signal is

generated Y2 DBIN (nominal delay of 130 ns, the maximum - 200 ns.).

3. If the current machine cycle is associated with the writing (output) of

data from the microprocessor, then on the rising edge of the signal Y2

48

formed output word signals (nominal delay of 220 ns, the maximum -

280 ns.).

State T3 is required for the exchange of information between the

microprocessor and the internal register addressed in the T1. When in the

current machine cycle entering data in the microprocessor are carried out, the

data signals from an external registry, switched by DBIN signal, should be

stabilized at least 50 ns before the falling edge of Y1 and remain stable for at

least 130 ns after the rising edge of the clock Y2 of T3 state. If the current

machine cycle of the microprocessor outputs data on the rising edge of Y1 is

generated L-active signal ~ WR (nominal delay of 70 ns, the maximum delay

- 120 ns). DBIN signal is removed by the rising edge of Y2 (with a maximum

delay of 200ns), and ~ WR signal is removed by the next rising edge of the

signal Y1 (with a maximum delay of 120 ns).

In the T4 and T5 states of the first machine cycle of all instructions

decoding of operational codes, necessary internal transfer and transform data

are made.

These principles of formation of machine cycles allow one to determine

the number of machine states in each command.

Example 3.2:

The single-byte command MOV r2, r1, is performed in a one machine

cycle:

 a fetching of operation code (addressing phase);

 the transfer between the internal registers (execution phase).

Example 3.3:

The single-byte commands MOV r, M or MOV M, r are performed in a

two machine cycles:

 a fetching of operation code (addressing phase – M1);

 the transfer between the internal registers and memory location

pointed by HL register pair (M2).

Example 3.4:

ORI two-byte command consists of three machine cycles:

 a fetching of operation code (addressing phase – M1);

 reading the second byte of the operand (M2);

 executing of instruction (M3).

Example 3.5:
Three-byte command STA consists of four machine cycles:

 three cycles of the instruction fetch;

 saving the contents of accumulator A in the memory cell.

Example 3.6:

49

One byte, but the longest instruction XTHL consists of five machine

cycles:

 a fetching of operation code;

 two machine cycles for transmitting the contents of the top two

cells of the stack in registers W, Z;

 two machine cycles for transmitting the contents of registers (H,

L) in stack and transmitting the contents of (W, Z) in (H, L).

Example 3.7:
The number of machine cycles of eight conditional jump instructions

(SS, CNC, CZ, etc.) depends on the values of their checked conditions, i.e.

the state of the corresponding trigger flag:

 if the condition, which is analyzed in the T4 and T5 of first

machine cycle is not satisfied, it is executed during cycles of M1,

M2, M3;

 if the condition is satisfied, the conditional jumps are executed in

five machine cycles. In two additional cycles (M4 and M5) the

contents of the program counter is booted from the stack.

B) Status byte.

We can assume that microprocessor system based on Intel 8080 consists

of five external subsystems:

1. memory subsystem;

2. stack subsystem;

3. input subsystem;

4. output subsystem;

5. interrupt subsystem.

All subsystems are connected to the address bus and the data bus in

parallel, and therefore the external register address, formed in T1, is

simultaneously decoded by all subsystems.

However, in any machine cycle, the microprocessor can interconnect

only with one subsystem. Therefore, the address information on the address

bus is not enough to uniquely identify the external register and it is necessary

to supplement "significant bytes" for addressing the subsystem. In addition,

for debugging of microprocessor system the information on the current status

of the microprocessor is usually required. Such additional information

includes the status byte, which is set on data bus in each T1 of all machine

cycles on the rising edge of Y2. Pulse signal on the line identifying the status

byte on data bus is the output SYNC signal, also generated in each T1 of all

machine cycles on the rising edge of Y2. Stable levels of status signals are

saved until the rising edge of Y2 in T2 state. Acceptable delays are:

 nominal - 220 ns, maximum - 280 ns for status signals;

50

 nominal - 130 ns, maximum - 200 ns for SYNC signal.

Therefore, the SYNC signal can be directly used to load the status byte

from the data bus to an external latch register, where it is saved until the next

machine cycle.

The individual bits of the status byte has the following contents:

D0 (INTA) — Acknowledge signal for INTERRUPT request. Signal

should be used to gate a restart instruction onto the data bus when DBIN is

active.;

D1 (WR#) — Indicates that the operation in the current machine cycle

will be a WRITE memory or OUTPUT function (WO = 0). Otherwise, a

READ memory or INPUT operation will be executed;

D2 (STACK) — Indicates that the address bus holds the pushdown stack

address from the Stack Pointer;

D3 (HLTA) — Acknowledge signal for HALT instruction;

D4 (OUT) — Indicates that the address bus contains the address of an

output device and the data bus will contain the output data when WR is ac-

tive;

D5 (M1)— Provides a signal to indicate that the CPU is in the fetch cy-

cle for the first byte of an instruction;

D6 (INP) — Indicates that the address bus contains the address of an

input device and the input data should be placed on the data bus when DBIN

is active;

D7 (MEMR) — Designates that the data bus will be used for memory

read data.

The main purpose of the status bits is generating the control signals for

the external subsystems. Therefore, their definition is dictated by the

simplicity of interface. There are 10 types of machine cycles which are given

in Table 3.2.

We present internal memory pointers for all types of machine cycles,

the contents of which is on the address bus:

1. The cycles of the program counter: fetching of operational code,

interrupt, breakpoint, breakpoint interrupt;

2. Register pairs BC, DE, HL. Cycles: reading from the memory,

writing to the memory;

3. The stack pointer cycles: reading from the stack, writing to the

stack;

4. Register pair - cycles: input, output.

When commands IN and OUT run 1-byte address of the input or

output port, which is the second byte <B2> of commands in the machine

cycle M2 loaded in parallel into the registers W and Z.

51

In machine cycle M3 port address is given at the same time on the line

of the A15 - A8 and A7 - A0. This method is used to equalize the load on the

address lines, as one of the ports can be connected to the lines A15 - A8, and

the other - to the lines of the A7 - A0. Knowing the contents of instruction,

types of machine cycles and the organizing principle of the machine cycle, it

is easy to construct a sequence of types of machine cycles for any instruction.

Example 3.8:

Command MOV r1,r2 (r1,r2 ≠ М) has one machine cycle:

 «FETCHING OF OPERATIONAL CODE».

Example 3.9:

Command MOV M,r has two machine cycles:

 «FETCHING OF OPERATIONAL CODE»;

 «WRITING TO THE MEMORY».

Example 3.10:

Command OUT has three machine cycles:

 «FETCHING OF OPERATIONAL CODE»;

 «READING FROM THE MEMORY»;

 «OUTPUT».

Example 3.11:

Command LDA has four machine cycles:

 «FETCHING OF OPERATIONAL CODE»;

 «READING FROM THE MEMORY»;

 «READING FROM THE MEMORY»;

 «READING FROM THE MEMORY».

Example 3.12:

Command CALL has five machine cycles:

 «FETCHING OF OPERATIONAL CODE»;

 «READING FROM THE MEMORY»;

 «READING FROM THE MEMORY»;

 «WRITING TO THE STACK»;

 «WRITING TO THE STACK».

In Fig. 3.12 the basic circuit for forming the control signals that are used

in microprocessor systems based on Intel 8080 microprocessor is shown. One

can see from the figure that all the control signals are L-active. This encoding

simplifies the interface with external subsystems, which are generally L-

active selection device inputs DS or chip select inputs CS.

52

Fig. 3.12. Formation control signal circuit [6]

C) Special machine cycles

It was noted earlier that in T2 state of machine cycles microprocessor

checks the values of the input signal readiness READY, request of direct

memory access HOLD, and the value of the internal acknowledge signal of

breakpoint HLTA. In addition, in the last machine cycle of all instructions

checks the level of the interrupt signal INT. Consider the reaction of the

microprocessor in the specified signals.

3.15. REACTIONS OF MICROPROCESSOR ON SIGNAL

READY.

When the speed of the external subsystems, such as memory, not

enough for synchronous communication with the microprocessor, it can

suspend the action of the microprocessor unit by setting L-level to line

READY, i.e., the “stretch” the machine cycle for integer number of periods of

synchronization. To respond to the microprocessor on L-level READY in the

current machine cycle this level should be stabilized for at least 180 ns before

the falling edge of the signal Y2 and kept stable until the end of the pulse Y2.

53

Subject to this condition microprocessor does not go to the state T3 and enters

the standby state Tw (Fig. 3.13). In this state on the address bus remains the

address of external register and DBIN signal if the current cycle of Mi

associated with transfer of data to the microprocessor. For the

acknowledgment of transition to the Tw states microprocessor generates the

H-level on line WAIT on the rising edge of the signal Y1.

Fig. 3.13. Reactions of the microprocessor on signal READY

Duration of wait states is determined by the action of L-level on

READY input. When the external subsystem is ready to exchange data, it

should set line READY in H-level. To respond to the readiness of the

microprocessor, the H-level should be stabilized at least 180 ns before the

falling edge of Y2. The microprocessor then introduces T3 and on the rising

edge of F1 removes the WAIT signal.

The nominal delay of the start and end of the WAIT signal relative to

the rising edge of Y1 is 70 ns and 120 ns maximum. Of course, the

introduction of wait slightly reduces the performance of the microprocessor

system [6].

3.16. REACTIONS OF MICROPROCESSOR ON SIGNAL HOLD.

If in the microprocessor system there are peripherals with high speed

data transmission, such as a floppy disk, interchange between them organized

in a direct memory access mode (DMA). When a peripheral device (DMA

controller) initiates a request on DMA, the microprocessor suspends the

execution of the program and transfers the internal buffer address and data

buses in a high impedance state. DMA controller begins to control the buses,

organizing the exchange of data between the peripheral devices and the

memory of microprocessor system.

54

Initiating of DMA is accomplished by setting the H-level to the input

DMA request lines HOLD. H-level of HOLD signal maintaines until data

block end, but the DMA can be implemented for transmission of individual

bytes. The microprocessor responds to the H-level HOLD signal in the

current machine cycle Mi if this level has stabilized for at least 180 ns before

the rising edge of Y2 (Fig. 3.14). They recommend HOLD signal to

synchronize with the signal Y1.

Fig. 3.14. Reactions of microprocessor on signal HOLD

Recall that the microprocessor in T1 state addresses the external register,

but the exchange with it will be only in state T3. If one allows for DMA

before T3 state, then in the future one would have to re-address the external

register, which would complicate the control device and the timing diagram

of the microprocessor. Therefore, the microprocessor necessarily ends

interchanges with external register and only then enters the DMA states Tw.

Note that such mode READY signal has higher priority than the HOLD

signal.

After a T3 state current machine cycle Mi can follow not required states

T4 and T5 to be allocated for the internal transformation of the data, or T1 state

of next machine cycle. The microprocessor generates the H-level HLDA

signal of DMA request on the rising edge of Y1 (nominal delay of 70 ns, 120

ns max) and on the rising edge of Y2 with a delay no more than 200 ns

translates buffers of the address and data buses in a high impedance state. If

in current machine cycle Mi is reading into the microprocessor (valid signal

DBIN), then generates HLDA signal and disconnect address and data buses

is in T3 state, and if in current machine cycle Mi is writing from the

microprocessor (valid signal WR), the same steps are carried out in state

following after the T3 state, and if the current machine cycle contains T4 and

55

T5 states they are combined with the DMA. After the end of the direct

memory access mode the microprocessor enters state T1 always of the next

machine cycle Mi+1.

When between a peripheral device and microprocessor system memory

transmitted necessary data block DMA sets L-level at HOLD line and the

microprocessor goes out of Tw [6].

3.17. REACTIONS OF MICROPROCESSOR ON COMMAND HLT.

One-byte command HLT is as follows. In the machine cycle Ml,

consisting of four cycles T1 – T4, fetch and decoding of command, and in

machine cycle M2 is the execution of the command. In state T1 of machine

cycle M2 microprocessor outputs to the address bus the contents of the

program counter and to the data bus - a status byte with set acknowledge

breakpoint bit HLTA. In state T2 on the rising edge of Y2 with a maximum

delay of 200 ns internal buffers of address and data buses are transferred to a

high-impedance state, and on the rising edge of Y1 in the next state forms the

H-level on the WAIT line. Execution of the program is stopped and the halted

state of the microprocessor can be in any time.

From the halted state microprocessor is put out in the following ways

(Fig. 3.15):

1. By setting the H-level to the RESET input with a duration at least three

periods of synchronization. After that when RESET line set in L-level

on the rising edge of the signal Y1 internal reset signal is generated. It

loads the program counter to zero and causes the control circuit to form

the next state as T1 state of machine cycle M1 – fetching of operational

code. Therefore, the microprocessor refers to a 0000 cell which

typically is the starting address of system initialization;

2. By setting the H-level to the interrupt input INT. Microprocessor

responds to this signal only if the trigger interrupt enable internal is set

(INTE = 1). Consequently, before HLT command it is necessary to

enable interrupts by using the EI command. In response to the signal

INT microprocessor enters a machine cycle Ml of fetching restart

command. If the microprocessor is halted and INTE = 0, then putting

out the microprocessor from the halted state can be done only by

RESET signal.

It is important that the halted state microprocessor regularly responds to

the signal HOLD of DMA request with the formation of the HLDA signal.

The activity of microprocessor in halted state is shown in Fig. 3.15.

56

3.15. The activity of microprocessor in halted state

3.18. REACTIONS OF MICROPROCESSOR ON INT SIGNAL.
In LSI of microprocessor has simple interrupt processing schemes with

two external interrupt signals:

 to the input interrupt line INT we connect the enable signals of

slow peripheral devices to exchange data;

 and the output signal INTE of Interrupt Enable determines

whether the microprocessor to respond to the interrupt requests

(INTE = 1) or not (INTE = 0).

In the interrupt request (INT = 1, INTE = 1) it is necessary:

 halt the current program;

 temporarily save the contents of the program counter as a return

address;

 transfer the control to an interrupt handler of the peripheral

device, the request is accepted by;

 restore the interrupted program and resume it.

57

To temporarily save of the contents of program counter and other

internal registers, which will modify the interrupt handler, it is convenient to

use the stack.

In microprocessor systems based on Intel 8080 vector priority interrupt

system is implemented. Asynchronous interrupt signal identified by the H-

level on the line INT, may appear at any time of the machine cycle. The

internal circuit synchronizes the external request and ensures the ending of

the current command according to the system timing signals. In the last state

of the last machine cycle of all commands (except of interrupt enable

command) if the INT = 1 and INTE = 1 on the rising edge of the signal Y2 is

set internal interrupts trigger. This leads to the fact that the next state is T1

state of machine cycle "INTERRUPT". It resembles the machine cycle

"FETCHING OF OPERATIONAL CODE", as in the status byte bit Ml is

set. But at the same time acknowledge interrupt bit INTA is set too and the

reading from memory bit MEMR is reset.

Fig. 3.16. Reactions of microprocessor on signal INT

In state T1 the microprocessor sets the contents of program counter on

the address bus, and the status byte (M1 = l, INTA = 1, MEMR = 0) on the

data bus. At the same state on the rising edge of Y2 with a maximum delay of

200 ns L-level output INTE signal is generated (Fig. 3.16). Consequently, the

microprocessor will ignore further requests until the interrupt enable trigger

is not set by the command EI.

In T2 state, the reading signal DBIN is generated, which in an ordinary

cycle Ml enters the operation code from the program memory in the

instruction register. But in a cycle of "INTERRUPT" an appeal to the

program memory is disabled (MEMR = 0), and therefore the operation code

should be generated by the interrupt subsystem. Note that in the state T2 cycle

“INTERRUPT ” increment PC is not made, so it saves the command's

address, which would be carried out without interrupt. And, in T2 state the

internal interrupt trigger is reset.

58

To download the contents of program counter to the stack interrupt

subsystem one should form a call instruction. Standard call instruction CALL

is a 3-byte and runs for five machine cycles. To speed up the reaction of the

microprocessor and simplify the interface with the interrupt subsystem a

special one-byte call instruction, called restart (RESTART, or RST) with

operation code 11AAA111 is included in a command system .

Three bits AAA is called the vector and should be generated by a

peripheral device which forms the request to the microprocessor. In T3 state

restart command from the data bus is loaded into the instruction register, and

states T4 and T5 are reserved to decode RST command.

RST command initiates execution of two actions:

1. Contents of program counter PC is loaded into the stack. For this,

three-states cycles M2 and M3 "WRITING INTO STACK" are introduced;

2. In the program counter code 00000000 00AAA000 is transmitted that

"direct" microprocessor to the start address of the interrupt handler. Thus, bits

AAA uniquely identify a peripheral device which forms the interrupt request.

After these actions by the first command of interrupt handler the cycle

of "FETCHING of OPERATION CODE” begins, and it makes the

necessary steps for data exchange with the peripheral device. The last

command of the interrupt handler must be a RETURN command, which

loads the return address saved in the stack to the program counter.

When analyzing the temporal relation of interrupt, be aware that when

the runs interrupt enable command EI microprocessor does not respond to

the signal INT, and after EI will be the next instruction. On the line should

be maintained INT H-level to issue an acknowledge bit interrupt INTA.

The following example shows an interrupt sequence:

59

Fig. 3.17. Interrupt sequence of Intel 8080

Interrupt subroutines
In general, any registers or condition bits changed by an interrupt sub-

routine must be restored before returning to the interrupted program.

Like any other subroutine then, any interrupt subroutine should save at

least the condition bits and restore them before performing a RETURN oper-

ation. The most convenient way to do this is to save the data in the stack, us-

ing PUSH and POP operations.

Further, the interrupt enable system is automatically disabled whenever

an interrupt is acknowledged. Except in special cases, therefore, an interrupt

subroutine should include an El instruction somewhere to permit detection

and handling of future interrupts. Any time after an EI is executed, the inter-

rupt subroutine may be also interrupted.

A typical interrupt subroutine, then, could appear as follows:

Fig. 3.18. Interrupt subroutine

60

PART 4. ASSEMBLY LANGUAGE OF INTEL 8080

Upon examining the contents of computer memory, a program would

appear as a sequence of hexadecimal digits, which are interpreted by the

CPU as instruction codes, addresses, or data. It is possible to write a program

as a sequence of digits (just as they appear in memory), but that is slow and

uncomfortable. For example, many instructions reference memory to address

either a data byte or another instruction (Fig. 4.1) [7, 8]:

Fig. 4.1. Location of assembly program in a memory

Writing programs in assembly language is the first and most significant

step towards economical programming; it provides a loadable notation (or in-

structions, and separates the programmer from a need to know or specify ab-

solute memory addresses.

Assembly language programs are written as a sequence or instructions

which are converted to executable hexadecimal code by a special program

called an ASSEMBLER.

Fig. 4.2. Assembler program converts

As illustrated in Figure 30, the assembly language program generated by

a programmer into an equivalent executable machine code, which consists of

a sequence of binary codes that can be loaded into memory and executed.

Assembly language instructions and assembly directives may consist of

up to four fields, as follows:

Label Name: Operational code Operands ;Comment

61

The fields may be separated by any number of blanks, but must be sepa-

rated by at least one delimiter. Each instruction and directive must be entered

on a single line terminated by a carriage return and a line feed. No continua-

tion lines are possible, but one may have lines consisting entirely of com-

ments.

Labels are always optional. An instruction label is a symbol name

whose value is the location where the instruction is assembled. A label may

contain from one to six alphanumeric characters, but the first character must

be alphabetic or the special characters '?' or '@'. The label name must be ter-

minated with a colon. A symbol used as a label can be defined only once in

the program. Alphanumeric characters include the letters of the alphabet, the

question mark character, and the decimal digits 0 through 9. Names are re-

quired for the SET, EQU and MACRO directives. Names follow the same

coding rules as labels, except that they must be terminated with a blank rather

than a colon. The label name field must be empty for the LOCAL and ENDM

directives.

Operational code required field contains the mnemonic operation code

for the Intel 8080 instruction or assembler directive to be performed.

The operand field identifies the data to be operated on by the specified

operational code. Some instructions require no operands. Others require one

or two operands. As a general rule, when two operands are required (as in da-

ta transfer and arithmetic operations), the first operand identifies the destina-

tion (or target) of the operation's result, and the second operand specifies the

source data.

The optional comment field may contain any information one deem use-

ful for annotating your program. The only coding requirement for this field is

that it must be preceded by a semicolon. Because the semicolon is a delimit-

er, there is need to separate the comment from the previous field with one or

more spaces. However, spaces are commonly used to improve the readability

of the comment. Although comments are always optional, one should use

them liberally since it is easier to debug and maintain a well-documented

program.

4.1. DATA AND INSTRUCTIONS FORMATS.

Memory of Intel 8080 microprocessor is organized by bytes. Each byte

has a unique 16-bit binary address corresponding to its position in memory.

Intel 8080 microprocessor can directly address up to 65,536 bytes of

memory, which may consist of both read-only memory (ROM) elements and

random-access memory (RAM) elements [7, 8].

Data is stored in 8-bit binary form:

62

Fig. 4.3. Data word

When a register or data word contains a binary number, it is necessary

to establish the order in which the bits of the number are written (Fig. 4.3). In

the Intel 8080, BIT 0 is referred to as the Least Significant Bit (LSB), and

BIT 7 is referred to as the Most Significant Bit (MSB).

The Intel 8080 microprocessor instructions can be one, two or three

bytes in length (Fig. 4.4). Multiple byte instructions must be stored in

successive memory locations; the address of the first byte is always used as

the address of the instructions. The exact instruction format will depend on a

particular operation to be executed.

Fig. 4.4– Single, two and three byte instructions

In Intel 8080 assembler the following instruction operand symbols are

reserved:

Table 4.1. Reserved operand symbols

Symbol Descriprion

$ Location counter reference

A Accumulator register

B Register B or register pair B and C

63

C Register C

D Register D or register pair D and E

E Register E

H Register H or register pair H and L

L Register L

SP Stack pointer register

PSW Program status word (Contentss of A and status flags)

M Memory reference code using address in H and L

4.2. MEMORY ADDRESSING

The Intel 8080 microprocessor has four different modes for addressing

data stored in memory or in registers:

• Implied addressing. The addressing mode of certain instructions is

implied by the instruction's function. For example, the STC (set carry flag)

instruction deals only with the carry flag; the DAA (decimal adjust accumula-

tor) instruction deals with the accumulator.

• Direct addressing — Jump instructions include a l6-bit address as

part of the instruction. For example, the instruction JMP 1000h causes a

jump to the hexadecimal address 1000h by replacing the current contentss of

the program counter with the new value 1000h. Instructions that include a di-

rect address require three bytes of storage: one for the instruction code and

two for the 16-bit address. Bytes 2 and 3 of the instruction contain the exact

memory address of the data. In this case the low-order bits of the address are

in byte 2, the high-order bits in byte 3.

• Register addressing— Quite a large set of instructions call for reg-

ister addressing. With these instructions, you must specify one of the regis-

ters A through E, H or L as well as the operation code. With these instruc-

tions, the accumulator is implied as a second operand. For example, the in-

struction CMP E may be interpreted as the comparison of the contents of the

E register and the contents of the accumulator. Most of the instructions that

use register addressing deal with 8-bitvalues. However, a few of these in-

structions deal with 16-bitregister pairs. For example, the PCHL instruction

exchanges the contents of the program counter with the contents of the H and

L registers.

• Register indirect addressing — Register indirect instructions refer-

ence memory via a register pair. Thus, the instruction MOV M,C moves the

contents of the C register into the memory address stored in the H and L reg-

ister pair. The instruction LDAX B loads the accumulator with the byte of da-

ta specified by the address in the B and C register pair.

64

• Immediate addressing — Instructions that use immediate address-

ing have data assembled as a part of the instruction itself. For example, the

instruction CPI C maybe interpreted as the comparison of the contents of the

accumulator and the contents of the register C. When assembled, this instruc-

tion has the hexadecimal value FE 43.Hexadecimal 43 is the internal repre-

sentation for the letter C .When this instruction is executed, the processor

fetches the first instruction byte and determines that it must fetch one more

byte. The processor fetches the next byte into one of its internal registers and

then performs the comparison operation.

Notice that the names of the immediate instructions indicate that they

use immediate data. Thus, the name of an add instruction is ADD; the name

of an add immediate instruction is ADI.

All but two of the immediate instructions use the accumulator as an im-

plied operand, as in the CPI instruction shown previously The MVI (move

immediate) instruction can move its immediate data to any of the working

registers, including the accumulator, or to memory. Thus, the instruction

MVI D,hFFh moves the hexadecimal value FFh to the D register.

 The LXI instruction (load register pair immediate) is even more un-

usual in that its immediate data is a 16-bit value. This instruction is common-

ly used to load addresses into a register pair. As mentioned previously, your

program must initialize the stack pointer; LXI is the instruction most com-

monly used for this purpose. For example, the instruction LXI SP,30FFh

loads the stack pointer with the hexadecimal value30FFh.

 The RST instruction is a special one-byte call instruction (usually

used during interrupt sequences). RST includes a three-bit field; program

control is transferred to the instruction whose address is eight times the con-

tentss of this three-bit field.

• Combmed addressmg modes – Some instructions use a combina-

tion of addressing modes. A CALL instruction, for example, combines direct

addressing and register Indirect addressing. The direct addressing a CALL

instruction specifies the address of the desired subroutine; the register indi-

rect address is the stack pointer. The CALL instruction pushes the current

contentss of the program counter into the memory location specified by the

stack pointer.

• Timing effect of addressing modes. Addressing modes affect both

the amount of time required for executing an instruction and the amount of

memory required for its storage. For example, instructions that use immediate

or register addressing are executed very quickly since they deal directly with

the processor hardware or with data already present in hardware registers.

More important, however, is that the entire instruction can be fetched with a

65

single memory access. The number of memory accesses required is the single

greatest factor in determining execution timing. More memory accesses re-

quire more execution time. A CALL instruction, for example, requires five

memory accesses: three to access the entire instruction, and two more to push

the contents of the program counter onto the stack.

 The processor can access memory once during each processor cycle.

Each cycle comprises a variable number of states. The length of a state de-

pends on the clock frequency specified for your system, and may range from

48 nanoseconds to 2 microseconds. Thus, the timing of a four state instruc-

tion may range from 1.920 microseconds through 8 microseconds.

4.3. INTEL 8080 INSTRUCTIONS: DESCRIPTION AND APPLICA-

TION

The 8080 instruction set includes five different types of instructions.

1. Data Transfer Group —move data between registers or between

memory and registers [7, 8].

 This group of instructions transfers data to and from registers and

memory. The Instruction in this group does not affect the conditions flags. In

Table 4.2 different instructions of this group and their properties are shown.

Table 4.2. Data transfer instructions

Instruction Action Instruction format Cycles

(states)

Ad-

dress-

ing

Flags

MOV r1, r2 The contents

of register r2

is moved to

register r1 r1,r2 – One of the registers

A,B,C,D,E,H,L

DDD – destination register

SSS – source register

1 (5) regis-

ter

none

MOV r, M The contents

of the

memory lo-

cation,

whose ad-

dress is in

registers H

and L, is

moved to

register r

r – One of the registers

A,B,C,D,E,H,L

2 (7) regis-

ter in-

direct

none

66

MOV M, r

The contents

of register r

is moved to

the memory

location

whose ad-

dress is in

registers H

and L.

2 (7) regis-

ter in-

direct

none

MVI r, data

The contents

of byte 2 of

the instruc-

tion is

moved to

register r.

data - 8-bit data quantity

2 (7) imme-

diate

none

MVI M,

data

The contents

of byte 2 of

the instruc-

tion is

moved to the

memory lo-

cation whose

address is in

registers H

and L.

3 (10) Imme-

diate/

regis-

ter in-

direct

none

LXI rp, da-

ta16

Byte 3 of the

instruction is

moved into

the high-

order register

(rh) of the

register pair

rp. Byte 2 of

the in-

struction is

moved into

the low-

order register

(rl) of the

register pair

rp.

byte 2 - The second byte of

the instruction

byte 3 - The third byte of the

instruction

rp – One of the register pairs:

В represents the B,C pair

with В as the high- order

register and С as the low-

order register;

D represents the D,E pair

with D as the high- order

register and E as the low-

order register;

H represents the H,L pair

with H as the high- order

register and L as the low-

order register;

3 (10) Imme-

diate

none

67

SP represents the 16-bit

stack pointer register.

rh – the first (high-order) reg-

ister of a designated register

pair.

rl – the second (low-order)

register of a designated regis-

ter pair.
LDA addr The contents

of the

memory lo-

cation,

whose ad-

dress is spec-

ified in byte

2 and byte 3

of the in-

struction, is

moved to

register A.

addr – 16-bit address quantity

4 (13) direct none

STA addr The contents

of the accu-

mulator is

moved to the

memory lo-

cation whose

address is

specified in

byte 2 and

byte 3 of the

instruction.

4 (13) direct none

LHLD addr The contents

of the

memory lo-

cation,

whose ad-

dress is spec-

ified in byte

2 and byte 3

of the in-

struction, is

moved to

register L.

The contents

of the

memory lo-

5 (16) direct none

68

cation at the

succeeding

address is

moved to

register H.

SHLD addr The contents

of register L

is moved to

the memory

location

whose ad-

dress is spec-

ified in byte

2 and byte 3.

The contents

of register H

is moved to

the succeed-

ing memory

location.

5 (16) direct none

LDAX rp The contents

of the

memory lo-

cation,

whose ad-

dress is in

the rp, is

moved to

register A.

Only register

pairs rp=B

or rp=D may

be specified.

2 (7) regis-

ter in-

direct

none

STAX rp The contents

of A is

moved to the

memory cell

location

whose ad-

dress is in

the rp. Only

rp=B or

rp=D may be

specified.

2 (7) regis-

ter in-

direct

none

XCHG The contents

of registers

1 (4) regis-

ter

none

69

H and L are

exchanged

with the con-

tents of D

and E.

Example 4.1: Using MVI r,data commands.

Mnemonic Operands Machine

code

Comment

MVI A,00 3E 00 loading of A register: А←00h

MVI B,01 06 01 loading of B register: B←01h

MVI C,02 0E 02 loading of C register: C←02h

MVI D,03 16 03 loading of D register: D←03h

MVI E,04 1E 04 loading of E register: E←04h

MVI H,05 26 05 loading of H register: H←05h

MVI L,06 2E 06 loading of L register: L←06h

The output of the program execution:

A = 00h

B = 01h

C = 02h

D = 03h

E = 04h

H = 05h

L = 06h

Example 4.2: Using MOV r1, r2 commands.

Mnemonic Operands Machine

code

Comment

MVI A,FFh 3E FF loading of A register: А←FFh

MOV B,A 47 the contents of register A is moved

to register B

MOV C,B 48 the contents of register B is moved

to register C

MOV D,C 51 the contents of register C is moved

to register D

MOV E,D 5A the contents of register D is moved

to register E

MOV H,E 63 the contents of register E is moved

to register H

MOV L,H 6C the contents of register H is moved

70

to register L

The output of the program execution:

A = FFh

B = FFh

C = FFh

D = FFh

E = FFh

H = FFh

L = FFh

Example 4.3: Using LXI rp,data16 commands.

Mnemonic Operands Machine code Comment

LXI B,3132h 01 32 31 loading of BC register pair:

BC←3132h. Byte 31h of the in-

struction is moved into the B

register. Byte 32h of the instruc-

tion is moved into the C.

LXI D,3334h 11 34 33 loading of DE register pair:

DE←3334h. Byte 33h of the in-

struction is moved into the D

register. Byte 34h of the instruc-

tion is moved into the E.

LXI H,3536h 21 36 35 loading of HL register pair:

HL←3536h. Byte 35h of the in-

struction is moved into the H

register. Byte 36h of the instruc-

tion is moved into the L.

LXI SP,0B01h 31 01 0B loading of stack pointer:

SP←0B01h.

The output of the program execution:

B = 31h

C = 32h

D = 33h

E = 34h

H = 35h

L = 36h

SP=0B01h

Example 4.4: Using STA addr and SHLD addr commands.

71

Mnemonic Operands Machine code Comment

MVI A,FFh 3E FF loading of A register: А←FFh

STA 0110h 32 10 01 The contents of the accumulator

is moved to the memory location

whose address is specified in the

instruction as 0110h.

LXI H,3536h 21 36 35 loading of HL register pair:

HL←3536h. Byte 35h of the in-

struction is moved into the H

register. Byte 36h of the instruc-

tion is moved into the L.

SHLD 0150h 22 50 01 The contents of register L is

moved to the memory location

whose address specified of the

instruction as 0150h. The con-

tents of register H is moved to

the address 0151h.

The output of the program execution:

A = FFh

H = 35h

L = 36h

(0110h) = FFh

(0150h) = 36h

(0151h) = 35h

Example 4.5: Using LDA addr and LHLD addr commands.

Mnemonic Operands Machine code Comment

LDA 0190h 3A 90 01 The contents of the memory lo-

cation, whose address is speci-

fied in the instruction as 0190h,

is moved to register A.

LHLD 0190h 2A 90 01 The contents of the memory lo-

cation, whose address is speci-

fied in the instruction as 0190h,

is moved to register L. The con-

tents of the memory location

with address 0191h is moved to

register H.

72

The output of the program execution A = (0190h)

H = (0191h)

L = (0190h)

Example 4.6: Using MOV r,M and MOV M,r, MVI M, data com-

mands.

MOV M,r commands

Mnemonic Operands Machine code Comment

MVI A,0AAh 3E AA loading of A register: А←AAh

MVI B,0BBh 06 BB loading of B register: B←BBh

MVI C,0CCh 0E CC loading of C register: C←CCh

MVI D,0DDh 16 DD loading of D register: D←DDh

MVI E,0EEh 1E EE loading of E register: E←EEh

LXI H,0100h 21 00 01 loading of HL register pair:

HL←0100h.

MOV M,A 77 the contents of register A is

moved to the memory location

whose address is in register pair

HL. (HL)←A

LXI H,0101h 21 01 01 HL←0101h.

MOV M,C 77 (HL)←C

LXI H,0102h 21 02 01 HL←0102h.

MOV M,B 71 (HL)←B

LXI H,0103h 21 03 01 HL←0103h.

MOV M,E 70 (HL)←E

LXI H,0104h 21 04 01 HL←0104h.

MOV M,D 72 (HL)←D

LXI H,0105h 21 05 01 HL←0105h.

MOV M,H 74 (HL)←H

LXI H,0106h 21 06 01 HL←0105h.

MOV M,L 75 (HL)←L

MOV r,M commands

LXI H,0100h 21 00 01 HL←0100h.

MOV E,M 5E E←(HL)

LXI H,0105h 21 05 01 HL←0105h.

MOV D,M 56 D←(HL)

MVI M, data commands

LXI H,0107h 21 07 01 HL←0107h.

MVI M,0Fh 6C (HL)←0Fh

73

The output of the program execution:

0100h = AAh

0101h = CCh

0102h = BBh

0103h = EEh

0104h =DDh

0105h =01h

0106h = 06h

E=AAh

D=01h

0107h=0Fh

Example 4.7: Using STAX rp and LDAX rp commands.

STAX rp commands

Mnemonic Operands Machine code Comment

LXI B,0100h 01 00 01 loading of BC register pair:

BC←0100h.

MVI A,0Fh 3E 0F loading of A register: A←0Fh

STAX B 02 The contents of A is moved to

the memory cell location whose

address is in the BC.

LXI D,0110h 11 10 01 loading of DE register pair:

DE←0110h.

MVI A,F0h 3E F0 loading of A register: A←F0h

STAX D 12 The contents of A is moved to

the memory cell location whose

address is in the DE.

LDAX rp commands

LXI D,0100h 11 00 01 loading of DE register pair:

DE←0100h.

LDAX D 1A The contents of the memory lo-

cation, whose address is in the

DE, is moved to register A.

The output of the program execution:

0100h = 0Fh

0110h = F0h

A=0Fh

Example 4.8: Using XCHG command.

74

STAX rp commands

Mnemonic Operands Machine code Comment

LXI H,AABBh 21 00 01 loading of HL register pair:

BC←AABBh.

LXI D,CCDDh 11 00 01 loading of DE register pair:

BC←CCDDh.

SCHG EB The contents of register pair HL

are exchanged with the contents

of DE.

The output of the program execution:

H = CCh

L = DDh

D = AAh

E = BBh

2. Arithmetic Group – add, subtract, increment or decrement data in

registers or in memory [7, 8].

Table 4.3. Arithmetic group instructions

Instruction Action Instruction format Cycles

(states)

Ad-

dress-

ing

Flag

s

ADD r The contents

of register r

is added to

the accumu-

lator. The

result is

placed in the

accumulator.

1 (4) register S,Z,P

,CY,

AC

ADD M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers is

added to the

contents of

the accumu-

lator. The

2 (7) register

indirect

S,Z,P

,CY,

AC

75

result is

placed in the

accumulator.

ADI data The contents

of the second

byte of the

instruction is

added to the

contents of

the accumu-

lator. The

result is

placed in the

accumulator.

2 (7) imedi-

ate

S,Z,P

,CY,

AC

ADC r The contents

of register r

and the con-

tents of the

carry bit are

added to the

contents of

the accumu-

lator. The

result is

placed in the

accumulator.

1 (4)

register S,Z,P

,CY,

AC

ADC M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers and

the contents

of the CY

flag are add-

ed to the ac-

cumulator.

The result is

placed in the

accumulator.

2 (7) S,Z,P

,CY,

AC

ACI data The contents

of the second

byte of the

instruction

2 (7) imme-

diate

S,Z,P

,CY,

AC

76

and the con-

tents of the

CY flag are

added to the

contentss of

the accumu-

lator. The

result is

placed in the

accumulator.

SUB r The contents

of register r

is subtracted

from the

contents of

the accumu-

lator. The

result is

placed in the

accumulator.

1 (4) register S,Z,P

,CY,

AC

SUB M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers is

subtracted

from the

contents of

the accumu-

lator. The

result is

placed in the

accumulator.

2 (7) register

indirect

S,Z,P

,CY,

AC

SUI data The contents

of the second

byte of the

instruction is

subtracted

from the

contents of

the accumu-

lator. The

result is

2 (7) imme-

diate

S,Z,P

,CY,

AC

77

placed in the

accumulator.

SBB r The contents

of register r

and the con-

tents of the

CY flag are

both sub-

tracted from

the accumu-

lator. The

result is

placed in the

accumulator.

1 (4) register S,Z,P

,CY,

AC

SBB M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers and

the contents

of the CY

flag are both

subtracted

from the ac-

cumulator.

The result is

placed in the

accumulator.

2 (7) register

indirect

S,Z,P

,CY,

AC

SBI data The con-

tentss of the

second byte

of the in-

struction and

the contentss

of the CY

flag are both

subtracted

from the ac-

cumulator.

The result is

placed in the

accumulator.

2 (7) imme-

diate

S,Z,P

,CY,

AC

78

INR r The contents

of register r

is incre-

mented by

one.

1 (5) register S,Z,P

,AC

INR M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers is

incremented

by one.

3 (10) register

indirect

S,Z,P

,AC

DCR r The contents

of register r

is decre-

mented by

one.

1 (5) register S,Z,P

,AC

DCR M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers is

decremented

by one.

3 (10) register

indirect

S,Z,P

,AC

INX rp The contents

of the regis-

ter pair rp is

incremented

by one.

1 (5) Register none

DCX rp The contents

of the regis-

ter pair rp is

decremented

by one.

1 (5) Register none

DAD rp The contents

of the regis-

ter pair rp is

added to the

contents of

the register

3 (10) Register CY

79

pair H and

L. The result

is placed in

the register

pair H and

L.

DAA The eight-bit

number in

the accumu-

lator is ad-

justed to

form two

four-bit Bi-

nary-Coded-

Decimal dig-

its by the

following

process:

1)If the val-

ue of the

least signifi-

cant 4 bits of

the accumu-

lator is

greater than

9 or if the

AC flag is

set, 6 is add-

ed to the ac-

cumulator.

2) If the val-

ue of the

most signifi-

cant 4 bits of

the accumu-

lator is now

greater than

9, or if the

CY flag is

set, 6 is add-

ed to the

most signifi-

cant 4 bits of

the accumu-

lator.

1 (4) Implied S,Z,P

,CY,

AC

Example 4.9: Using ADD r, ADD M and ADI data commands.

80

Mnemonic Operands Machine

code

Comment

MVI A,00 3E 00 loading of A register: А←00h

MVI B,01 06 01 loading of B register: B←01h

LXI H, 0100h 21 00 01 loading of HL register pair:

HL←0100h

MOV M,A 77 (HL)←A

ADD B 80 A←A+B

ADD M 86 A←A+(M)

ADI 05h C6 05 A←A+5

The output of the program execution:

B=01h

HL=0100h

(0100h)=00h

A=B+(M)+05h=06h
Example 4.10: Using ADC r, ADC M and ACI data commands.

Mnemonic Operands Machine

code

Comment

MVI A,0FFh 3E FF loading of A register: А←FFh

ADI 02h C6 02 A←A+1=01h and carry flag will be

1

MVI B,0FEh 06 FE loading of B re gister: B←FEh

LXI H, 0100h 21 00 01 loading of HL register pair:

HL←0100h

MOV M,A 77 (HL)←A

ADC B 80 A←A+B+Carry=0 and carry flag –

1

ADC M 86 A←A+(M)+Carry=2 and carry flag

– 0

ACI 05h C6 05 A←A+5+Carry=7 and carry flag –

0

The output of the program execution:

B=FEh

HL=0100h

(0100h)=01h

A=B+(M)+05h+Carry=07h
Example 4.11: Using SUB r, SUB M and SUI data commands.

81

Mnemonic Operands Machine

code

Comment

MVI A,0FFh 3E FF loading of A register: А←FFh

MVI B,05h 06 05 loading of B re gister: B←05h

LXI H, 0100h 21 00 01 loading of HL register pair:

HL←0100h

MOV M,B 71 (HL)←B

SUB B 90 A←A-B

SUB M 96 A←A-(M)

SUI 0Fh DE 0F A←A-15

The output of the program execution:

B=05h

HL=0100h

(0100h)=05h

A=B-(M)-0Fh=E6h
Example 4.12: Using SBB r, SBB M and SBI data commands.

Mnemonic Operands Machine

code

Comment

MVI A,01h 3E 01 loading of A register: А←01h

MVI B,05h 06 05 loading of B re gister: B←05h

LXI H, 0100h 21 00 01 loading of HL register pair:

HL←0100h

MOV M,B 71 (HL)←B

SBB B 98 A←A-B-Carry=FCh and carry– 1

SBB M 9E A←A-(M)-Carry=F7h and carry– 0

SBI 0FFh DE FF A←A-15-Carry=F8h and carry– 1

The output of the program execution:

B=05h

HL=0100h

(0100h)=05h

A=B-(M)-FFh=F8h
Example 4.13: Using INC r, INC M and INX rp commands.

Mnemonic Operands Machine

code

Comment

MVI A,01h 3E 01 loading of A register: А←01h

LXI H, 0100h 21 00 01 loading of HL register pair:

HL←0100h

82

MOV M,A 77 (HL)←A

INC A 3C A←A+1

INC M 34 (M)←(M)+1

INX H 23 HL←HL+1

The output of the program execution:

HL=0101h

(0100h)=02h

A=02h
Example 4.14: Using DCR r, DCR M and DCX rp commands.

Mnemonic Operands Machine

code

Comment

MVI A,04h 3E 04 loading of A register: А←04h

LXI H, 0101h 21 01 01 loading of HL register pair:

HL←0101h

MOV M,A 77 (HL)←A

DCR A 3D A←A-1

DCR M 35 (M)←(M)-1

DCX H 2B HL←HL-1

The output of the program execution:

HL=0100h

(0101h)=03h

A=03h
Example 4.15: Using DAD rp commands.

Mnemonic Operands Machine

code

Comment

LXI H, 0101h 21 01 01 loading of HL register pair:

HL←0101h

DAD H 29 HL←HL+HL

The output of the program execution:

HL=0202h.

• Logical Group — AND, OR, EXCLUSIVE-OR, compare, shift,

rotate or complement data in registers or in memory [7, 8];

Table 4.4. Logical group instructions

Instruction Action Instruction format Cycles Ad- Flag

83

(states

)

dress-

ing

s

ANA r The contents

of register r

is logically

added with

the contents

of the accu-

mulator. The

result is

placed in the

accumulator.

The CY flag

is cleared.

1 (4) regis-

ter

S,Z,P

,CY,

AC

ANA M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers is

logically

added with

the contents

of the accu-

mulator. The

result is

placed in the

accumulator.

The CY flag

is cleared.

2 (7) regis-

ter in-

direct

S,Z,P

,CY,

AC

ANI data The contents

of the second

byte of the

instruction is

logically

added with

the contentss

of the accu-

mulator. The

result is

placed in the

accumulator.

The CY and

2 (7) imme-

diate

S,Z,P

,CY,

AC

84

AC flags are

cleared.

XRA r The contents

of register r

is exclusive-

or'd with the

contents of

the accumu-

lator. The

result is

placed in the

accumulator.

The CY and

AC flags are

cleared.

1 (4) regis-

ter

S,Z,P

,CY,

AC

XRA M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers is

exclusive-

OR'd with

the contents

of the accu-

mulator. The

result is

placed in the

accumulator.

The CY and

AC flags are

cleared.

2 (7) regis-

ter in-

direct

S,Z,P

,CY,

AC

XRI data The contents

of the second

byte of the

instruction is

exclusive-

OR'd with

the contents

of the accu-

mulator. The

result is

placed in the

accumulator.

2 (7) imme-

diate

S,Z,P

,CY,

AC

85

The CY and

AC flags are

cleared.

ORA r The contents

of register r

is inclusive-

OR'd with

the contents

of the accu-

mulator. The

result is

placed in the

accumulator.

The CY and

AC flags are

cleared.

1 (4) regis-

ter

S,Z,P

,CY,

AC

ORA M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers is

inclusive-

OR'd with

the contents

of the accu-

mulator. The

result is

Placed in the

accumulator.

The CY and

AC flags are

cleared.

2 (7) regis-

ter in-

direct

S,Z,P

,CY,

AC

ORI data The contents

of the second

byte of the

instruction is

inclusive-

OR'd with

the contents

of the accu-

mulator. The

result is

placed in the

2 (7) imme-

diate

S,Z,P

,CY,

AC

86

accumulator.

The CY and

AC flags are

cleared.

CMP r The contents

of register r

is subtracted

from the ac-

cumulator.

The accumu-

lator remains

unchanged.

The condi-

tion flags are

set as a re-

sult of the

subtraction.

The Z flag is

set to 1 if (A)

= (r). The

CY flag is

set to 1 if

(A)<(r).

1 (4) regis-

ter

S,Z,P

,CY,

AC

CMP M The contents

of the

memory lo-

cation whose

address is

contained in

the H and L

registers is

subtracted

from the ac-

cumulator.

The accumu-

lator remains

unchanged.

The condi-

tion flags are

set as a re-

sult of the

subtraction.

The Z flag is

set to 1 if (A)

= ((H) (L)).
The CY flag

2 (7) regis-

ter in-

direct

S,Z,P

,CY,

AC

87

is set to 1 if

(A) < ((H)

(L)).

CPI data The contents

of the second

byte of the

instruction is

subtracted

from the ac-

cumulator.

The condi-

tion flags are

set by the

result of the

subtraction.

The Z flag is

set to 1 if (A)

= (byte 2).

The CY flag

is set to 1 if

(A) < (byte

2).

2 (7) imme-

diate

S,Z,P

,CY,

AC

RLC The contents

of the accu-

mulator is

rotated left

one position.

The low or-

der bit and

the CY flag

are both set

to the value

shifted out of

the high or-

der bit posi-

tion

1 (4) Im-

plied

CY

RRC The contents

of the accu-

mulator is

rotated right

one position.

The high or-

der bit and

the CY flag

are both set

1 (4) Im-

plied

CY

88

to the value

shifted out of

the low order

bit position.

RAL The contents

of the accu-

mulator is

rotated left

one position

through the

CY flag. The

low order bit

is set equal

to the CY

flag and the

CY flag is

set to the

value shifted

out of the

high order

bit.

1 (4) Im-

plied

CY

RAR The contents

of the accu-

mulator is

rotated right

one position

through the

CY flag. The

high order

bit is set to

the CY flag

and the CY

flag is set to

the value

shifted out of

the low order

bit.

1 (4) Im-

plied

CY

CMA The con-

tentss of the

accumulator

are comple-

mented (zero

bits become

1, one bits

become 0).

1 (4) Im-

plied

none

89

CMC The CY flag

is comple-

mented.

1 (4) Im-

plied

CY

STC The CY flag

is set to 1.

1 (4) Im-

plied

CY

Example 4.16: Using ANA r, ANA M and ANI data commands.

Mnemonic Operands Machine

code

Comment

MVI A,05h 3E 05 loading of A register: А←05h

LXI H, 0100h 21 00 01 loading of HL register pair:

HL←0100h

MOV M,A 77 (HL)←A

ANA A A7 A←AA=05h

ANA M A6 A←A (M)=05h

ANI 04h E6 04 A←A04h=04h

Example 4.17: Using ORA r, ORA M and ORI data commands.

Mnemonic Operands Machine

code

Comment

MVI A,05h 3E 05 loading of A register: А←05h

LXI H, 0100h 21 00 01 loading of HL register pair:

HL←0100h

MOV M,A 77 (HL)←A

ORA A B7 A←AA=05h

ORA M B6 A←A (M)=05h

ORI 08h F6 08 A←A04h=0Dh

Example 4.18: Using XRA r, XRA M and XRI data commands.

Mnemonic Operands Machine

code

Comment

MVI A,0AAh 3E AA loading of A register: А←AAh

LXI H, 0100h 21 00 01 loading of HL register pair:

HL←0100h

MOV M,A 77 (HL)←A

ORA A AF A←AA=00h

ORA M AE A←A (M)=AAh

ORI 0FFh EE FF A←A04h=55h

90

Example 4.19: Using RAL, RAR and CMA commands.

Mnemonic Operands Machine

code

Comment

MVI A,0Ch 3E 0C loading of A register: А←0Ch

CMC 1F А←06h

RAR 1F А←03h

MVI A,0Ch 3E 0C loading of A register: А←0Ch

RAL 17 А←18h

RAL 17 А←30h

CMA 2F А←CFh

Example 4.20: Using RRC, RLC, CMC and STC commands.

Mnemonic Operands Machine

code

Comment

MVI A,0Ch 3E 0C loading of A register: А←0Ch

CMC 3F Clear carry flag

RRC 0F А←06h, carry=0

STC 37 Set carry flag

RRC 0F А←83h, carry=0

MVI A,0Ch 3E 0C loading of A register: А←0Ch

RLC 07 А←18h, carry=0

STC 37 Set carry flag

RLC 07 А←31h, carry=0

• Branch Group — conditional and unconditional jump instructions,

subroutine call instructions and return instructions [7, 8];

The two types of branch instructions are unconditional and conditional.

Unconditional transfers simply perform the specified operation on register

PC (the program counter). Conditional transfers examine the status of one of

the four processor flags to determine if the specified branch is to be executed.

The conditions that may be specified are as follows:

Condition CCC Instruction

NZ – not zero (Z=0) 000 JNZ

Z – zero (Z=1) 001 JZ

NC – not carry (C=0) 010 JNC

C – carry (C=1) 011 JC

P – parity odd (P=0) 100 JP

PE – parity even (P=1) 101 JPE

91

P – plus (S=0) 110 JP

M – minus (S=1) 111 JM

Table 4.5. Branch group instructions

Instruction Action Instruction format Cycles

(states

)

Ad-

dress-

ing

Flag

s

JMP addr Control is

transferred to

the instruc-

tion whose

address is

specified in

byte 3 and

byte 2 of the

current in-

struction.

3 (10) imme-

diate

none

Jcondition

addr

If the speci-

fied condi-

tion is true,

control is

transferred to

the instruc-

tion whose

address is

specified in

byte 3 and

byte 2 of the

current in-

struction;

otherwise,

control con-

tinues se-

quentially.

3 (10) imme-

diate

none

CALL addr The high-

order eight

bits of the

next instruc-

tion address

are moved to

the memory

location

whose

address is

one less than

5 (17) Immedi-

di-

ate/regis

ter indi-

rect

none

92

the contents

of register

SP. The low-

order eight

bits of the

next instruc-

tion address

are moved to

the memory

location

whose

address is

two less than

the contents

of register

SP. The con-

tents of reg-

ister SP is

decremented

by 2. Control

is transferred

to the in-

struction

whose ad-

dress is spec-

ified in byte

3 and byte 2

of the cur-

rent instruc-

tion.

RET The contents

of the

memory lo-

cation whose

address is

specified in

register SP is

moved to the

low-order

eight bits of

register PC.

The contents

of the

memory lo-

cation whose

address is

one more

3 (10) Register

indirect

none

93

than the con-

tents of reg-

ister SP is

moved to the

high-order

eight bits of

register PC.

The contents

of register

SP is

incremented

by 2.

Recondition If the speci-

fied condi-

tion is true,

the actions

specified in

the RET in-

struction (see

above) are

performed;

otherwise,

control con-

tinues se-

quentially.

3 (11) Register

indirect

none

RST n The high-

order eight

bits of the

next instruc-

tion address

 are

moved to the

memory lo-

cation whose

address is

one less than

the contents

of register

SP. The low-

order eight

bits of the

next instruc-

tion address

are moved to

the memory

location

whose ad-

n - The restart number 0

through 7.

NNN - The binary representa-

tion 000 through 111 for re-

start number 0 through 7 re-

spectively.

3 (11) Register

indirect

none

94

dress is two

less than the

contents of

register SP.

The contents

of register

SP is decre-

mented by

two. Control

is transferred

to the in-

struction

whose ad-

dress is eight

times the

contents of

NNN.

PCHL The contents

of register H

is moved to

the high-

order eight

bits of regis-

ter PC. The

contents of

register L is

moved to the

low-order

eight bits of

register PC.

1 (5) Register none

Example 4.21: Using JMP addr and Jcondition addr commands.

Addr Mnemonic Oper-

ands

Machine

code

Comment

0000h MVI A,0Ch 3E 0C loading of A register: А←0Ch

0002h JMP 0100h C3 00 01 Jump to address 0100h

0100h ADI A,0FFh C6 FF А←A+0FFh=0Bh, Carry=1

0102h JC 0200h D2 00 02 Jmp if flag carry is set 1

0200h MVI A,00h 3E 00 loading of A register: А←00h

The result of executing this program:

A=00h

95

Example 4.22: Using CALL addr and RET commands.

Addr Mnemonic Oper-

ands

Machine

code

Comment

0000h MVI A,0Ch 3E 0C loading of A register: А←0Ch

0002h CALL 0100h CD 00 01 Subprogram call

Subprogram

0100h ADI A,0FFh C6 FF А←A+0FFh=0Bh, Carry=1

0102h RET C9 Return to the main program

The result of executing this program:

A=0Bh
Example 4.23: Using PCHL command.

Addr Mnemonic Oper-

ands

Machine

code

Comment

0000h MVI A,0Ch 3E 0C loading of A register: А←0Ch

0002h LXI H, 0100h 21 00 01 HL←0100h

0005h PCHL PC←HL

0100h ADI A,0FFh C6 FF А←A+0FFh=0Bh, Carry=1

The result of executing this program:

A=0Bh
• Stack, I/O and Machine Control Group – includes I/O instructions,

as well as instructions for maintaining the stack and internal control flags

[7, 8].

Table 4.5. Stack group instructions

Instruction Action Instruction format Cycles

(states

)

Ad-

dress-

ing

Flag

s

PUSH rp The contents

of the high-

order regis-

ter of regis-

ter pair rp is

moved to the

memory lo-

cation whose

address is

one less than

3 (11) Register

indirect

none

96

the contents

of register

SP. The con-

tents of the

low-order

register of

register pair

rp is moved

to the

memory lo-

cation whose

address is

two less than

the contents

of register

SP. The con-

tents of reg-

ister SP is

decremented

by 2. Note:

Register pair

rp = SP may

not be speci-

fied.

PUSH PSW The contents

of register A

is moved to

the memory

location

whose ad-

dress is one

less than reg-

ister SP. The

contentss of

the condition

flags are as-

sembled into

a processor

status word

and the word

is moved to

the memory

location

whose ad-

dress is two

less than the

3 (11) Register

indirect

none

97

contents of

register SP.

The contents

of register

SP is

decremented

by two.

POP rp The contents

of the

memory lo-

cation,

whose ad-

dress is spec-

ified by the

contents of

register SP,

is moved to

the low-

order regis-

ter of regis-

ter pair rp.

The contents

of the

memory lo-

cation,

whose ad-

dress is one

more than

the contents

of register

SP, is moved

to the high-

order regis-

ter of regis-

ter pair rp.

The contents

of register

SP is incre-

mented by 2.

Note: Regis-

ter pair rp =

SP may not

be specified.

3 (10) Register

indirect

none

98

POP PSW The contents

of the

memory lo-

cation whose

address is

specified by

the contents

of register

SP is used to

restore the

condition

flags. The

contents of

the memory

location

whose ad-

dress is one

more than

the contents

of register

SP is moved

to register A.

The contents

of register

SP is incre-

mented by 2.

3 (10) Register

indirect

Z,S,P

,AC,

CY

Example 4.24: Using of PUSH rp and POP rp command.

Addr Mnemonic Operands Machine

code

Comment

0000h LXI H, 1122h 21 22 11 HL←1122h

0002h LXI SP,0202h 31 02 02 SP←0202h

0005h PUSH H E5 (SP-1)=0201h←H

(SP-1)=0200h←L

0006h POP D D1 E←(0200h),

SP←SP+1=0201h

D←(0201h),

SP←SP+1=0202h

The result of executing this program:

H=11h

L=22h

D=11h

99

E=22h

100

PART 5. 8051 MICROCONTROLLERS

Microcontroller usually consists of microprocessor unit, memory, usual-

ly read-only program memory (ROM) and random-access data memory

(RAM), memory decoders, an oscillator, and a number of input/output (I/O)

devices, such as parallel and serial data ports, analog to digital and digital to

analog converters. Additionally, special-purpose devices, such as interrupt

handlers, or counters, may be added to relieve the CPU from time-consuming

counting or timing chores. Equipping the microcomputer with a mass storage

device, commonly a floppy disk drive, and I/O peripherals, such as a key-

board and a CRT display, yields a small computer that can be applied to a

range of general-purpose software applications.

The prime use of a microprocessor is to fetch data, perform extensive

calculations on that data, and store those calculations in a mass storage de-

vice or display the results for human use. The programs used by the micro-

processor are stored in the mass storage device and loaded into RAM as the

user directs. A few microprocessor programs are stored in ROM. The ROM-

based programs are primarily small fixed programs that operate peripherals

and other fixed devices that are connected to the system.

Figure 5.1 shows the block diagram of a typical microcontroller. The

design incorporates all the features found in a microprocessor CPU: ALU,

PC, SP, and registers. It also has other features: ROM, RAM, parallel I/O, se-

rial I/O, counters, and a clock circuit [9].

Fig. 5.1. A block diagram of microcontroller

101

Like the microprocessor, a microcontroller is a general-purpose device,

but one which is meant to fetch data, perform limited calculations on that da-

ta, and control its environment based on those calculations. The prime use of

a microcontroller is to control the operation of a machine using a fixed pro-

gram that is stored in ROM and that does not change over the lifetime of the

system.

The design approach of the microcontroller mirrors that of the micro-

processor: make a single design that can be used in as many applications as

possible in order to sell, hopefully, as many as possible. The microprocessor

design accomplishes this goal by having a very flexible and extensive reper-

toire of multi-byte instructions. These instructions work in a hardware con-

figuration that enables large amounts of memory and I/O to be connected to

address and data bus pins on the integrated circuit package. Much of the ac-

tivity in the microprocessor has to do with moving code and data words to

and from external memory to the CPU. The architecture features working

registers that can be programmed to take part in the memory access process,

and the instruction set is aimed at expediting this activity in order to improve

throughput. The pins that connect the microprocessor to external memory are

unique, each having a single function. Data is handled in byte, or larger, siz-

es.

The microcontroller design uses a much more limited set of single- and

double-byte instructions that are used to move code and data from internal

memory to the ALU. Many instructions are coupled with pins on the integrat-

ed circuit package; the pins are “programmable”—that is, capable of having

several different functions depending upon the wishes of a programmer.

The microcontroller is concerned with getting data from and to its own

pins; the architecture and instruction set are optimized to handle data in bit

and byte size.

The contrast between a microcontroller and a microprocessor is best ex-

emplified by the fact that most microprocessors have many operational codes

(operational codes) for moving data from external memory to the CPU; mi-

crocontrollers may have one, or two. Microprocessors may have one or two

types of bit-handling instructions; microcontrollers will have many.

To summarize, the microprocessor is concerned with rapid movement of

code and data from external addresses to the chip; the microcontroller is con-

cerned with rapid movement of bits within the chip. The microcontroller can

function as a computer with the addition of no external digital parts; the mi-

croprocessor must have many additional parts to be operational.

In this part we will describe the principles of operation of microcontrol-

lers by the example of 8-bit 8051 microcontroller [9].

102

5.1. THE 8051 ARCHITECTURE

Figure 5.2 shows a functional block of the internal operation of an 8051

microcomputer [9].

Fig. 5.2. 8051 functional block diagram

The 8051 has a separate memory space for code (programs) and data.

There can be two types of memory on-chip memory and external memory as

shown in Fig. 5.3. In an actual implementation the external memory may,be

contained within the microcomputer chip. However, we will use the defini-

tions of internal and external memory to be consistent with 8051 instructions

which operate on memory. Note, the separation of the code and data memory

in the 8051 architecture is a little unusual. The separated memory architecture

103

is referred to as Harvard architecture whereas von Neumann architecture de-

fines a system where code and data can share common memory.

Fig. 5.3. 8051 memory representation

Fig. 5.4. Internal RAM of 8051 microcontroller

104

The executable program code is stored in this code memory. The code

memory size is limited to 64 KBytes (in a standard 8051). The code memory

is read-only in normal operation and is programmed under special conditions,

e.g. it is a PROM or a Flash RAM types of memory.

External RAM Data Memory

This is read-write memory and is available for storage of data. Up to

64KBytes of external RAM data memory is supported (in a standard 8051).

Internal Memory

The 8051’s on-chip memory consists of 256 memory bytes organized as

follows:

First 128 bytes: 00h to 1Fh Register Banks

 20h to 2Fh Bit Addressable RAM

 30 to 7Fh General Purpose RAM

Next 128 bytes: 80h to FFh Special Function Registers

The first 128 bytes of internal memory is organized as shown in Fig 5.4,

and is referred to as Internal RAM.

Register Banks

The 8051 uses 8 general-purpose registers R0 through R7 (R0, R1, R2,

R3, R4, R5, R6, and R7). These registers are used in instructions such as:

ADD A, R2; adds the value contained in R2 to the accumulator

MOV R1,A; the contents of accumulator moves into R1

Note that the following instructions have the same effect as the above

instruction.

ADD A,02h

MOV 01h,A

The picture becomes more complicated when we see that there are four

banks of these general-purpose registers defined within the Internal RAM. For

the moment we will consider register bank 0 only. Register banks 1 to 3 can

be ignored when writing introductory level assembly language programs. The

bank number is selected in PSW register. In table 5 the contents of PSW reg-

ister is given [9].

Table 5.1. PSW register.

Symbol Number

of bit

Description

C PSW.7 Carry flag. This is a conventional carry, or borrow, flag

used in arithmetic operations. The carry flag is also used

as the ‘Boolean accumulator’ for Boolean instruction op-

erating at the bit level. This flag is sometimes referenced

105

as the CY flag.

AC PSW.6 Auxiliary carry flag. This is a conventional auxiliary car-

ry (half carry) for use in BCD arithmetic.

F0 PSW.5 Zero flag (flag 0). This is a general-purpose flag for user

programming.

RS1 PSW.4 Register bank select 1.

RS0 PSW.3 Register bank select 0. These bits define the active regis-

ter bank (bank 0 is the default register bank).

OV PSW.2 Overflow flag. This is a conventional overflow bit for

signed arithmetic to determine if the result of a signed

arithmetic operation is out of range.

- PSW.1 Reserved.

P PSW.0 Even parity flag. The parity flag is the accumulator parity

flag, set to a value, 1 or 0, such that the number of ‘1’

bits in the accumulator plus the parity bit add up to an

even number.

Table 5.2. Register banks.

RS1 RS0 Bank Addresses

0 0 0 00Н – 07Н

0 1 1 08H – 0FH

1 0 2 10Н – 17Н

1 1 3 18H – 1FH

Stack Pointer

The Stack Pointer (SP) is an 8-bit SFR register. The small address field

(8 bits) and the limited space available in the Internal RAM confines the stack

size and this is sometimes a limitation for 8051 programmes. The SP con-

tains the address of the data byte currently on the top of the stack. The SP

pointer in initialized to a defined address. A new data item is ‘pushed’ onto

the stack using a PUSH instruction which will cause the data item to be writ-

ten to address SP + 1. Typical instructions, which cause modification to the

stack are: PUSH, POP, LCALL, RET, RETI etc.. The SP SFR, on start-up,

is loaded by number 07h and this means the stack will start at 08h and ex-

106

pand upwards in Internal RAM. If register banks 1 to 3 are to be used the SP

SFR should be initialized to start higher up in Internal RAM. The following

instruction is used to initialize the stack:

MOV SP, #2Fh

When a subroutine is called, the current contents of the Program Coun-

ter (PC) is saved into the stack, the low byte of the PC is saved first followed

by the high byte. Thus the Stack Pointer (SP) in incremented by 2. When a

RET (return from subroutine) instruction is executed, the stored PC value on

the stack is restored to the PC, thus decrementing the SP by 2.

When a byte is PUSHed to the stack, the SP is incremented by one so as

to point to the next available stack location. Conversely, when a byte is

POPed from the stack, the SP is decremented by one. Fig. 5.5 shows the or-

ganization of the stack area within the I-RAM memory space.

Fig. 5.5. The stack operation

107

Fig. 5.6. The stack operation

The stack values during the operation of the nested subroutine example

are shown in Fig. 5.6. Here it is assumed that the SP is initialized to 07h. This

is possible when the alternative register banks are not used in the program.

The stack then has a maximum value of 20h, if we want to preserve the ‘bit

addressable’ RAM area. It is more common to initialize the SP higher up in

the internal RAM at location 2Fh. The diagram shows how data is saved into

the stack [9, 10].

Data Pointer

The Data Pointer register (DPTR) is a special 16-bit register used to ad-

dress the external code or external data memory. Since the SFR registers are

just 8-bits wide the DPTR is stored in two SFR registers, where DPL holds

the low byte of the DPTR and DPH holds the high byte of the DPTR. For

example, for writing down the value 0FFh to external data memory location

1020h, one might use the following instructions:

MOV A, #0FFh; move immediate 8 bit data 46h to accumulator

108

MOV DPTR, #1020h ; Move immediate 16 bit address value 1020h to

A. Now DPL holds 20h and DPH holds 10h.

MOVX @DPTR, A ; Move the value in A to external RAM location

1020h. Note the MOVX instruction is used to access external memory.

Accumulator

This is a conventional accumulator that one expects to find in any com-

puter, which is used to hold the results of various arithmetic and logic opera-

tions. Since the 8051 microcontroller is just an 8-bit device, the accumulator

is, as expected, an 8 bit register. The accumulator, referred to as ACC (in as-

sembler ACC means address of accumulator) or A, is usually accessed ex-

plicitly using instructions such as:

INC A ; increment the accumulator

 However, the accumulator is defined as an SFR register at address

E0h. So the following two instructions have the same effect:

MOV A,#0FFh ; move immediate the value 0FFh to the accumulator

MOV ACC,#0FFh ; move immediate the value 0FFhh to Internal RAM

location E0h (it is address of accumulator), which is, in fact, the accumulator

SFR register.

Usually the first method, MOV A, #0FFh, is used as it requires less

space - 2 bytes.

B Register

The B register is an SFR register at addresses F0h which is bit-

addressable. The B register is used in two instructions only: i.e. MUL (multi-

ply) and DIV (divide). The B register can also be used as a general-purpose

register.

Program Counter

The PC (Program Counter) is a 2 byte (16 bit) register which always

contains the memory address of the next instruction to be executed. When the

8051 is reset the PC is always initialized to 0000h. If a 2 byte instruction is

executed the PC is incremented by 2 and if a 3 byte instruction is executed

the PC is incremented by three so as to correctly point to the next instruction

to be executed. A jump instruction (e.g. LJMP) has the effect of causing the

program to branch to a newly specified location, so the jump instruction

causes the PC contentss to change to the new address value. Jump instruc-

tions cause the program to flow in a non-sequential fashion, as will be de-

scribed later.

SFR Registers for the Internal Timer

The set up and operation of the on-chip hardware timers will be de-

scribed later, but the associated registers are briefly described here: TCON,

the Timer Control register is an SFR at address 88h, which is bit-addressable.

109

TCON is used to configure and monitor the 8051 timers. The TCON

SFR also contains some interrupt control bits, described later. TMOD, the

Timer Mode register is an SFR at address 89h and is used to define the oper-

ational modes for the timers, as will be discussed below.

TL0 (Timer 0 Low) and TH0 (Timer 0 High) are two SFR registers ad-

dressed at 8Ah and 8Bh respectively. The two registers are associated with

Timer 0.

TL1 (Timer 1 Low) and TH1 (Timer 1 High)are two SFR registers ad-

dressed at 8Ch and 8Dh respectively. These two registers are associated with

Timer 1.

Power Control Register

PCON (Power Control) register is an SFR at address 87h. It contains

various control bits including a control bit, which allows the 8051 to go to

‘sleep’ so as to save power when not in immediate use.

Serial Port Registers

Programming of the on-chip serial communications port will be de-

scribed later in the text. The associated SFR registers, SBUF and SCON, are

briefly introduced here, as follows:

The SCON (Serial Control) is an SFR register located at addresses 98h,

and it is bit-addressable. SCON configures the behavior of the on-chip serial

port, setting up parameters such as the baud rate of the serial port, activating

send and/or receive data, and setting up some specific control flags.

The SBUF (Serial Buffer) is an SFR register located at address 99h.

SBUF is just a single byte deep buffer used for sending and receiving data via

the on-chip serial port.

Interrupt Registers

Interrupts will be discussed in more detail in other sections. The associ-

ated SFR registers are:

IE (Interrupt Enable) is an SFR register at addresses A8h and is used to

enable and disable specific interrupts. The MSB bit (bit 7) is used to disable

all interrupts.

IP (Interrupt Priority) is an SFR register at addresses B8h and it is bit

addressable.

The IP register specifies the relative priority (high or low priority) of

each interrupt. On the 8051, an interrupt may either be of low (0) priority or

high (1) priority [9, 10, 11].

Control system and synchronization

Quartz crystal connected to the external terminals X1 and X2 to the

8051 microcontroller controls the internal oscillator, which in turn generates

clock signals.

110

Control system of 8051 based on synchronization signals generates ma-

chine cycle of fixed duration equal to 12 periods of the resonator or six pri-

mary controlling machine states (S1-S6). Each state of control contains two

phases P1, P2 of a resonator. In phase P1 is typically performed in an ALU

operation, and the phase P2 is interregister transfer . The entire machine cycle

consists of 12 phases, starting with phase and ending phase of the S1P1-S6P2

(Fig. 5.7). This timing diagram illustrates the operation of the control system

of 8051 while fetching and executing commands of various degrees of diffi-

culty. ALE signal is generated twice in a single clock cycle (S1P2-S2P1 and

S4P2-S5P1) and is used to manage the access to external memory [9].

Fig. 5.7. Clock diagrams: а – instruction 1 byte/1 cycle, for example INC A; b – instruc-

tion 2 bytes/1 cycle, for example ADD A, #d; c – instruction 1 byte/2 cycle, for example

INC DPTR; d – instruction 1 byte/2 cycle, for example MOVX;

Most commands are executed in a single machine cycle. Some of the

commands that operate on a 2-byte words or related to the treatment of exter-

111

nal memory accesses are performed in two machine cycles. Only the opera-

tions of division and multiplication require four machine cycles.

Input/output ports

One major feature of a microcontroller is the versatility built into the in-

put/output (I/O) circuits that connect the 8051 to the outside world. Micro-

processor designs must add additional chips to interface with external circuit-

ry; this ability is built into the microcontroller.

24 pins of the 8051 microcontroller may each be used for two entirely

different functions. The function of a pin performed at any given instant de-

pends, first, upon what is physically connected to it and, then, upon what

software commands are used to “program” the pin.

Given this pin flexibility, the 8051 may be applied simply as a single

component with I/O only, or it may be expanded to include additional

memory, parallel ports, and serial data communication by using the alternate

pin assignments. The key to programming an alternate pin function is the port

pin circuitry shown in Fig. 5.8.

Fig. 5.8. Input/output ports

Each port has a D-type output latch for each pin. The SFR for each port

is made up of these eight latches, which can be addressed at the SFR address

112

for that port. The port latches should not be confused with the port pins; the

data on the latches does not have to be the same as that on the pins.

The two data paths are shown in Fig. 5.8 by the circuits that read the

latch or pin data using two entirely separate buffers. The top buffer is enabled

when latch data is read, and the lower buffer, when the pin state is read. The

status of each latch may be read from a latch buffer, while an input buffer is

connected directly to each pin so that the pin status may be read independent-

ly of the latch state.

Different operational codes access the latch or pin states as appropriate.

Port operations are determined by the manner in which the 8051 is connected

to external circuitry.

Programmable port pins have completely different alternate functions.

The configuration of the control circuitry between the output latch and the

port pin determines the nature of any particular port pin function.

Port 0

Port 0 pins may serve as inputs, outputs, or, when used together, as a bi-

directional low- order address and data bus for external memory. For exam-

ple, when a pin is to be used as an input, a 1 must be written to the corre-

sponding port 0 latch by the program, thus turning both of the output transis-

tors off, which in turn causes the pin to “float” in a high- impedance state,

and the pin is essentially connected to the input buffer.

When used as an output, the pin latches that are programmed to a 0 will

turn on the lower FET, grounding the pin. All latches that are programmed to

a 1 still float; thus, external pull-up resistors will be needed to supply a logic

high when using port 0 as an output.

When port 0 is used as an address bus to external memory, internal con-

trol signals switch the address lines to the gates of the Field Effect Transisto-

ries (FETs). A logic 1 on an address bit will turn the upper FET on and the

lower FET off to provide a logic high at the pin. When the address bit is a ze-

ro, the lower FET is on and the upper FET off to provide a logic low at the

pin. After the address has been formed and latched into external circuits by

the Address Latch Enable (ALE) pulse, the bus is turned around to become a

data bus. Port 0 now reads data from the external memory and must be con-

figured as an input, so a logic 1 is automatically written by internal control

logic to all port 0 latches [9, 10].

Port 1
Port 1 pins have no dual functions. Therefore, the output latch is con-

nected directly to the gate of the lower FET, which has an FET circuit labeled

“Internal FET Pull-up” as an active pull-up load.

113

Used as an input, a 1 is written to the latch, turning the lower FET off;

the pin and the input to the pin buffer are pulled high by the FET load. An ex-

ternal circuit can overcome the high impedance pull-up and drive the pin low

to input a 0 or leave the input high for a 1.

If used as an output, the latches containing a 1 can drive the input of an

external circuit high through the pull-up. If a 0 is written to the latch, the

lower FET is on, the pull-up is off, and the pin can drive the input of the ex-

ternal circuit low.

To aid in speeding up switching times when the pin is used as an out-

put, the internal FET pull-up has another FET in parallel with it. The second

FET is turned on for two oscillator time periods during a low-to-high transi-

tion on the pin, as shown in Fig. 5.8. This arrangement provides a low im-

pedance path to the positive voltage supply to help reduce rise times in charg-

ing any parasitic capacitances in the external circuitry [9, 10].

Port 2
Port 2 may be used as an input/output port similar in operation to port 1.

The alternate use of port 2 is to supply a high-order address byte in conjunc-

tion with the port 0 low-order byte to address external memory.

Port 2 pins are momentarily changed by the address control signals

when supplying the high byte of a 16-bit address. Port 2 latches remain stable

when external memory is addressed, as they do not have to be turned around

(set to 1) for data input as is the case for port 0 [9, 10].

Port 3
Port 3 is an input/output port similar to port I. The input and output

functions can be programmed under the control of the P3 latches or under the

control of various other special function registers. The port 3 alternate uses

are shown in the following table [9, 10]:

Table 5.3. Alternative functions of Port 3

Symbol Number

of bit

Description

RD P3.7 External memory read pulse

WR P3.6 External memory write pulse

T1 P3.5 External timer 1 input

T0 P3.4 External timer 0 input

INT1 P3.3 External interrupt 1

114

INT0 P3.2 External interrupt 0

TXD P3.1 Serial data output

RXD P3.0 Serial data input

5.2. INTERRUPTS OF 8051

An interrupt causes a temporary diversion of program execution in a

similar sense to a program subroutine call, but an interrupt is triggered by

some event, external to the currently operating program. We say the interrupt

event occurs asynchronously to the currently operating program as it is not

necessary to know in advance when the interrupt event is going to occur.

There are five interrupt sources for the classical architecture of 8051.

But in modern 8051 microcontrollers there are more than five interrupts.

Since the main RESET input can also be considered as an interrupt, six inter-

rupts are shown on Fig. 5.9:

Fig. 5.9. Interrupts of 8051

Now, we will focus on the external interrupts for now, and later we will

examine the other interrupt sources. Here is a brief look at some of the regis-

ter bits which will be used to set up the interrupts in the example programs.

115

The Interrupt Enable, IE, register is an SFR register at location A8h in

Internal RAM. The EA bit will enable all interrupts (when set to 1) and the

individual interrupts must also be enabled.

Table 5.4. Interrupt enable register

Symbol Number

of bit

Description

EA IE.7 Unlocking interrupts. Cleared by software to disable all

interrupts regardless of the states of IE4 - IE0. 1 - enable,

0 - disable

- IE.6 Reserved

- IE.5

ES IE.4 UART interrupt enable bit. Set/reset by software to ena-

ble/disable interrupt flag TI or RI.

ET1 IE.3 Timer 1 interrupt enable bit. Set/reset by software to en-

able/disable timer 1 interrupt. 1 - enable, 0 - disable

EX1 IE.2 External interrupt 1 enable bit. Set/reset by software to

enable/disable external interrupt 1. 1 - enable, 0 - disable

ET0 IE.1 Timer 0 interrupt enable bit. Set/reset by software to en-

able/disable timer 0 interrupt. 1 - enable, 0 - disable

EX0 IE.0 External interrupt 0 enable bit. Set/reset by software to

enable/disable external interrupt 0. 1 - enable, 0 - disable

For example, if we want to enable the two external interrupts we would

use the instruction:

MOV IE, #10000101B

Each of the two external interrupt sources can be defined to trigger on

the external signal, either on a negative going edge or on a logic low level

state. The negative edge trigger is usually preferred as the interrupt flag is au-

tomatically cleared by hardware, in this mode. Two bits in the TCON regis-

terare used to define the trigger operation. The TCON register is another SFR

register and is located at location 88h in Internal RAM. The other bits in the

TCON register will be described later in the context of the hardware Tim-

er/Counters [10].

To define negative edge triggering for the two external interrupts one

uses the following instructions:

SETB IT0 ; negative edge trigger for interrupt 0

SETB IT1 ; negative edge trigger for interrupt 1

116

Fig. 5.10. Interrupt operation example

Fig. 5.10 shows the flow of operation when a system is interrupted. In

the example it is assumed that some program, say the main program, is exe-

cuting when the external interrupt INT0 occurs. The 8051 hardware will au-

tomatically complete the current machine level (assembler level) instruction

and save the Program Counter to the stack. The IE register is also saved to

the stack. The IE0 flag is disabled (cleared) so that another INT0 interrupt

will be inhibited while the current interrupt is being serviced. The Program

Counter is now loaded with the vector location 0003h. This vector address is

a predefined address for interrupt INT0 so that the program execution will

always trap to this address when an INT0 interrupt occurs. Other interrupt

sources have uniquely defined vector addresses for this purpose. The set of

these vector addresses is referred to as the interrupt vector table.

Program execution is now transferred to address location 0003h. In the

example a LJMP instruction is programmed at this address to cause the pro-

117

gram to jump to a predefined start address location for the relevant ISR (In-

terrupt Service Routine) routine. The ISR routine is a user written routine,

which defines what action is to occur following the interrupt event. It is good

practice to save (PUSH) to the stack any registers used during the ISR rou-

tine and to restore (POP) these registers at the end of the ISR routine, thus

preserving the registers’ contentss, justlike a register is preserved within a

subroutine program. The last instruction in the ISR routine is a RETI (RE-

Turn from Interrupt) instruction and this instruction causes the 8051 to re-

store the IE register values, enable the INT0 flag, and restore the Program

Counter contentss from the stack [10].

Since the Program Counter now contains the address of the next instruc-

tion which was to be executed before the INT0 interrupt occurred, the main

program continues as if it had never being interrupted. Thus only the tem-

poral behavior of the interrupted program has been affected by the interrupt;

the logic of the program has not been otherwise affected.

An individual interrupt source can be assigned to one of two priority lev-

els. The Interrupt Priority, IP, register is an SFR register used to program the

priority level for each interrupt source. A logic 1 specifies the high priority

level while a logic 0 specifies the low priority level.

Table 5.5. Interrupt priority register

Symbol Number

of bit

Description

- IP.7 Reserved

- IP.6

- IP.5

PS IP.4 UART priority bit. Set/reset by software to set high-

est/lowest priority of UART interrupt.

PT1 IP.3 Timer 1 priority bit. Set/reset by software to set high-

est/lowest priority of Timer 1 interrupt.

PX1 IP.2 External interrupt 1 priority bit. Set/reset by software to

set highest/lowest priority of external interrupt 1.

PT0 IP.1 Timer 0 priority bit. Set/reset by software to set high-

est/lowest priority of Timer 0 interrupt.

PX0 IP.0 External interrupt 0 priority bit. Set/reset by software to

set highest/lowest priority of external interrupt 0.

If two interrupt requests, at different priority levels, arrive at the same

time then the high priority interrupt is serviced first. If two, or more, interrupt

requests at the same priority level arrive at the same time then the interrupt to

118

be serviced is selected in the order shown below. Note, this order is used only

to resolve simultaneous requests. Once an interrupt service begins it cannot

be interrupted by another interrupt at the same priority level.

8051 microcontroller is reset by supplying the input signal RST 1. For

reliable reseting of 8051 this signal should be deducted in RESET pin at least

two machine cycles (24 periods of resonator). Quasi-bidirectional Buffers

output pins ALE and PSEN are thus in input mode. Under the influence of

the RST the contentss of the registers PC, ACC , B, PSW, DPTR, TMOD,

TCON, T/C0 , T/C1, IE, IP and SCON are reset, in PCON register only sig-

nificant bit is reset and in stack pointer register is loaded code 07h , and the

ports P0 - P3 - codes 0FFh. Status register SBUF indefinitely . RST has no

effect on the cells of internal data memory. When the power is turned on Vcc,

the contentss of internal data memory is uncertain, except for the return oper-

ation from low energy mode.

Fig. 5.11 shows an automatic signal RST at power switch-on. The time

required to fully charge the capacitance of the resonator provides a confident

start and his work for more than two machine cycles.

Fig. 5.11. RST signal

5.3. TIMERS AND COUNTERS

 The 8051 has two internal sixteen bit hardware Timer/Counters. Each

Timer/Counter can be configured in various modes, typically based on 8-bit

or 16-bit operation. The 8052 product has an additional (third) Tim-

er/Counter.

 Figure 5.12 provides us with a brief refresher on what a hardware

counter looks like. This is a circuit for a simple 3-bit counter which counts

from 0 to 7 and then overflows, setting the overflow flag. A 3-bit counter

would not be very useful in a microcomputer so it is more typical to find 8-

bit and 16-bit counter circuits.

119

Fig. 5.11. Timer operation

There are two registers for control of timers in 8051 microcontroller -

TMOD and TCON (Tables 5.6 and 5.7) [9, 10, 11].

Table 5.6. TMOD register

Symbol Number of bit Description

GATE TMOD.7 for

T/C1

Lock Control. If the bit is set, the timer /

counter "x" is allowed as long as the input

INTx high and TRx control bit is set. If the

bit is clear that T/C is permitted, as TRx con-

trol bit is set.

TMOD.3 for

T/C0

C/ T TMOD.6 for

T/C1

Mode Select bit timer or an event counter. If

the bit is cleared, the timer works by an inter-

nal clock signals. If 1, the counter works on

the external signal input Tx.
TMOD.2 for

T/C0

M1 TMOD.5 for

T/C1

Operation modes

TMOD.1 for

T/C0

M0 TMOD.4 for

T/C1

TMOD.0 for

120

T/C0

Timers operation modes

M1 M0 Режим работы

0 0 13-bit mode

0 1 16-bit mode. ТНх and TLx connected in series.

1 0 8-bit mode with auto reload feature. ТНх store auto reload value

and TLx is a timer register.

1 1 Ignore for now

Table 5.7. TCON register

Symbol Number

of bit

Description

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when tim-

er/counter overflow. Reset when the interrupt service

based apparatus.

TR1 TCON.6 Control bit timer 1. Set/cleared by software to start/stop.

TF0 TCON.5 Timer 0 overflow flag. Set by hardware when tim-

er/counter overflow. Reset when the interrupt service

based apparatus.

TR0 TCON.4 Control bit timer 0. Set/cleared by software to start/stop.

IE1 TCON.3 Interrupt 1 edge flag. Set by hardware, on the falling

edge of external signal INT1. Reset when the interrupt

service in the detection on the falling edge, the interrupt

level flag is cleared by removing the INT1.

IT1 TCON.2 Bit of control of the type of interrupt 1. Set / cleared by

software to specify the query INT1.

IE0 TCON.1 Interrupt 0 edge flag. Set by hardware, on the falling

edge of external signal INT0. Reset when the interrupt

service in the detection on the falling edge, the interrupt

level flag is cleared by removing the INT0.

IT0 TCON.0 Bit of control of the type of interrupt 0. Set / cleared by

software to specify the query INT0.

8-bit counter operation

First let us consider a simple 8-bit counter. Since this is a modulo-8 set

up we are concerned with 256 numbers in the range 0 to 255 (28=256). The

counter will count in a continuous sequence as follows [10]:

121

Fig. 5.12. The 8-bit counter operation

We will use Timer/Counter 1in our examples below.

Fig. 5.13. The 8-bit counter operation

Supposing we were to initialize this Timer/Counter with a number, say

252, then the counter would overflow after just four event pulses, i.e.:

Fig. 5.14. The 8-bit counter operation

An 8-bit counter can count 255 events before overflow, and overflows

on the 256 event. When initialized with a predefined value of say 252 it over-

flows after counting just four events. Thus the number of events to be count-

ed can be programmed by pre-loading the counter with a given number value.

8-bit timer operation

122

The 8051 internally divides the processor clock by 12. If a 12 MHz.

processor clock is used then a 1 MHz. instruction rate clock, or a pulse once

every microsecond, is realized internally within the chip. If this 1 microsec-

ond pulse is connected to a Timer/Counter input, in place of an event input,

then the Timer/Counter becomes a timer which can delay by up to 255 mi-

croseconds. There is a clear difference between a timer and a counter. The

counter will count events, up to 255 events before overflow, and the timer

will count time pulses, thus creating delays up to 255 microseconds in our

example [10].

To be precise we would refer to the counter as an event counter and we

would refer to the timer as an interval timer.

Fig. 5.15. The 8-bit timer operation

 If the timer is initialized to zero it will count 256 microseconds before

overflow. If the timer is initialized to a value of 252, for example, it will

count just 4 microseconds before overflow. Thus this timer is programmable

between 1 microsecond and 256 microseconds.

Fig. 5.16. The programmer’s view of Timer 1, Mode 2

The 16-bit timer operation

When the Timer/Counter is configured for mode 1 operation it operates

in 16 bit mode. Since this is a modulo-16 set up we are concerned with

123

65,536 numbers in the range 0 to 65535 (2
16

 = 65536). Consider a 16 bit

Timer/Counter as shown below, which will count in the sequence as follows:

Fig. 5.17. 16-bit Timer operation

Fig. 5.18. The programmer’s view of Timer 1, Mode 1, 16-bit

Now we have a 16-bit Timer/Counter and we can preload it with a six-

teen bit number so as to cause a delay from between 1 to 65535 microseconds

124

(65.535 milliseconds), or in counter mode it can count between 1 and 65535

events. To preload the Timer/Counter value simply write the most significant

byte into the TH1 register and the least significant byte into the TL1 register.

The 16-bit counter is not automatically reloaded following an overflow and

such reloading must be explicitly programmed. We will see this in some ex-

amples below [9, 10, 11].

125

CONCLUSION

 This textbook focuses on the working principles of microprocessors

using Intel 8080 as an example. This kind of processor is rather simple; how-

ever, it allows to describe the basic principles used in all modern processing

units. The differences between the microprocessors and microcontrollers are

demonstrated with a typical 8051 microcontroller architecture. 8051 micro-

controller peripherals, their operation modes and tuning capabilities are also

considered.

The author is grateful to Galina Vorobyova and Tatiana Evtushenko

for their help.

126

BIBLIOGRAPHY

1. Gashkov S.B. Systemy schisleniya I ih primemneniya. –М: Izdatelstvo

Moskovskogo tsentra nepreryvnogo matematicheskogo obrazovaniya,

2004. – 52 p.

2. Liventsov S.N., Vilnin A.D., Goryunov A.G. Osnovy microprocessor-

noi tehniki. –Tomsk: Izdatelstvo TPU, 2007. – 118 p.

3. Emmanuel C. Ifeachor, Barrie W. Jervis. Digital Signal processing. –

US: Addison-Wesley Publishers Ltd, 1993. – 760 p.

4. Novikov Yu.V., Ocnovy microprocessornoi tehniki. – M.: Internet-

universitet informatsionih tehnologiy, BINOM, 2009. – 357 p.

5. Naresh K. Sinha, Microprocessor-based control systems. Netherlands:

Kluwer academic publishers, 1986. – 77 p.

6. Sunil Mathur Microprocessor 8085 and its interfacing. – New delhi:

PHI Learning Private Limitted, 2011. – 868 p.

7. Intel 8080/8085 Assembly language programming. – USA: Intel Cor-

poration, 1975. – 224 p.

8. Kenneth J. Ayala. The 8051 Microcontroller. Architecture, program-

ming and applications. – USA: West publishing company, 1991. – 255

p.

9. Donal Heffernan, 8051 Tutorial. – USA: University of Limerick, 2002.

– 116 p.

10. Silicon Laboratories [Electronic resource] / Silicon laboratories Corpo-

ration –Electronic data. – September 2013 – Regime:

http://www.silabs.com/Support%20Documents/TechnicalDocs, free. –

 — English language.

11. Silicon Laboratories [Electronic resource] / Silicon laboratories Corpo-

ration –8051 Instruction set. – September 2013 – Regime:

https://www.silabs.com/Support%20Documents/Software/8051_Instru

ction_Set.pdf, free. – — English language.

https://www.silabs.com/Support%20Documents/Software/8051_Instruction_Set.pdf
https://www.silabs.com/Support%20Documents/Software/8051_Instruction_Set.pdf

127

CONTENTSS

Introduction

3

Part 1. Positional notations

4

1.5. Conversion from base-10 to others positional notations 6

1.6. Signed binary numbers 6

1.7. Fixed-point numbers 3

1.8. Floating point numbers 8

Part 2. Microprocessors and microprocessor systems 11

2.1. Basic concepts 11

2.2. Classification of microprocessors 13

2.3. The characteristics of microprocessors 15

2.4. The microprocessor architecture 17

2.5. Bus organized structure 19

2.6. The structure of microprocessor system 23

Part 3. Intel 8080 microprocessor 26

3.1. Arithmetic logic unit (ALU) 29

3.2. Microprocessor registers 29

3.3. Accumulator 30

3.4. Program counter (PC) 30

3.5. Address register 32

3.6. Instruction register (IR) 32

3.7. Flag register (F). Status register. 34

3.8. Buffer register of ALU 37

3.9. General purpose registers, register pairs 37

3.10. Stack pointer (SP) 38

3.11. Control circuit 41

3.12. Status word register 41

3.13. Timing and synchronization of the microprocessor system 43

3.14. Operation of microprocessor 45

3.15. Reactions of microprocessor on signal READY 51

3.16. Reactions of microprocessor on signal HOLD 52

128

3.17. Reactions of microprocessor on command HLT 54

3.18. Reactions of microprocessor on signal INT 55

Part 4. Assembly language of Intel 8080 58

4.1. Data and instructions formats 60

4.2. Memory addressing 61

4.3. Intel 8080 instructions: description and application 63

Part 5. 8051 microcontrollers 98

5.1. The 8051 Architecture 100

5.2. Interrupts of 8051 112

5.3. Timers and counters 116

Conclusion 125

Bibliography 126

129

Educational Edition

Национальный исследовательский

Томский политехнический университет

ТОРГАЕВ СТАНИСЛАВ НИКОЛАЕВИЧ

МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ И

КОНТРОЛЯ. ЧАСТЬ 1. МИКРОПРОЦЕССОР INTEL 8080

И МИКРОКОНТРОЛЛЕР 8051

Учебное пособие

Издательство Томского политехнического университета, 2013

На английском языке

Published in author’s version

Science Editor Doctor of …,

Professor Name

Typesetting Name

Cover design Name

Printed in the TPU Publishing House in full accordance

with the quality of the given make up page

Signed for the press 00.00.2012. Format 60х84/16. Paper “Snegurochka”.

Print XEROX. Arbitrary printer’s sheet 000. Publisher's signature 000.

Order XXX. Size of print run XXX.

Tomsk Polytechnic University

Quality management system

of Tomsk Polytechnic University was certified by

NATIONAL QUALITY ASSURANCE on BS EN ISO 9001:2008

. 30, Lenina Ave, Tomsk, 634050, Russia

 Tel/fax: +7 (3822) 56-35-35, www.tpu.ru

130

