УΊ	ВЕРЖ	ДАЮ
Ди	ректор	ИНК
		В.Н. Бориков
~	>>	2016 г.

БАЗОВАЯ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Основы микропроцессорной техники

Направление ООП	
<u> </u>	ика и наноэлектроника
Номер кластера (<i>для унифиц</i>	ированных дисциплин)
Профиль подготовки	
Промышленная электр	роника
Квалификация (степень)	бакалавр
Базовый учебный план прие	ма <u>2016</u> г.
Курс <u>4</u> семестр <u>7</u>	<u>_</u>
Количество кредитов <u>6</u>	
Код дисциплины ДИСЦ.В	B.M.1.5
,	
Виды учебной	Временной ресурс по очной форме обучения
цеятельности	
Лекции, ч	32
Практические занятия, ч	
Лабораторные занятия, ч	48
Аудиторные занятия, ч	80
Самостоятельная работа, ч	136
ИТОГО, ч	216
Вид промежуточной аттеста	щии дифф. зачет,
зачет	
Обеспечивающее подраздел	ение <u>кафедра промышленной и</u>
	Института неразрушающего контроля
•	* **
Заведующий кафедрой ПМЗ	<u>Φ.Α. Γγбарев</u>
1 1	(ФЙО)
Руководитель ООП	В.В. Гребенников
	(ФИО)
Преподаватель	<u>С.Н. Торгаев</u>
<u> </u>	(ФИО)

1. Цели освоения модуля (дисциплины)

Цели освоения дисциплины:

в области обучения — формирование специальных знаний, умений, навыков расчета и проектирования, а также компетенций в сфере современных высокоэффективных электронных систем;

в области воспитания – научить эффективно работать индивидуально и в команде, проявлять умения и навыки, необходимые для профессионального, личностного развития;

в области развития — подготовка студентов к дальнейшему освоению новых профессиональных знаний и умений, самообучению, непрерывному профессиональному самосовершенствованию.

2. Место дисциплины в структуре ООП

Дисциплина «Основы микропроцессорной техники» относится к профессиональному циклу. Для успешного освоения модуля требуются базовые знания по цифровой и аналоговой электронике.

Дисциплине «Основы микропроцессорной техники» предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ):

• Цифровые устройства

Содержание разделов дисциплины «Основы микропроцессорной техники» согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ):

нет

3. Результаты освоения дисциплины

В соответствии с требованиями ООП освоение дисциплины «ОМТ» направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС:

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Результаты		Составляющие результатов обучения					
обучения (компетенци и из ФГОС)	Код	Знания	Код	Умения	Код	Владение опытом	
P2 (OK-6, OK-7)					B2.2	использования типовых пакетов прикладных программ, применяемых при проектировании аппаратов, приборов и электронных систем различного назначения	

РЗ (ОПК-3, ОПК-6, ОПК- 9, ПК-5, ПК- 13)			У3.1	использовать инструментальные программные средства в процессе разработки и эксплуатации электронной техники;		
Р4 (ОПК-3, ОПК-6, ОПК- 9, ПК-5, ПК- 13)	34.3	базовые элементы аналоговых и цифровых устройств;			B4.1	использования принципов построения измерительных приборов и систем с микропроцессорным управлением;

В результате освоения дисциплины «Основы микропроцессорной техники» студентом должны быть достигнуты следующие результаты:

Планируемые результаты освоения дисциплины

Таблица 2

№ п/п	Результат
РД1	Решать профессиональные задачи в области микропроцессорной
	техники
РД2	Выполнять проекты по построению микропроцессорных систем
РД3	Презентовать и защищать результаты комплексной инженерной
	деятельности

4. Структура и содержание дисциплины

Введение

Назначение дисциплины и ее место в общепрофессиональной подготовке дипломированного специалиста в области электроники. Понятие о микропроцессорной техники.

Раздел 1. Архитектура микропроцессорной системы Основные определения. Архитектура и основные блоки микропроцессорных систем. Шинная структура связей. Архитектуры современных микропроцессоров и микроконтроллеров. Конвейерная обработка. Принцип

Раздел 2. Микропроцессор Intel 8080

Архитектура микропроцессора Intel 8080. Назначение основных внутренних блоков микропроцессора. Реакция микропроцессора на различные внешние запросы. Стек: организация и назначение. Прерывания микропроцессора Intel 8080. Принцип выполнения программного кода микропроцессором. Виды адресации памяти. Система команд микропроцессора Intel 8080.

Перечень лабораторных работ по разделу:

Лабораторная работа №1. Основы работы с лабораторным макетом микропроцессора.

Лабораторная работа №2. Команды загрузки регистров. Команды пересылки. Лабораторная работа №3. Методы адресации памяти. Команды работы с памятью.

Лабораторная работа №4. Арифметические команды.

Лабораторная работа №5. Логические команды.

Лабораторная работа №6. Команды сравнения.

Лабораторная работа №7. Команды сдвига.

Лабораторная работа №8. Команды безусловного и условных переходов. Ввод-вывод данных.

Раздел 3. Микроконтроллеры MCS-51

Архитектура микроконтроллеров MCS-51. Назначение основных внутренних блоков микроконтроллера. Организация памяти микроконтроллера. Порты ввода/вывода. Таймеры. Аналогово-цифровой преобразователь. Система команд микроконтроллера MSC-51.

Перечень лабораторных работ по разделу:

Лабораторная работа №9. Основы работы с программным пакетом Silicon Laboratories. Порты ввода/вывода микроконтроллера MSC-51. Прерывания микроконтроллера MSC-51.

Лабораторная работа №10. Таймеры микроконтроллера MSC-51. Аналоговоцифровой преобразователь MSC-51.

Раздел 4. AVR-микроконтроллеры

Архитектура AVR-микроконтроллеров. Порты ввода/вывода. Таймеры. Аналогово-цифровой преобразователь. Система команд AVR-микроконтроллера.

Перечень лабораторных работ по разделу:

Лабораторная работа №9. Основы работы с программным пакетом AVR Studio. Порты ввода/вывода микроконтроллера Atmega16. Прерывания микроконтроллера Atmega16.

Лабораторная работа №10. Таймеры микроконтроллера Atmega16. Аналогово-цифровой преобразователь Atmega16.

Раздел 5. Микроконтроллеры STM8S

Архитектура микроконтроллеров STM8S и STM8L. Порты ввода/вывода микроконтроллера STM8S. Порты ввода/вывода, таймеры, аналоговоцифровой преобразователь, блок ШИМ микроконтроллеров STM8S. Основы программирования микроконтроллеров на языке С.

Перечень лабораторных работ по разделу:

Лабораторная работа №11. Основы работы с программным пакетом IAR Embedded. Порты ввода/вывода микроконтроллера STM8S. Прерывания микроконтроллера STM8S.

Лабораторная работа №12. Таймеры и ШИМ микроконтроллера STM8S. Аналогово-цифровой преобразователь STM8S.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

- работа с лекционным материалом;
- обзор литературы и электронных источников информации по индивидуально заданной проблеме (рекомендуется в случае недостаточного усвоения материала, а также студентам, пропустившим аудиторные занятия по какой-либо теме);
- опережающая самостоятельная работа;
- перевод текстов с иностранных языков;
- изучение тем, вынесенных на самостоятельную проработку (используется для тем, не вошедших из-за недостатка времени в лекционный курс, но имеющих непосредственное отношение к данной дисциплине);
- подготовка к лабораторным работам;
- подготовка к контрольным работам, к зачету и экзамену.

Творческая самостоятельная работа включает:

- поиск, анализ, структурирование и презентация информации;
- исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- выполнение курсового проекта.

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется следующим образом:

- контроль со стороны преподавателя: в частности, предусмотрена процедура защиты лабораторных работ, курсового проекта;
- особенностью современного этапа совершенствования контроля является развитие у студентов навыков самоконтроля за степенью усвоения учебного материала, умение самостоятельно находить допущенные ошибки неточности, а также способы устранения выявленных недостатков

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам

следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты обучения по дисциплине
Тестирование, контрольные работы	РД1, РД2
Защита курсовых проектов, диф.зачет	РД2, РД3
Экзамен	РД1, РД2,
	РД3

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств):

Вопросы входного контроля

- 1. Позиционные системы счисления.
- 2. Перевести числа в десятичную систему счисления (с пояснениями):

0001 0111*b*

8CAh

3. Перевести числа в двоичную и шестнадцатеричную системы счисления (с пояснениями):

56510

4. Записать отрицательное число в дополнительном коде:

 -50_{10}

- 5. Основные виды и назначения цифровых регистров.
- 6. Определение и назначение арифметико-логического устройства (АЛУ).

Вопросы для самоконтроля

- 1. В чем заключается основная функция АЛУ:
 - а) выполнять операции сложения;
 - б) служить источником сигналов для аккумулятора;
 - в) изменять данные посредством арифметических или логических операций;
 - г) выполнять все перечисленные функции.

- 2. Для большинства логических и арифметических операций, которые выполняются микропроцессором, необходимы два «участка» операции – два операнда. Один из них расположен в регистре или памяти. Укажите место, где находится другой операнд:
 - а) в регистре команд;
 - б) в аккумуляторе;
 - в) в регистре адреса памяти;
 - г) в счетчике команд.
- Диапазон адресов 16-разрядного микропроцессора равен 2^{16} =65 536. 3. Чему должно равняться число разрядов счетчика команд этого микропроцессора:
 - a) 4;
 - б) 4;
 - в) 16;
 - г)32.
- 4. Регистром какого типа является счетчик команд:
 - а) специального назначения:
 - б) особого назначения;
 - в) памяти;
 - г) всех перечисленных типов.
- 5. На какую команду программы указывает счетчик команд после извлечения из памяти очередной команды:
 - а) последнюю выполненную;
 - б) следующую команду, подлежащую выполнению;
 - в) текущую выполняемую;
- 6. Произведите сложение приводимых ниже 8-разрядные двоичных чисел, указав состояние единичных разрядов регистра состояния: флаг переноса (С), флаг нулевого результата (Z) и флаг отрицательного результата (S).
 - a) 00001111+11110000;
 - б) 01010100+11001100;
 - в) 00111011+11000101;
 - г) 00000001+01111111;
 - д) 111111111+11111111;
 - e) 00001111+00010000; ж) 00000001+11111110;

 - 3) 11000000+10000001;
- 7. Дайте описание программы установки разряда нулевого результата в единичное состояние после троекратного увеличения на 1 содержимого любого 8-разрядного регистра. Укажите чему равно начальное значение данного регистра.
- 8. Необходимо прибавить к младшему байту счетчика команд слово памяти. Полученный адрес со смещением необходимо поместить в адреса памяти. Опишите последовательность действий микропроцессора для выполнения данных операций.

- 9. Какую роль могут играть регистры В, С и D:
 - а) счетчика команд;
 - б) регистров общего назначения;
 - в) регистра адреса памяти;
 - г) регистрированной пары DC.
- 10. Шина микропроцессора служит для двусторонней связи. Это означает:
 - а) все данные перемещаются в двух противоположных направлениях;
 - б) данные могут перемещаться в направлении, необходимом для завершения передачи;
 - в) каждый функциональный узел микропроцессора имеет два входных порта;
 - г) каждый узел должен иметь входной и выходной порты.
- 11. На что микропроцессору указывает код операции:
 - а) где выполнять операцию;
 - б) что делать;
 - в) что делать и где выполнять.
- 12. Микропроцессор сопоставляет каждой команде единственную комбинацию двоичных цифр. Верно ли утверждение, что каждая команда имеет лишь одно мнемоническое обозначение? Ответ необходимо обосновать.
- 13. Время выполнения какой из ниже перечисленных способов адресации памяти является наименьшим:
 - а) прямой;
 - б) неявной;
 - в) косвенно-регистровой;
 - г) непосредственной.
- 14. Второй байт команды с непосредственной адресацией представляет собой:
 - а) адрес области памяти, принадлежащей диапазону от 0_{10} до 255_{10} ;
 - б) все перечисленные;
 - в) 8-битовые данные;
 - г) байт, легко доступный многим командам.
- 15. 16-разрядный микропроцессор использует 22-битовое адресное поле, которое обеспечивает доступ к 4 194 304 ячейкам памяти. К любой области памяти позволяет обращаться команда прямой адресации, первое слово которой занято кодом операции. Сколько байтов –будет использоваться в случае формирования самой длинной подобной команды? Ответ необходимо обосновать.
- 16. Косвенную адресацию называют регистровой потому, что регистр, на который указывает команда:
 - а) содержит адрес данных;
 - б) содержит обрабатываемые данные;
 - в) используется для областей памяти с адресами от 0_{10} до 255_{10} ;
 - г) проверяет косвенным образом эти данные.

- 17. Перечислите все виды адресации памяти в порядке возрастания скорости выполнения.
- 18. Если микропроцессор имеет 16-разрядную шину адреса, то он может адресоваться:
 - а) к 65 536 8-битовым словам памяти;
 - б) к 65 536 словам памяти;
 - в) к 32 768 1-байтовым словам памяти;
 - г) к 16 8-битовым словам памяти.
- 19. Информация какого рода передается по линиям шины микроконтроллера:
 - а) сигналы управления и питание;
 - б) данные;
 - в) адрес памяти;
 - г) все перечисленные виды информации.
- 20. У микропроцессора имеются 4 порта ввода-вывода, содержащих восемь линий данных. Эти порты называются:
 - а) порты последовательного вывода;
 - б) порты параллельного ввода-вывода;
 - в) порты вывода адресов;
 - г) порты последовательного вывода.

Темы презентаций (индивидуальные задания):

В рамках курсового проектирования.

Вопросы тестирований

Контрольная работа №1 (примеры)

Поясните логику работы микропроцессора при выполнении программы, если программа начинается с нулевого адреса:

0000h: JMP 0900h 0900h: MOV B,C ADI 0C0h

Приведите содержимое памяти программ.

JMP 0800h (переход по адресу) 3 байта

MOV В,С (пересылка из регистра С в регистр В) 1 байт ADI 0C0h (сложение аккумулятора с числом) 2 байта

Контрольная работа №2 (примеры)

1. Какой способ адресации в следующих командах:

 MOV
 B,C

 JMP
 0900h

 STC
 (восстановить индикатор переноса)

 ADD
 B

 LDAX
 В (копировать в аккумулятор данные из памяти)

2. Приведите содержимое аккумулятора и флагов (*S*,*Z*,*AC*,*P*,*C*) при выполнении кода следующей программы:

MVI A,EFh

ADI 01h

Сколько байт занимает данная программа?

3. Дайте определение стека и указателя стека. Поясните понятия преинкрементного и предекрементного стека. Поясните когда МП использует стек.

Вопросы, выносимые на экзамен

- 1. Состав микропроцессорной системы. Назначение основных блоков. Шинная структура связей.
- 2. Архитектура современных микропроцессоров и микролконтроллеров.
- 3. Принцип программного управления фон-Неймана.
- 4. Классификация микропроцессоров. Понятие мощности микропроцессора.
- 5. Поясните понятие прерывания. Назначение. Пример использования. Вектор прерывания.
- 6. Числа с плавающей точкой.
- 7. Принцип выполнения программного кода микропроцессором. Ответ пояснить на примере.
- 8. Архитектура микропроцессора Intel 8080.
- 9. Счетчик команд, регистр адреса и регистр команд. Особенности, назначение.
- 10. Стек. Виды, особенность, назначение. Указатель стека.
- 11. Виды адресации.
- 12. Поясните понятие прерывания. Назначение. Пример использования. Вектор прерывания.
- 13. Реакция микропроцессора на команду останова НLТ.
- 14. Реакция микропроцессора на сигнал INT.
- 15. Реакция микропроцессора на сигнал HOLD.
- 16. Реакция микропроцессора на сигнал READY.
- 17. Архитектура микроконтроллеров MCS-51.
- 18. Порты ввода/вывода микроконтроллеров MCS-51.
- 19. Периферийные устройства микроконтроллеров MCS-51.
- 20. Архитектура AVR-микроконтроллеров.
- 21. Порты ввода/вывода AVR-микроконтроллеров.
- 22. Периферийные устройства AVR-микроконтроллеров.
- 23. Архитектура микроконтроллеров STM8S и STM8L.
- 24. Периферийные устройства микроконтроллеров STM8S.
- 25. Основы программирования микроконтроллеров на языке С.
- 26. На светодиодах портао рганизовать эффект бегущей 1.
- 27. На светодиодах портао рганизовать эффект бегущей 0.
- 28. Организовать на ножках порта светофор (СТОЙТЕ 7-5 разряды, ЖДИТЕ 4-3 разряды, ИДИТЕ 2-0 разряды).
- 29. Составить алгоритм работы микроконтроллера реализующий эффект

бегущего 0 с использованием таймера. Работу таймера организовать по прерываниям.

- 30. На светодиодах порта организовать эффект маятника.
- 31. Составить алгоритм работы микроконтроллера реализующий эффект маятника с использованием таймера. Работу таймера организовать по прерываниям.
- 32. На светодиодах порта организовать вывод чисел с 1 до 100 с временной задержкой.
- 33. Составить алгоритм работы микроконтроллера для формирования на выходе импульсов с регулируемой посредствам АЦП длительностью. Организовать работу по прерываниям.

Примеры билетов

Билет №1

- 1. Классификация микропроцессоров. Понятие мощности микропроцессора..
- 2. Реакция микропроцессора на сигнал READY.
- 3. Поясните логику работы микропроцессора при выполнении программы (i8080)

0000h: JMP 0100h 0100h: MOV B,A ADI 245

4. На светодиодах порта организовать эффект бегущей 0.

Билет №7

- 1. Архитектура микропроцессора і8080.
- 2. Стек. Виды, особенность, назначение. Указатель стека.
- 3. Поясните логику работы микропроцессора при выполнении программы (i8080)

0000h: JMP 0000h 0100h: MVI A,01h

245

ADI

4. На светодиодах порта организовать вывод чисел с 1 до 100 с временной задержкой.

Вопросы к государственному (междисциплинарному) экзамену (примеры)

- 1. Архитектуры микропроцессоров: Фон-Неймана, гарвардская.
- 2. Общая характеристика подсистем ввода-вывода. Режимы ввода-вывода информации в МПС.
- 3. Поясните понятия и назначения стека и указателя стека. На примере команд PUSH H и POP H (для микропроцессора Intel 8080) поясните принцип работы стека.

4. Классификация микропроцессоров. Пояснить, что понимается под мощностью микропроцессора.

8. Рейтинг качества освоения дисциплины

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Положением о проведении текущего оценивания и промежуточной аттестации в ТПУ», утвержденным приказом ректора в действующей редакции.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

В соответствии с «Календарным планом выполнения курсового проекта»:

- текущая аттестация (оценка качества выполнения разделов и др.) производится в течение семестра (оценивается в баллах (максимально 40 баллов), к моменту завершения семестра студент должен набрать не менее 22 баллов);
- промежуточная аттестация (защита проекта) производится в конце семестра (оценивается в баллах (максимально 60 баллов), по результатам защиты студент должен набрать не менее 33 баллов).

Итоговый рейтинг выполнения курсового проекта определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины ОСНОВНАЯ

- 1. Микроконтроллеры AVR. Практикум для начинающих : учебное пособие / В. Я. Хартов. 2-е изд., испр. и доп.. Москва: Изд-во МГТУ, 2012. 280 с.: ил.. Библиогр.: с. 277.
- 2. Интерфейс I2C в семействах микроконтроллеров PIC, AVR и MCS-51: учебное пособие / Г. С. Воробьева, А. И. Селезнев; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2012. 186 с.: ил.. Библиогр.: с. 186.

3. Основы микропроцессорной техники: учебное пособие: в 2 кн. / О. П. Новожилов. — 2-е изд.. — М.: РадиоСофт, 2011 Кн. 1. — 2011. — 432 с.: ил.. — Библиогр.: с. 430-431. — Аббревиатура: с. 427. — Предметный указатель: с. 428-429.

ДОПОЛНИТЕЛЬНАЯ

- 1. Самоучитель разработчика устройств на микроконтроллерах AVR / A. B. Белов. СПб.: Наука и техника, 2008. 530 с.: ил. + CD-ROM. Радиолюбитель. Библиогр.: с. 530. Интернет-ресурсы: с. 530.
- 2. Основы микропроцессорной техники: учебное пособие / Ю. В. Новиков, П. К. Скоробогатов. 4-е изд., испр.. Москва: Интернет-Университет информационных технологий БИНОМ. Лаборатория знаний, 2009. 358 с.: ил.. Основы информационных технологий. Библиогр.: с. 356-357.
- 3. AVR-RISC микроконтроллеры. Архитектура, аппаратные ресурсы, система команд, программирование, применение / В. Трамперт. Киев: МК-Пресс, 2006. 459 с.: ил. + CD-ROM. Практика инженерной электроники. —Интернет-ссылки: с. 450.
- 4. Основы микропроцессорной техники : учебное пособие / В. Г. Гришанов; Чувашский государственный университет (ЧГУ). Чебоксары: ЧГУ, 1990. —66,[2] с.: ил.: 20 см. Библиогр.: с. 67. (5 назв.).
- 5. Основы применения микропроцессорной техники в автоматическом управлении теплоэнергетическими установками : учебное пособие для вузов / В. И. Крутов, А. Г. Кузнецов, В. П. Заболоцкий. Москва: Изд-во МВТУ, 1989. 54 с.: ил.. Библиогр.: с. 49-51.;
- 6. Основы микропроцессорной техники: учебное пособие / С. Н. Ливенцов, А. Д. Вильнин, А. Г. Горюнов. Томск: Изд-во ТПУ, 2007. 118 с.: ил.. —Учебники Томского политехнического университета. Библиографический список: с. 117.
- 7. Микроконтроллеры AVR семейства Classic фирмы ATMEL / A. B. Евстифеев. 2-е издание, стер.. Москва: Додэка-XXI, 2004. 288 с.: ил.. Мировая электроника. Предметный указатель: с. 282-285.
- 8. Организация обмена информацией между IBM PC с микроконтроллерами семейства PIC, AVR, MCS-51 в стандарте RS-232C : справочное пособие / Томский политехнический университет; авт.-сост. Г. С. Воробьева, В. В. Яковлев. Томск: Изд-во ТПУ, 2005. 88 с.: ил.

ЭЛЕКТРОННЫЕ РЕСУРСЫ

- 1. www.atmel.com
- 2. www.silabs.com
- 3. www.silabs.com/Support%20Documents/TechnicalDocs/C8051F060-Short.pdf
- 4. http://www.gaw.ru русскоязычный сайт по микропроцессорам
- 5. www.st.com

- 6. http://netstorage.iar.com/SuppDB/Public/SUPPORT/003591/Project_template s_EW.pdf
- 7. http://www.st.com/web/en/resource/technical/document/reference_manual/C D00190271.pdf
- 8. http://www.lib.tpu.ru/fulltext2/m/2013/m135.pdf

Используемое программное обеспечение:

- 1. Программа AVR Studio и Code Vision AVR.
- 2. Программа Silicon Laboratories/
- 3. Программа IAR Embedded.
- 4. Программа СооСох.

10. Материально-техническое обеспечение дисциплины

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество установок
1	Лаборатория микропроцессорной техники	Корпус 16в,
		ауд. 249,
		12 раб.мест
2	Персональные компьютеры	12 шт.
3	Отладочные макеты STK500	10 шт.
4	Отладочные макеты микроконтроллеров	10 шт.
	C8051F060	
5	Отладочные макеты STM8SDISCOVERY	12 шт.
6	Осциллографы GDS-820C	9 шт.

Программа составлена на основе СУОС ТПУ в соответствии с требованиями ФГОС по направлению подготовки 11.03.04 «Электроника и наноэлектроника»

Программа одобрена на заседании кафедры промышленной и медицинской электроники Института неразрушающего контроля

(протокол № 03.16 от « 05» февраля 2016 г.).

Автор: Торгаев Станислав Николаевич

Рецензент Пестунов Д.А.

УΤ	ВЕРЖД	ЦАЮ —
Дир	ректор	ИНК
		В.Н. Бориков
"	<i>))</i>	2014 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ <u>НА УЧЕБНЫЙ ГОД</u> Основы микропроцессорной техники

Направление (специальност	ь) ООП				
11.03.04 Электроні	іка и наноэлектроника				
Номер кластера (<i>для унифиц</i>					
Профиль(и) подготовки (спе	, 1 ,				
Промышленная электр					
Квалификация (степень)	-				
Базовый учебный план прие	ма <u>2014</u> г.				
Курс <u>4</u> семестр <u>7</u>	<u> </u>				
Количество кредитов <u>6</u>	_				
Код дисциплины <u>ДИСЦВ</u>	<u>2.1.4.1 </u>				
Виды учебной	Временной ресурс по очной форме обучения				
деятельности					
Лекции, ч	48				
Практические занятия, ч					
Лабораторные занятия, ч	48				
Аудиторные занятия, ч	96				
Самостоятельная работа, ч	120				
ИТОГО, ч	216				
Вид промежуточной аттеста	ции дифф. зачет,				
экзамен					
Обеспечивающее подраздел	ение_ кафедра промышленной и				
медицинской электроники	Института неразрушающего контроля				
*	• • • • • • • • • • • • • • • • • • • •				
Заведующий кафедрой ПМЗ	<u>Г.С. Евтушенко</u> (ФИО)				
Руководитель ООП	<u>В.В. Гребенников</u> (ФИО)				
Треподаватель <u>С.Н. Торгаев</u>					

1. Цели освоения модуля (дисциплины)

Цели освоения дисциплины:

в области обучения – формирование специальных знаний, умений, навыков расчета и проектирования, а также компетенций в сфере современных высокоэффективных электронных систем;

в области воспитания – научить эффективно работать индивидуально и в команде, проявлять умения и навыки, необходимые для профессионального, личностного развития;

в области развития — подготовка студентов к дальнейшему освоению новых профессиональных знаний и умений, самообучению, непрерывному профессиональному самосовершенствованию.

2. Место дисциплины в структуре ООП

Дисциплина «Основы микропроцессорной техники» относится к профессиональному циклу. Для успешного освоения модуля требуются базовые знания по цифровой и аналоговой электронике.

Дисциплине «Основы микропроцессорной техники» предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ):

• Цифровые устройства

Содержание разделов дисциплины «Основы микропроцессорной техники» согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ):

• нет

3. Результаты освоения дисциплины (модуля)

соответствии с требованиями ООП освоение дисциплины «ОМТ» направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС:

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Результаты		Соста	авляюш	ие результатов об	учения	
обучения (компетенци и из ФГОС)	Код	Знания	Код	Умения	Код	Владение опытом
Р2 (ОК-12, ПК- 3, ПК-6, ПК- 9, ПК-10)					B2.2	использования типовых пакетов прикладных программ, применяемых при проектировании аппаратов, приборов и электронных систем различного назначения

Р3 (ОК-12, ПК- 3, ПК-6, ПК- 9, ПК-10, ПК- 12)			У3.1	использовать инструментальные программные средства в процессе разработки и эксплуатации электронной техники;		
Р4 (ОК-12, ПК- 3, ПК-10, ПК- 12)	34.3	базовые элементы аналоговых и цифровых устройств;			B4.1	использования принципов построения измерительных приборов и систем с микропроцессорным управлением;

В результате освоения дисциплины «Основы микропроцессорной техники» студентом должны быть достигнуты следующие результаты:

Таблица 2 Планируемые результаты освоения лисшиплины (молуля)

	планирустые результаты бевбения дисциплины (модуля)
№ п/п	Результат
РД1	Решать профессиональные задачи в области микропроцессорной
	техники
РД2	Выполнять проекты по построению микропроцессорных систем
РД3	Презентовать и защищать результаты комплексной инженерной
	деятельности

4. Структура и содержание дисциплины

Введение

Назначение дисциплины и ее место в общепрофессиональной подготовке дипломированного специалиста в области электроники. Понятие о микропроцессорной техники.

Раздел 1. Архитектура микропроцессорной системы Основные определения. Архитектура и основные блоки микропроцессорных систем. Шинная структура связей. Архитектуры современных микропроцессоров и микроконтроллеров. Конвейерная обработка. Принцип программного управления.

Виды учебной деятельности:

Лекции:

- 1.1 Основные определения. Архитектура и основные блоки микропроцессорных систем. Шинная структура связей.
- 1.2 Архитектуры современных микропроцессоров и микроконтроллеров. Конвейерная обработка.
- 1.3 Основные характеристики микропроцессоров. Принцип программного управления.

Раздел 2. Микропроцессор Intel 8080

Архитектура микропроцессора Intel 8080. Назначение основных внутренних блоков микропроцессора. Реакция микропроцессора на различные внешние запросы. Стек: организация и назначение. Прерывания микропроцессора Intel 8080. Принцип выполнения программного кода микропроцессором. Виды адресации памяти. Система команд микропроцессора Intel 8080.

Виды учебной деятельности:

Лекции:

- 2.1 Архитектура микропроцессора Intel 8080. Назначение основных внутренних блоков микропроцессора.
- 2.2 Принцип выполнения программного кода микропроцессором. Виды адресации памяти.
- 2.3 Стек: организация и назначение. Прерывания микропроцессора Intel 8080.
- 2.4 Реакция микропроцессора на сигналы READY и HOLD.
- 2.5 Реакция микропроцессора на сигнал INT и команду останова HLT.
- 2.6 Система команд микропроцессора Intel 8080.

Лабораторные работы:

Лабораторная работа №1. Основы работы с лабораторным макетом микропроцессора.

Лабораторная работа №2. Команды загрузки регистров. Команды пересылки. Лабораторная работа №3. Методы адресации памяти. Команды работы с памятью.

Лабораторная работа №4. Арифметические команды.

Лабораторная работа №5. Логические команды.

Лабораторная работа №6. Команды сравнения.

Лабораторная работа №7. Команды сдвига.

Лабораторная работа №8. Команды безусловного и условных переходов. Ввод-вывод данных.

Раздел 3. Микроконтроллеры MCS-51

Архитектура микроконтроллеров MCS-51. Назначение основных внутренних блоков микроконтроллера. Организация памяти микроконтроллера. Порты ввода/вывода. Таймеры. Аналогово-цифровой преобразователь. Система команд микроконтроллера MSC-51.

Виды учебной деятельности:

Лекции:

- 3.1 Архитектура микроконтроллеров MCS-51. Назначение основных внутренних блоков микроконтроллера.
- 3.2 Организация памяти микроконтроллера. Порты ввода/вывода микроконтроллеров MCS-51.
- 3.3 Таймеры микроконтроллеров MCS-51.
- 3.4 Аналогово-цифровой преобразователь микроконтроллеров MCS-51.
- 3.5 Система команд микроконтроллера MSC-51.

Лабораторные работы:

Лабораторная работа №9. Основы работы с программным пакетом Silicon Laboratories. Порты ввода/вывода микроконтроллера MSC-51. Прерывания микроконтроллера MSC-51.

Лабораторная работа №10. Таймеры микроконтроллера MSC-51. Аналоговоцифровой преобразователь MSC-51.

Раздел 4. AVR-микроконтроллеры

Архитектура AVR-микроконтроллеров. Порты ввода/вывода. Таймеры. Аналогово-цифровой преобразователь. Система команд AVR-микроконтроллера.

Виды учебной деятельности:

Лекции:

- 4.1 Архитектура AVR-микроконтроллеров.
- 4.2 Порты ввода/вывода и таймеры AVR-микроконтроллеров
- 4.3 Аналогово-цифровой преобразователь AVR-микроконтроллеров.
- 4.4 Система команд микроконтроллера Atmega16.

Лабораторные работы:

Лабораторная работа №11. Основы работы с программным пакетом AVR Studio. Порты ввода/вывода микроконтроллера Atmega16. Прерывания микроконтроллера Atmega16.

Лабораторная работа №12. Таймеры микроконтроллера Atmega16.

Лабораторная работа №13. Аналогово-цифровой преобразователь Atmega16.

Раздел 5. Микроконтроллеры STM8S

Архитектура микроконтроллеров STM8S и STM8L. Порты ввода/вывода микроконтроллера STM8S. Таймеры, аналогово-цифровой преобразователь, блок ШИМ микроконтроллеров STM8S. Основы программирования микроконтроллеров на языке С.

Виды учебной деятельности:

Лекции:

- 5.1 Архитектура микроконтроллеров STM8S и STM8L.
- 5.2 Порты ввода/вывода микроконтроллера STM8S.

- 5.3 Таймеры микроконтроллера STM8S.
- 5.4 Блок ШИМ микроконтроллера STM8S.
- 5.5 Аналогово-цифровой преобразователь микроконтроллера STM8S.
- 5.6 Основы программирования микроконтроллеров на языке С.

Лабораторные работы:

Лабораторная работа №14. Основы работы с программным пакетом IAR Embedded. Порты ввода/вывода микроконтроллера STM8S.

Лабораторная работа №15. Прерывания микроконтроллера STM8S.

Лабораторная работа №16. Таймеры и ШИМ микроконтроллера STM8S.

Лабораторная работа №17. Аналогово-цифровой преобразователь STM8S.

5. Образовательные технологии

При изучении модуля «Основы микропроцессорной техники» (следующие образовательные технологии:

Методы и формы организации обучения

Таблица 3

методы и формы организации обучения								
ФОО Методы	Лекц.	Лаб. раб.	Пр. зан./ сем.,	Тр.*, Мк**	СРС	К. пр.***		
ІТ-методы					✓			
Работа в команде		✓			✓			
Case-study								
Игра		✓			✓			
Методы проблемного								
обучения								
Обучение								
на основе опыта								
Опережающая					1			
самостоятельная работа					•			
Проектный метод		✓						
Поисковый метод					✓			
Исследовательский								
метод								
Другие методы (лексикографические,					✓			
переводческие и т.д.)								

^{* –} Тренинг, ** – мастер-класс, *** – командный проект

6. Организация и учебно-методическое обеспечение

самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

- работа с лекционным материалом;
- обзор литературы и электронных источников информации по индивидуально заданной проблеме (рекомендуется в случае недостаточного усвоения материала, а также студентам, пропустившим аудиторные занятия по какой-либо теме);
- опережающая самостоятельная работа;
- перевод текстов с иностранных языков;
- изучение тем, вынесенных на самостоятельную проработку (используется для тем, не вошедших из-за недостатка времени в лекционный курс, но имеющих непосредственное отношение к данной дисциплине);
- подготовка к лабораторным работам;
- подготовка к контрольным работам, к зачету.

Творческая самостоятельная работа включает:

- поиск, анализ, структурирование и презентация информации;
- исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- анализ научных публикаций по заранее определенной преподавателем теме.

6.2. Содержание самостоятельной работы по дисциплине

Темы курсовых проектов/работ:

Разработаны 35 тем для курсового проектирования (примеры приведены ниже).

- 1. Цифровой вольтметр
- 2. Регулируемый генератор напряжения
- 3. Цифровой амперметр
- 4. Регулируемый генератор тока
- 5. Цифровой измеритель частоты сигнала/следования импульсов
- 6. Измеритель длительности импульса/фронта импульса
- 7. Измеритель времени между приходом первого и второго импульсов
- 8. Цифровой измеритель разности фаз сигнала
- 9. *Измеритель АЧХ
- 10. Генератор сигнала регулируемой частоты
- 11. Формирователь импульсов регулируемой длительности/частоты следования/скважн.

- 12. Прибор для учета количества покупателей
- 13. Измеритель содержания СО2
- 14. Противопожарная сигнализация (дым/температура)
- 15. Дозиметр
- **16.** *Гироскоп
- 17. Гигрометр (измеритель уровня влажности)
- 18. Измеритель скорости ветра
- 19. Измеритель расхода газа
- 20. Измеритель расстояния
- 21. Спидометр
- 22. Измеритель скорости движения предметов по конвейерной ленте
- 23. Счетчик оборотов вала
- 24. *Стабилизатор частоты вращения вала двигателя
- 25. Система контроля угла поворота вала
- 26. Устройство управления шаговым двигателем с регулируемым углом поворота и скоростью (ускорением)
- 27. Термометр
- 28. Термостат
- 29. Весы
- 30. Манометр
- 31. Измеритель уровня жидкости
- 32. Регулятор уровня жидкости
- 33. Система управления освещением (в темное время суток срабатывает на движение)
- 34. Часы с будильником
- 35. Таймер для СВЧ-печи

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется следующим образом:

- контроль со стороны преподавателя: в частности, предусмотрена процедура защиты лабораторных работ, курсового проекта;
- особенностью современного этапа совершенствования контроля является развитие у студентов навыков самоконтроля за степенью усвоения учебного материала, умение самостоятельно находить допущенные ошибки неточности, а также способы устранения выявленных недостатков

При выполнении самостоятельной работы рекомендуется использовать Интернет-ресурсы.

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам

следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты обучения по дисциплине
Тестирование, контрольные работы	РД1, РД2
Защита курсовых проектов, диф.зачет	РД2, РД3
Экзамен	РД1, РД2,
	РДЗ

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств):

Вопросы входного контроля

- 1. Позиционные системы счисления.
- 2. Перевести числа в десятичную систему счисления (с пояснениями):

0001 0111b

8CAh

3. Перевести числа в двоичную и шестнадцатеричную системы счисления (с пояснениями):

565₁₀

4. Записать отрицательное число в дополнительном коде:

 -50_{10}

- 5. Основные виды и назначения цифровых регистров.
- 6. Определение и назначение арифметико-логического устройства (АЛУ).

Вопросы для самоконтроля

- 1. В чем заключается основная функция АЛУ:
 - а) выполнять операции сложения;
 - б) служить источником сигналов для аккумулятора;
 - в) изменять данные посредством арифметических или логических операций;
 - г) выполнять все перечисленные функции.
- 2. Для большинства логических и арифметических операций, которые выполняются микропроцессором, необходимы два «участка» операции два операнда. Один из них расположен в регистре или памяти. Укажите место, где находится другой операнд:
 - а) в регистре команд;
 - б) в аккумуляторе;
 - в) в регистре адреса памяти;
 - г) в счетчике команд.
- 3. Диапазон адресов 16-разрядного микропроцессора равен 2^{16} =65 536. Чему должно равняться число разрядов счетчика команд этого микропроцессора:
 - a) 4;

- б) 4;
- в) 16;
- г)32.
- 4. Регистром какого типа является счетчик команд:
 - а) специального назначения:
 - б) особого назначения;
 - в) памяти;
 - г) всех перечисленных типов.
- 5. На какую команду программы указывает счетчик команд после извлечения из памяти очередной команды:
 - а) последнюю выполненную;
 - б) следующую команду, подлежащую выполнению;
 - в) текущую выполняемую;
- 6. Произведите сложение приводимых ниже 8-разрядные двоичных чисел, указав состояние единичных разрядов регистра состояния: флаг переноса (С), флаг нулевого результата (Z) и флаг отрицательного результата (S).
 - a) 00001111+11110000;
 - б) 01010100+11001100;
 - в) 00111011+11000101;
 - г) 00000001+01111111;
 - д) 111111111+11111111;
 - e) 00001111+00010000;
 - ж) 00000001+11111110;
 - 3) 11000000+10000001;
- 7. Дайте описание программы установки разряда нулевого результата в единичное состояние после троекратного увеличения на 1 содержимого любого 8-разрядного регистра. Укажите чему равно начальное значение данного регистра.
- 8. Необходимо прибавить к младшему байту счетчика команд слово памяти. Полученный адрес со смещением необходимо поместить в регистр адреса памяти. Опишите последовательность действий микропроцессора для выполнения данных операций.
- 9. Какую роль могут играть регистры В, С и D:
 - а) счетчика команд;
 - б) регистров общего назначения;
 - в) регистра адреса памяти;
 - г) регистрированной пары DC.
- 10. Шина микропроцессора служит для двусторонней связи. Это означает:
 - а) все данные перемещаются в двух противоположных направлениях;
 - б) данные могут перемещаться в направлении, необходимом для завершения передачи;
 - в) каждый функциональный узел микропроцессора имеет два входных порта;
 - г) каждый узел должен иметь входной и выходной порты.

- 11. На что микропроцессору указывает код операции:
 - а) где выполнять операцию;
 - б) что делать;
 - в) что делать и где выполнять.
- 12. Микропроцессор сопоставляет каждой команде единственную комбинацию двоичных цифр. Верно ли утверждение, что каждая команда имеет лишь одно мнемоническое обозначение? Ответ необходимо обосновать.
- 13. Время выполнения какой из ниже перечисленных способов адресации памяти является наименьшим:
 - а) прямой;
 - б) неявной;
 - в) косвенно-регистровой;
 - г) непосредственной.
- 14. Второй байт команды с непосредственной адресацией представляет собой:
 - а) адрес области памяти, принадлежащей диапазону от 0_{10} до 255_{10} ;
 - б) все перечисленные;
 - в) 8-битовые данные;
 - г) байт, легко доступный многим командам.
- 15. 16-разрядный микропроцессор использует 22-битовое адресное поле, которое обеспечивает доступ к 4 194 304 ячейкам памяти. К любой области памяти позволяет обращаться команда прямой адресации, первое слово которой занято кодом операции. Сколько байтов –будет использоваться в случае формирования самой длинной подобной команды? Ответ необходимо обосновать.
- 16. Косвенную адресацию называют регистровой потому, что регистр, на который указывает команда:
 - а) содержит адрес данных;
 - б) содержит обрабатываемые данные;
 - в) используется для областей памяти с адресами от 0_{10} до 255_{10} ;
 - г) проверяет косвенным образом эти данные.
- 17. Перечислите все виды адресации памяти в порядке возрастания скорости выполнения.
- 18. Если микропроцессор имеет 16-разрядную шину адреса, то он может адресоваться:
 - а) к 65 536 8-битовым словам памяти;
 - б) к 65 536 словам памяти;
 - в) к 32 768 1-байтовым словам памяти;
 - г) к 16 8-битовым словам памяти.
- 19. Информация какого рода передается по линиям шины микроконтроллера:
 - а) сигналы управления и питание;
 - б) данные;
 - в) адрес памяти;

- г) все перечисленные виды информации.
- 20. У микропроцессора имеются 4 порта ввода-вывода, содержащих восемь линий данных. Эти порты называются:
 - а) порты последовательного вывода;
 - б) порты параллельного ввода-вывода;
 - в) порты вывода адресов;
 - г) порты последовательного вывода.

Темы презентаций (индивидуальные задания):

В рамках курсового проектирования.

Вопросы тестирований

Контрольная работа №1 (примеры)

1. Поясните логику работы микропроцессора при выполнении программы, если программа начинается с нулевого адреса:

0000h: JMP 0900h 0900h: MOV B,C ADI 0C0h

Приведите содержимое памяти программ.

JMP 0800h (переход по адресу) 3 байта

MOV В,С (пересылка из регистра С в регистр В) 1 байт ADI 0C0h (сложение аккумулятора с числом) 2 байта

Контрольная работа №2 (примеры)

1. Какой способ адресации в следующих командах:

MOV B,C JMP 0900h

STC (восстановить индикатор переноса)

ADD B

LDAX В (копировать в аккумулятор данные из памяти)

2. Приведите содержимое аккумулятора и флагов (*S*,*Z*,*AC*,*P*,*C*) при выполнении кода следующей программы:

MVI A,EFh

ADI 01h

Сколько байт занимает данная программа?

3. Дайте определение стека и указателя стека. Поясните понятия преинкрементного и предекрементного стека. Поясните когда МП использует стек.

Вопросы, выносимые на экзамен

- 1. Состав микропроцессорной системы. Назначение основных блоков. Шинная структура связей.
- 2. Архитектура современных микропроцессоров и микролконтроллеров.

- 3. Принцип программного управления фон-Неймана.
- 4. Классификация микропроцессоров. Понятие мощности микропроцессора.
- 5. Поясните понятие прерывания. Назначение. Пример использования. Вектор прерывания.
- 6. Числа с плавающей точкой.
- 7. Принцип выполнения программного кода микропроцессором. Ответ пояснить на примере.
- 8. Архитектура микропроцессора Intel 8080.
- 9. Счетчик команд, регистр адреса и регистр команд. Особенности, назначение.
- 10. Стек. Виды, особенность, назначение. Указатель стека.
- 11. Виды адресации.
- 12. Поясните понятие прерывания. Назначение. Пример использования. Вектор прерывания.
- 13. Реакция микропроцессора на команду останова НLТ.
- 14. Реакция микропроцессора на сигнал INT.
- 15. Реакция микропроцессора на сигнал HOLD.
- 16. Реакция микропроцессора на сигнал READY.
- 17. Архитектура микроконтроллеров MCS-51.
- 18. Порты ввода/вывода микроконтроллеров MCS-51.
- 19. Периферийные устройства микроконтроллеров MCS-51.
- 20. Архитектура AVR-микроконтроллеров.
- 21. Порты ввода/вывода AVR-микроконтроллеров.
- 22. Периферийные устройства AVR-микроконтроллеров.
- 23. Архитектура микроконтроллеров STM8S и STM8L.
- 24. Периферийные устройства микроконтроллеров STM8S.
- 25. Основы программирования микроконтроллеров на языке С.
- 26. На светодиодах портао рганизовать эффект бегущей 1.
- 27. На светодиодах портао рганизовать эффект бегущей 0.
- 28. Организовать на ножках порта светофор (СТОЙТЕ 7-5 разряды, ЖДИТЕ 4-3 разряды, ИДИТЕ 2-0 разряды).
- 29. Составить алгоритм работы микроконтроллера реализующий эффект бегущего 0 с использованием таймера. Работу таймера организовать по прерываниям.
- 30. На светодиодах порта организовать эффект маятника.
- 31. Составить алгоритм работы микроконтроллера реализующий эффект маятника с использованием таймера. Работу таймера организовать по прерываниям.
- 32. На светодиодах порта организовать вывод чисел с 1 до 100 с временной задержкой.
- 33. Составить алгоритм работы микроконтроллера для формирования на выходе импульсов с регулируемой посредствам АЦП длительностью. Организовать работу по прерываниям.

Примеры билетов

Билет №1

- 1. Классификация микропроцессоров. Понятие мощности микропроцессора...
- 2. Реакция микропроцессора на сигнал READY.
- 3. Поясните логику работы микропроцессора при выполнении программы (i8080)

0000h: JMP 0100h 0100h: MOV B,A ADI 245

4. На светодиодах порта организовать эффект бегущей 0.

Билет №7

- 1. Архитектура микропроцессора і8080.
- 2. Стек. Виды, особенность, назначение. Указатель стека.
- 3. Поясните логику работы микропроцессора при выполнении программы (i8080)

0000h: JMP 0000h 0100h: MVI A,01h

ADI 245

4. На светодиодах порта организовать вывод чисел с 1 до 100 с временной задержкой.

Вопросы к государственному (междисциплинарному) экзамену (примеры)

- 1. Архитектуры микропроцессоров: Фон-Неймана, гарвардская.
- 2. Общая характеристика подсистем ввода-вывода. Режимы ввода-вывода информации в МПС.
- 3. Поясните понятия и назначения стека и указателя стека. На примере команд PUSH H и POP H (для микропроцессора Intel 8080) поясните принцип работы стека.
- 4. Классификация микропроцессоров. Пояснить, что понимается под мощностью микропроцессора.

8. Рейтинг качества освоения дисциплины

качества текущей освоения дисциплины В ходе промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по контролю успеваемости, текущему промежуточной аттестации студентов Томского И итоговой политехнического университета», утвержденными приказом ректора № 88/од от 27.12.2013 г.

В соответствии с «Календарным планом изучения дисциплины»:

 текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);

- промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

В соответствии с «Календарным планом выполнения курсового проекта»:

- текущая аттестация (оценка качества выполнения разделов и др.) производится в течение семестра (оценивается в баллах (максимально 40 баллов), к моменту завершения семестра студент должен набрать не менее 22 баллов);
- промежуточная аттестация (защита проекта) производится в конце семестра (оценивается в баллах (максимально 60 баллов), по результатам защиты студент должен набрать не менее 33 баллов).

Итоговый рейтинг выполнения курсового проекта определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины ОСНОВНАЯ

- 1. Микроконтроллеры AVR. Практикум для начинающих : учебное пособие / В. Я. Хартов. 2-е изд., испр. и доп.. Москва: Изд-во МГТУ, 2012. 280 с.: ил.. Библиогр.: с. 277.
- 2. Интерфейс I2C в семействах микроконтроллеров PIC, AVR и MCS-51: учебное пособие / Г. С. Воробьева, А. И. Селезнев; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2012. 186 с.: ил.. Библиогр.: с. 186.
- 3. Основы микропроцессорной техники: учебное пособие: в 2 кн. / О. П. Новожилов. 2-е изд.. М.: РадиоСофт, 2011 Кн. 1. 2011. 432 с.: ил.. Библиогр.: с. 430-431. Аббревиатура: с. 427. Предметный указатель: с. 428-429.

ДОПОЛНИТЕЛЬНАЯ

- 1. Самоучитель разработчика устройств на микроконтроллерах AVR / A. B. Белов. СПб.: Наука и техника, 2008. 530 с.: ил. + CD-ROM. Радиолюбитель. Библиогр.: с. 530. Интернет-ресурсы: с. 530.
- 2. Основы микропроцессорной техники : учебное пособие / Ю. В. Новиков, П. К. Скоробогатов. 4-е изд., испр.. Москва: Интернет-Университет

- информационных технологий БИНОМ. Лаборатория знаний, 2009. 358 с.: ил.. Основы информационных технологий. Библиогр.: с. 356-357.
- 3. AVR-RISC микроконтроллеры. Архитектура, аппаратные ресурсы, система команд, программирование, применение / В. Трамперт. Киев: МК-Пресс, 2006. 459 с.: ил. + CD-ROM. Практика инженерной электроники. —Интернет-ссылки: с. 450.
- 4. Основы микропроцессорной техники: учебное пособие / В. Г. Гришанов; Чувашский государственный университет (ЧГУ). Чебоксары: ЧГУ, 1990. —66,[2] с.: ил.: 20 см. Библиогр.: с. 67. (5 назв.).
- 5. Основы применения микропроцессорной техники в автоматическом управлении теплоэнергетическими установками : учебное пособие для вузов / В. И. Крутов, А. Г. Кузнецов, В. П. Заболоцкий. Москва: Изд-во МВТУ, 1989. 54 с.: ил.. Библиогр.: с. 49-51.;
- 6. Основы микропроцессорной техники : учебное пособие / С. Н. Ливенцов, А. Д. Вильнин, А. Г. Горюнов. Томск: Изд-во ТПУ, 2007. 118 с.: ил.. —Учебники Томского политехнического университета. Библиографический список: с. 117.
- 7. Микроконтроллеры AVR семейства Classic фирмы ATMEL / А. В. Евстифеев. 2-е издание, стер.. Москва: Додэка-XXI, 2004. 288 с.: ил.. Мировая электроника. Предметный указатель: с. 282-285.
- 8. Организация обмена информацией между IBM PC с микроконтроллерами семейства PIC, AVR, MCS-51 в стандарте RS-232C : справочное пособие / Томский политехнический университет; авт.-сост. Г. С. Воробьева, В. В. Яковлев. Томск: Изд-во ТПУ, 2005. 88 с.: ил.

ЭЛЕКТРОННЫЕ РЕСУРСЫ

- 1. www.atmel.com
- 2. www.silabs.com
- 3. www.silabs.com/Support%20Documents/TechnicalDocs/C8051F060-Short.pdf
- 4. http://www.gaw.ru русскоязычный сайт по микропроцессорам
- 5. www.st.com
- 6. http://netstorage.iar.com/SuppDB/Public/SUPPORT/003591/Project_template s_EW.pdf
- 7. http://www.st.com/web/en/resource/technical/document/reference_manual/C D00190271.pdf
- 8. http://www.lib.tpu.ru/fulltext2/m/2013/m135.pdf

Используемое программное обеспечение:

- 1. Программа AVR Studio и Code Vision AVR.
- 2. Программа Silicon Laboratories/
- 3. Программа IAR Embedded.
- 4. Программа СооСох.

10. Материально-техническое обеспечение дисциплины

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество установок	
1	Лаборатория микропроцессорной техники	Корпус 16в,	
		ауд. 249,	
		12 раб.мест	
2	Персональные компьютеры	12 шт.	
3	Отладочные макеты STK500	10 шт.	
4	Отладочные макеты микроконтроллеров	10 шт.	
	C8051F060		
5	Отладочные макеты STM8SDISCOVERY	12 шт.	
6	Осциллографы GDS-820C	9 шт.	

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по направлению и профилю подготовки 11.03.04 «Электроника и наноэлектроника»

Программа одобрена на заседании кафедры промышленной и медицинской электроники Института неразрушающего контроля

(протокол № 14.14 от «28» августа 2014 г.).

Автор: Торгаев Станислав Николаевич

Рецензент(ы) Пестунов Д.А.