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Abstract
Quantum computing is a quickly growing field of research thanks to recent
hardware advances. The quantum mechanical properties of quantum comput-
ers allow them to solve certain families of problems faster than classical com-
puters. A quantum algorithm solving such a problem is Grover’s algorithm,
which finds an element in an unordered set faster than any classical search al-
gorithm. In this paper an implementation of a 4-qubit Grover’s algorithm for
the IBM Q computer ibmqx5 is presented. Executing the implementation on
an ibmqx5 simulator yield results in line with the theoretically optimal results.
The accuracy of the ibmqx5 simulation results compared to the ibmqx5 exe-
cution results suggests that current hardware is not yet suitable,due to required
complexity of the circuits for a 4-qubit Grover implementation.
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Sammanfattning
Kvantteknik är ett snabbt växande forskningsområde tack vare att nödvändig
hårdvara förbättrats i rask takt. De kvantmekaniska egenskaperna hos kvant-
datorer tillåter vissa familjer av problem att lösas snabbare på dessa än på
klassiska datorer. En algoritm för kvantdatorer som löser ett sådant problem
är Grover’s algoritm, vilken hittar ett element i en oordnad mängd snabbare än
vad någon sökalgoritm för klassiska datorer gör. I denna rapport presenteras
en implementation av en 4-qubit Grover’s algoritm för IBM Q-datorn ibmqx5.
Vid exekvering av implementationen på en ibmqx5-simulator erhålls resultat
som är i linje med teoretiskt optimala resultat. En jämförelse av korrekthe-
ten hos resultaten från ibmqx5-simulatorn och resultaten från ibmqx5-datorn
tyder på att nuvarande hårdvara inte är lämplig för kretsar av komplexiteten
nödvändig för en 4-qubit Grover implementation.
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Chapter 1

Introduction

Quantum computing was first theorized in the 1980s and is today a quickly
growing field thanks to recent hardware advances. Where a classical computer
uses binary bits to store its information, a quantum computer uses quantum
bits, or qubits. The unique quantum characteristics of qubits allow quantum
computers to solve certain families of problems faster than classical comput-
ers, such as searching a database [1] and prime factorization [2]

An algorithm that solves such a problem is Grover’s algorithm. Grover’s
algorithm is a quantum algorithm that finds an element in an unordered set of
size N in O(

√
N) time. Finding an element in an unordered set on a classical

computer would take on average N
2

time, i.e. the sought element would be
found in O(N) time [1].

IBM have several quantum computers available to the public through their
cloud service IBM Q. The ibmqx5 is a superconductivity-based 16-qubit quan-
tum computer available through a Python-based programming interface called
QISKit. The interface also provides access to an ibmqx5 simulator where sim-
ulation runs can be performed.

1.1 Problem statement
Various implementations of Grover’s algorithm exist, such as a 2-qubit im-
plementation on the ibmqx2 architecture [3] and a 3-qubit implementation
on a trapped-ion architecture [4]. Currently no implementation of a 4-qubit
Grover’s algorithm has been published for the ibmqx5 architecture.

1



2 CHAPTER 1. INTRODUCTION

1.2 Purpose and scope
The purpose of this report is to provide an implementation of Grover’s al-
gorithm for a search space of 4 qubits for the ibmqx5 architecture. The im-
plementation does not make use of ancilla bits and uses only single solution
oracles. The algorithm is implemented using the QISKit programming inter-
face.



Chapter 2

Background

This chapter provides an introduction to the quantum computing subject and
explanations of the related concepts necessary for understanding the work pre-
sented in the report. A brief description of the ibmqx5 architecture and the
QISKit programming interface is given. Finally Grover’s algorithm and its
stages are explained.

2.1 Qubit
The unit of information in a quantum computer is called a quantum bit or
qubit. In contrast to classical bits, or cbits, the value of qubits are not as easily
defined as those of cbits. Where a cbit either has the value of 0 or 1, a qubit
can exist in a superposition of the two values. Consequently a qubit can’t be
said to have an actual value, but rather a probability to be found in a certain
state when measured. The measuring of qubits is performed as the final step of
a computation to produce an output in cbits. This destroys the quantum state.

A qubit can be described as a unit vector in a 2D complex vector space C2.
In this paper the ket notation will be used for describing the qubit vectors. A
qubit in the zero state is written as |0⟩ and a qubit in the one state as |1⟩. |0⟩
and |1⟩ are basis vectors in the 2D complex vector space C2.

|0⟩ =
(
1

0

)
|1⟩ =

(
0

1

)
A Bloch sphere, seen in figure 2.1, can be used as a geometrical represen-

tation of the qubit. The Bloch sphere is the space of all rays in C2 [5]. The
north pole of the sphere represents the |0⟩ state and the south pole represents
the |1⟩ state. A state |ψ⟩ = α0 |0⟩ + α1 |1⟩ is represented as the point (θ, ϕ)

3



4 CHAPTER 2. BACKGROUND

on the sphere, where α0 = cos θ
2

and α1 = eiϕ sin θ
2

[6]. The Bloch sphere can
be useful for visualizing the state of a qubit and the effect of transformations
performed on the qubit.

x

y

z

φ

θ

1

0

ψ

Figure 2.1: Bloch sphere [7]

2.2 Probability amplitude

A qubit can be described by the 2D vector
(
α0

α1

)
where α0 and α1 are com-

plex numbers [8]. The first value α0 represents the probability amplitude, or
amplitude, of the |0⟩ state. The second value α1 represents the amplitude of
the |1⟩ state. Classical probability can be calculated from amplitude with the
Born rule [9]:

p(x) = |αx|2

where p(x) is the classical probability for state x occurring. This also gives
rise to the normalization condition:

|α0|2 + |α1|2 = 1

Quantum systems can be written as a linear combination of the basis vec-
tors to illustrate the superposition property [8]. For systems consisting of mul-
tiple qubits this can be a clearer way of expressing the quantum state:
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α00 ∗ |00⟩+ α01 ∗ |01⟩+ α10 ∗ |10⟩+ α11 ∗ |11⟩ =


α00

α01

α10

α11


The fact that αx is a complex number means it is possible to model the

effects of interference and superposition on qubits. Where addition of real
probabilities always give rise to an increased probability, addition of ampli-
tudes can instead lead to a smaller total probability. This corresponds to the
quantum mechanical property of interference [8].

2.3 Quantum gates
Quantum gates can be represented as matrices describing transformations on
qubits. The normalization condition |α0|2+ |α1|2 = 1 must hold for all states,
so all actions performed on qubits must give rise to unitary vectors [6]. The
matrices describing such transformations are unitary matrices, i.e. the matrix
conjugate transpose is its inverse [2]. The conjugate transpose of a Matrix M
is denoted as M†, pronounced ”M dagger”.

Since unitary matrices always have an inverse all transformations described
by them are reversible. Consequently all quantum gates must be reversible (ex-
cept the measurement gate which destroys the quantum state), meaning that the
circuit must be able to be run in reverse.

Quantum circuit notation

A quantum circuit is represented by a diagram in which each line represents
the timeline of a qubit, read from left to right. A gate acting on a qubit is
denoted by the symbol of the gate placed on the qubit it is acting on. When
describing quantum gates below, the corresponding circuit representation will
be shown together with the matrix representation.

|q0〉 • H ⊕

|q1〉 ⊕

|q2〉 •

Figure 2.2: Example 3-qubit quantum circuit
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Pauli gates

There are three types of Pauli gates, the X-, Y- and Z-gate. The gate rotates
the qubit around the named axis in the Bloch sphere by π. The X-gate is called
bit-flip and the Z-gate phase-flip. The Y-gate is both a phase- and bit-flip and
satisfies Y = iXZ. [9]

X =

(
0 1

1 0

)
|q0〉 X

Y =

(
0 −i
i 0

)
|q0〉 Y

Z =

(
1 0

0 −1

)
|q0〉 Z

T-gate

The T-gate is a phase shift gate related to the Pauli Z-gate. T4 = Z , meaning
that performing a T-gate four times will yield the same result as applying a
Z-gate once [10]. The T-gate corresponds to a rotation of π

4
around the Z-axis

in the Bloch sphere.

T =

(
1 0

0 e
iπ
4

)
|q0〉 T

Hadamard gate

The Hadamard gate performs a rotation π about the X-axis and π
2

about the
Y-axis in the Bloch sphere. This transformation takes X to Z and Z to X .
The gate is among other things used to put the target qubit into a superposition
state, having an equal chance of being measured as 0 or 1. [9, 10]

H =
1√
2

(
1 1

1 −1

)
|q0〉 H
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Controlled gate

A qubit can be added as a control bit to any gate, so that its operation will only
be executed on the target qubit if the control bit is a one. To indicate a con-
trolled gate, a c is added to the gate’s name. Common examples of controlled
gates are the controlled not (cNOT) and controlled swap (cSWAP). A cNOT
gate is equal to a cX-gate. In the diagram below |q0⟩ would be the control
qubit and |q1⟩ the target qubit.

cNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 |q0〉 •

|q1〉 ⊕

Toffoli gate

A double controlled not gate is called a Toffoli gate. The Toffoli, ccNOT, and
ccX gates are equivalent. In the diagram |q2⟩ is the target qubit.

|q0〉 •

|q1〉 •

|q2〉 ⊕

U-gate

The U-gate is a gate for general rotations along the three axes, taking one to
three arguments. In this paper the U1-gate will be used, whose only argument
denotes rotation around the Z-axis in the Bloch sphere.

Measurement gate

A measurement gate is used to project a qubit’s state onto the basis vectors
|0⟩ and |1⟩. This step is necessary for extracting a result from the quantum
computation and is the only non-reversible quantum gate. Once a qubit is
measured its quantum state is destroyed.

|q0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤
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2.4 ibmqx5
The ibmqx5 is a 16-qubit quantum computer from IBM available to the public
as a part of the IBM Q cloud service. It is accessible through a programming
interface called QISKit [11].

The computer uses a superconductivity transmon qubit implementation
[12, 13] which has consequences for algorithm design. The possible inter-
actions between qubits are governed by the superconducting bus connections
between them [14], and can be described by the ibmqx5 coupling map. In the
coupling map in figure 2.3 an arrow from qubit A to qubit B represents that a
cNOT gate can be created with A as the control bit and B as target.

Figure 2.3: Coupling map of ibmqx5 [15]

An alternative representation of the coupling map is

{1 : [0, 2], 2 : [3], 3 : [4, 14], 5 : [4], 6 : [5, 7, 11], 7 : [10], 8 : [7],

9 : [8, 10], 11 : [10], 12 : [5, 11, 13], 13 : [4, 14], 15 : [0, 2, 14]}

where {A: [B]} have the relationship previously described.

2.5 QISKit
QISKit is a Python-based programming interface for programming quantum
computers [11]. The interface provides access to the quantum computers avail-
able though IBM Q and also provides access to a local simulator for making
simulation runs. The simulator can be configured to have a coupling map equal
to that of ibmqx5.

The QISKit interface provides a built in mapper for mapping a qubit in the
code to a hardware qubit [16]. Because of this the qubits can be arbitrarily
named in the QISKit code. The mapper works provided that the requested
implementation can be made to fit the coupling map.
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The gates relevant to this report that are available through the QISKit pro-
gramming interface are the Pauli, Hadamard, cNOT, Toffoli, T, and U1 gates.
Controlled versions of the Pauli and U1 gates also exist [16]. To use gates
other than those described above they need to be constructed from the avail-
able gates.

QISKit has an upper limit on the amount of circuits that can be included
in an implementation. The current limit is 75 circuits.

2.6 Grover’s algorithm

Grover’s algorithm is a quantum search algorithm that runs in O(
√
N) time

over N unsorted elements. Besides searching for an element, Grover’s algo-
rithm can be used for inverting a function [17] and solving the collision prob-
lem [18]. Given an unordered set ofN = 2n statesX = {x1, x2, ..., xN} and a
binary function f : {0, 1} the algorithm will find a state x′ such that f(x′) = 1.

2.6.1 The stages of the algorithm
The algorithm is divided into four stages [1].

Initialization

All qubits are set to be in superposition. All states have the amplitude 1√
N

.

Oracle

The oracle function marks the state x′ that satisfies the condition f(x′) = 1 by
performing a phase flip. All other states are left unaltered. The operation has
the effect of inverting the state’s amplitude and it runs in constant time.

Amplification

The amplification stage phase flips the amplitudes around the average ampli-
tude. As the target state’s amplitude was inverted while the other states kept
their original amplitudes, the flip causes the target state’s amplitude to increase
and the others to decrease.

Measurement

The qubits are read and output given.
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2.6.2 General result probabilities
The probability of finding the t results amongN elements in one iteration can
be calculated from equation 2.1 [19]. Iterations of Grover’s algorithm refers to
the number of times that the Oracle and Amplification stages are performed.
Each iteration of the algorithm increases the amplitude of the sought state by
O( 1√

N
) [1].

t ∗
( N−2t

N
+ 2N−t

N√
N

)2

(2.1)

On a 4 qubit computer 42 = 16 elements are possible, giving us N = 16:

Single solution (t = 1) 1 ∗
(

16−2
16

+2 16−1
16√

16

)2

= 121
256

≈ 47.27%

2.7 Unreliability

2.7.1 Gate error
Each quantum gate introduces a small error to the quantum state when it is
applied. Because of the hardware implementation and layout of the coupling
map each qubit interacts differently with gates and other qubits. This creates
varying error sizes for the different qubits. On the ibmqx5 the multi-qubit gate
and readout error is always larger than the single-qubit gate error [15].

2.7.2 Quantum decoherence
Quantum decoherence means a loss of quantum mechanical properties in a
system due to its interaction with the environment [20]. The effect increases
with the size of the system, i.e. the number of qubits [21]. Decoherence is
described by the two phenomena energy relaxation and dephasing [22].

Energy relaxation refers to a qubit decaying from the high-energy state |1⟩
to the low energy state |0⟩ over time [22]. Dephasing is the effect where the
phase relation between |0⟩ and |1⟩ in a superpostition state degenerates over
time [22].



Chapter 3

Methods

The execution of the algorithm was performed in two stages. The algorithm
was first executed on the QISKit local simulator. The simulator was set up
to have a coupling map equal to that of the ibmqx5 backend. The simulated
results indicated that the algorithm had been correctly implemented and the
execution process was repeated using the ibmqx5 backend. In both stages 16
runs were performed, one run per element. For each run the code was edited
to include the oracle corresponding to the sought element. Each run consisted
of executing the implementation 8192 times.

3.1 Gate construction
Some of the gates required for implementing Grover’s algorithm are not avail-
able through the QISKit environment and must be constructed. The imple-
mentations of these gates are shown below.

Controlled T-gate

A T-gate describes a rotation of π
4

around the Z-axis, its conjugate transpose
T† describes a rotation of −π

4
around the same axis. A general controlled U1-

gate is available, so the sought gate and its conjugate transpose can be created
as described below.

cT = cU1(π
4
) cT† = cU1(−π

4
)

11
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Triple controlled Pauli Z-gate

A triple controlled Z-gate is needed to implement Grover’s algorithm for a
search space of 4 qubits. According to Mc Gettrick and Murphy [23] an arbi-
trary triple controlled U-gate can be created from a series of cNOT and con-
trolled V-gates, where U = V4. Using the design proposed by Mc Gettrick
and Murphy [23] and the fact that Z = T4 a cccZ-gate can be created as shown
below. QISKit code for the implementation can be found in Appendix A.1.

|q0⟩ • • • • •

|q1⟩ ⊕ • ⊕ • • •

|q2⟩ ⊕ • ⊕ • ⊕ • ⊕ •

|q3⟩ T T † T T † T T † T

3.2 4-qubit Grover implementation
The implemented algorithm is a single iteration Grover’s algorithm that does
not use any ancilla bits. See Appendix A.2 for the QISKit code of the imple-
mentation and Appendix B.2 for the corresponding circuit diagram.

3.2.1 The implemented stages of the algorithm
Initialization

In the first stage of the algorithm all qubits are set to be in superposition. This
is done by applying the Hadamard gate to each qubit. After this operation the
amplitude of each state is 1√

16
= 1

4
= 0.25.

|q0〉 H

|q1〉 H

|q2〉 H

|q3〉 H
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Oracle

The oracle function performs a phase flip on the marked state. The phase flip
inverts the amplitude α0010 of the state, making it −1

4
= −0.25. Below the

oracle for the state |0010⟩ is shown. The corresponding QISKit code can be
found in Appendix A.2, and a list of all oracles in Appendix B.1.

|q0⟩ X • X

|q1⟩ •

|q2⟩ X • X

|q3⟩ X Z X

Amplification

The amplification stage performs an inversion about the average of the ampli-
tudes. It can be implemented as HRH, where H is the Hadamard transform
and R a phase shift transform [1]. Due to the qubits being initialized to the |0⟩
state X-gates are included to produce the correct behaviour.

The average amplitude is αavg = 15∗0.25+(−0.25)
16

= 0.21875. α0010 differs
from the average with δ0010 = αavg − (−0.25) = 0.46875. Inversion around
the average amplitude gives α0010 = αavg + δ0010 = 0.6875. Using the same
method the amplitudes of the other states is found to be 0.1875.

|q0⟩ H X • X H

|q1⟩ H X • X H

|q2⟩ H X • X H

|q3⟩ H X Z X H
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Measurement

Finally the qubits are measured. A barrier, denoted by a zigzag line, is included
to prevent backend optimization that could possibly reorder the gates [24].



Chapter 4

Results

In this chapter the results from the simulation runs and the executions on the
ibmqx5 backend will be presented and compared. The sought state will be
referred to as the marked state and the output value as the measured state.

4.1 Execution results
The average amount of times the marked state is measured on the simulator
is 3882. The probability of finding the marked state |m⟩ on the simulator is
3882
8192

≈ 47.39%.
The average amount of times the marked state is measured on the ibmqx5 is

8675
16

≈ 542.18. The probability of finding the marked state |m⟩ on the ibmqx5
is 8675

16∗8192 ≈ 6.62%.
Figure 4.1 and 4.2 show data from simulation runs and executions on the

ibmqx5 respectively. Each row in the heat map represents a simulation run or
ibmqx5 execution. The x-axis shows what state was marked by the oracle, the
y-axis shows what state was actually measured.

15
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Figure 4.1: Simulator results

Figure 4.2: ibmqx5 results
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4.2 Difference of execution results and aver-
age execution results

Figure 4.3, 4.4 and 4.5 depict the difference between the measured data and
the average amount of actual measurements for each state. Each element in
the heat map represents the difference in amount of measurements. In figure
4.5 the color scale is adjusted to emphasize high occurrences.

Figure 4.3: Difference of simulation results and average simulation results
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Figure 4.4: Difference of ibmqx5 results and average ibmqx5 results

Figure 4.5: Difference of ibmqx5 results and average ibmqx5 results, empha-
sized
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4.3 Difference of execution results and the-
oretically optimal results

Figure 4.6 and 4.7 depict the difference between the measured data and the
statistically optimal amount of measurements for each state based on which
state was marked. Each element in the heat map represents the difference
between the actual measurements and the optimal amount of measurements
for that state.

Figure 4.6: Difference of simulation results and theoretically optimal results
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Figure 4.7: Difference of ibmqx5 results and theoretically optimal results
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4.4 Comparison of measured marked gates
Figure 4.8 depicts a comparison of how many times the marked state was mea-
sured between the simulator and ibmqx5.

Figure 4.8: Marked states from the simulator and ibmqx5
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Figure 4.9 depicts the difference between the amount of times the marked
state was measured and the average amount of measurements for that state
regardless of which state was marked. The data indicates that the correct state
is measured marginally more often than other states.

Figure 4.9: Difference in correct state measured to average state measured

4.5 Simulation
The simulator measured the marked state on average in 3882

8192
≈ 47.39% of the

cases, a difference to the theoretical percentage with

3882

8192
− 121

256
=

5

4096
≈ 0.12%

This means that the simulation gives the correct measure 0.12% more of the
time than what is expected.
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The heat maps showing simulator data all look similar. Figure 4.1 and
4.3 are completely black with white elements on the diagonal, indicating that
the sought elements were correctly measured. In figure 4.6 most of the heat
map is red, indicating that the simulator results rarely deviates from the opti-
mal results. Most of the extreme black and white elements are from elements
that are the ones being marked, naturally having a higher value and therefore
deviation. No deviation is abnormally large, as can be seen in figure 4.8.

4.6 ibmqx5
In the runs performed on the ibmqx5 backend the correct state was measured
on average in

8675
16

8192
≈ 6.62% of the times. This differs from the theoretical

amount with

8675
16

8192
− 121

256
≈ −40.65%.

This means that the ibmqx5 executions gives the correct measure 40.65% less
of the time than what is expected.

Comparing the figures 4.2 and 4.1 it is obvious that the results from the
ibmqx5 backend differs greatly from the simulated results. Instead of a bright
diagonal the heat map has a striped appearance. The alternating bright stripes
indicates that even states have a higher probability of being measured than
uneven states.

In figure 4.4 a faint pattern can be seen, further enhanced in figure 4.5.
A pale ribbon can be seen along the diagonal, similar to that of figure 4.3.
This shows that the correct values are measured slightly more often than the
incorrect values. Figure 4.9 further emphasizes this.
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Discussion

In this chapter the limitations that had an effect on algorithm design are dis-
cussed. The results and possible reasons for the vast discrepancy in expected
and actual measurements are examined, and the chapter is concluded with sug-
gestions for improvements.

Comparing the results with results from similar projects is difficult, as the
hardware and number of circuits for each implementation differ. In the case
of a 4-qubit Grover implementation on the ibmqx5 architecture, no previous
papers have been published, limiting the amount of suitable comparisons.

5.1 Limitations

5.1.1 QISKit limitations
The QISKit interface does not allow programs to consist of more than 75 cir-
cuits. This makes having multiple iterations of the algorithm impossible, as it
would require too many gates in its current implementation. It is arguable that
having multiple iterations would not increase the occurrences of measuring
marked states. Rather, having multiple iterations could decrease the occur-
rences, as the system would increase in size, increasing decoherence and gate
errors.

Double solution oracles have a higher probability of measuring the marked
state, from equation 2.1 we can calculate that it is about 78.12%. Making
all possible double solutions is, however, both theoretically complicated and
potentially impossible with the number of circuits available.
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5.1.2 Hardware limitations
Creating a larger than 4-qubit Grover with this implementation is impossible
on the ibmqx5, as its coupling map does not allow it. As the amplification step
has to include a cccZ-gate, the implementation requires that the target bit be
controlled by three other bits. The implementation also requires that at least
one of the controlling bits can control two of the other bits and that another
one can be controlled by two others. While the coupling map for ibmqx5 can
handle these requirements, it is impossible to increase the number of qubits in
the algorithm. For larger search spaces, more control bits need to be added to
the cccZ-gate, requiring a coupling map with a higher degree of connectivity.

5.2 Sources of error
The implementation is relatively large and almost hits the circuit capacity of
QISKit. As the number of circuits increases so does both execution time and
gate errors. Both of these variables affect the accuracy of the algorithm and
are likely the reason why patterns are not easily spotted from the data. As the
simulator does not suffer from these complications and the results from it are in
line with mathematical theory, it further strengthens the idea that decoherence
and gate errors are what causes the ibmqx5 results to be as erratic as they are.

The striped appearance visible in figure 4.2 indicates that the likelihood of
measuring a state is related to the state of the first qubit, the |0⟩ state increasing
the likelihood. A potential explanation to this could be that the first qubit has
a lower energy relaxation time than the other qubits, making it decay to the |0⟩
state faster.

5.3 Suggestions for improvements
When the circuit limit is increased, future studies could investigate the pos-
sibility of implementing additional iterations of Grover’s algorithm. As the
amplitude of the desired state is increased with each iteration, multiple itera-
tions should improve the results. However, as discussed in section 5.1.1, this
effect is arguable.

The 20-qubit IBM quantum computer QS1_1 [15] offers more qubits and a
coupling map that would allow an implementation of Grover’s algorithm with
5 or more qubits. However, at the time of writing it is not available to the
public.
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5.4 Conclusions
In this paper an implementation of a 4-qubit Grover’s algorithm for the ib-
mqx5 architecture is presented. It is the largest published implementation of
Grover’s algorithm, as well as the largest currently possible implementation,
on the ibmqx5 architecture. Executing the implementation on an ibmqx5 sim-
ulator yield results in line with the theoretically optimal results. The accuracy
of the ibmqx5 simulation results compared to the ibmqx5 execution results
suggests that current hardware is not yet suitable for circuits of the complexity
required for a 4-qubit Grover implementation.
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Appendix A
QISKit code

A.1 cccZ-gate implementation
from qiskit import QuantumProgram
import math
qp = QuantumProgram()

pi = math.pi

qr = qp.create_quantum_register('qr', 4)
cr = qp.create_classical_register('cr', 4)
qc = qp.create_circuit('cccZ', [qr], [cr])

qc.cu1(pi/4, qr[0], qr[3])
qc.cx(qr[0], qr[1])
qc.cu1(-pi/4, qr[1], qr[3])
qc.cx(qr[0], qr[1])
qc.cu1(pi/4, qr[1], qr[3])
qc.cx(qr[1], qr[2])
qc.cu1(-pi/4, qr[2], qr[3])
qc.cx(qr[0], qr[2])
qc.cu1(pi/4, qr[2], qr[3])
qc.cx(qr[1], qr[2])
qc.cu1(-pi/4, qr[2], qr[3])
qc.cx(qr[0], qr[2])
qc.cu1(pi/4, qr[2], qr[3])

qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
qc.measure(qr[2], cr[2])
qc.measure(qr[3], cr[3])
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A.2 4-qubit Grover’s Algorithm
from qiskit import QuantumProgram
import math

import Qconfig
from IBMQuantumExperience import IBMQuantumExperience
api = IBMQuantumExperience(Qconfig.APItoken,

{'url':Qconfig.config[”url”]})
from qiskit.backends import discover_remote_backends
remote_backends = discover_remote_backends(api)

qp = QuantumProgram()

pi = math.pi

qr = qp.create_quantum_register('qr', 4)
cr = qp.create_classical_register('cr', 4)
qc = qp.create_circuit('Grover', [qr], [cr])
shots = 8192

#######################
######## init #########
#######################
qc.h(qr[0])
qc.h(qr[1])
qc.h(qr[2])
qc.h(qr[3])

#######################
### Oracle for 0010 ###
#######################
qc.x(qr[0])
qc.x(qr[2])
qc.x(qr[3])

qc.cu1(pi/4, qr[0], qr[3])
qc.cx(qr[0], qr[1])
qc.cu1(-pi/4, qr[1], qr[3])
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qc.cx(qr[0], qr[1])
qc.cu1(pi/4, qr[1], qr[3])
qc.cx(qr[1], qr[2])
qc.cu1(-pi/4, qr[2], qr[3])
qc.cx(qr[0], qr[2])
qc.cu1(pi/4, qr[2], qr[3])
qc.cx(qr[1], qr[2])
qc.cu1(-pi/4, qr[2], qr[3])
qc.cx(qr[0], qr[2])
qc.cu1(pi/4, qr[2], qr[3])

qc.x(qr[0])
qc.x(qr[2])
qc.x(qr[3])

#######################
#### Amplification ####
#######################
qc.h(qr[0])
qc.h(qr[1])
qc.h(qr[2])
qc.h(qr[3])

qc.x(qr[0])
qc.x(qr[1])
qc.x(qr[2])
qc.x(qr[3])

######## cccZ #########
qc.cu1(pi/4, qr[0], qr[3])
qc.cx(qr[0], qr[1])
qc.cu1(-pi/4, qr[1], qr[3])
qc.cx(qr[0], qr[1])
qc.cu1(pi/4, qr[1], qr[3])
qc.cx(qr[1], qr[2])
qc.cu1(-pi/4, qr[2], qr[3])
qc.cx(qr[0], qr[2])
qc.cu1(pi/4, qr[2], qr[3])
qc.cx(qr[1], qr[2])
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qc.cu1(-pi/4, qr[2], qr[3])
qc.cx(qr[0], qr[2])
qc.cu1(pi/4, qr[2], qr[3])
####### end cccZ #######

qc.x(qr[0])
qc.x(qr[1])
qc.x(qr[2])
qc.x(qr[3])

qc.h(qr[0])
qc.h(qr[1])
qc.h(qr[2])
qc.h(qr[3])

########################
####### Measure ########
########################
qc.barrier(qr)
qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
qc.measure(qr[2], cr[2])
qc.measure(qr[3], cr[3])

# submit job #
qp.execute(['Grover'], backend='ibmqx5', shots = shots,

max_credits = 5, timeout=1)

# submit job to ibmqx5 simulator #
#backend='local_qasm_simulator'
#coupling_map = {1:[0,2], 2:[3], 3:[4, 14], 5:[4],
# 6:[5,7,11], 7:[10], 8:[7],9:[8, 10], 11:[10],
# 12:[5, 11, 13], 13:[4, 14], 15:[0, 2, 14]}
#qp.execute(['Grover'], backend=backend, shots = shots,
# coupling_map=coupling_map, max_credits = 5, timeout=1)
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Quantum circuits

B.1 Oracles

|q0⟩ X • X

|q1⟩ X • X

|q2⟩ X • X

|q3⟩ X Z X

0000

|q0⟩ •

|q1⟩ X • X

|q2⟩ X • X

|q3⟩ X Z X

0001

|q0⟩ X • X

|q1⟩ •

|q2⟩ X • X

|q3⟩ X Z X

0010

|q0⟩ •

|q1⟩ •

|q2⟩ X • X

|q3⟩ X Z X

0011

|q0⟩ X • X

|q1⟩ X • X

|q2⟩ •

|q3⟩ X Z X

0100

|q0⟩ •

|q1⟩ X • X

|q2⟩ •

|q3⟩ X Z X

0101

|q0⟩ X • X

|q1⟩ •

|q2⟩ •

|q3⟩ X Z X

0110

|q0⟩ •

|q1⟩ •

|q2⟩ •

|q3⟩ X Z X

0111

|q0⟩ X • X

|q1⟩ X • X

|q2⟩ X • X

|q3⟩ Z

1000
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|q0⟩ •

|q1⟩ X • X

|q2⟩ X • X

|q3⟩ Z

1001

|q0⟩ X • X

|q1⟩ •

|q2⟩ X • X

|q3⟩ Z

1010

|q0⟩ •

|q1⟩ •

|q2⟩ X • X

|q3⟩ Z

1011

|q0⟩ X • X

|q1⟩ X • X

|q2⟩ •

|q3⟩ Z

1100

|q0⟩ •

|q1⟩ X • X

|q2⟩ •

|q3⟩ Z

1101

|q0⟩ X • X

|q1⟩ •

|q2⟩ •

|q3⟩ Z

1110

|q0⟩ •

|q1⟩ •

|q2⟩ •

|q3⟩ Z

1111
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B.2 Grover’s algorithm
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