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Preface

Quantum information science is a deeply interdisciplinary field that involves
physics, mathematics, and computer science. It is devoted to finding methods to
exploit quantum mechanical effects in nature, notably superposition and entan-
glement, to perform information processing beyond the limits of conventional
computation. Over the past several decades, various research groups around the
world have strived to achieve the ambitious goal of building a quantum computer
that could dramatically improve computational power for particular tasks.

Responding to the growing need to extract information from images and
video, image processing is a fundamental task in many branches of science and
engineering. Due to the restricted architecture of classical computers and the com-
putational complexity of state-of-the-art classical algorithms in image processing
and its applications, developing efficient algorithms to store and manipulate visual
information has become an important and challenging research area.

Quantum image processing focuses on quantum algorithms for storing, process-
ing, and retrieving visual information. Due to some of the astounding properties
inherent to quantum information, for instance, computational parallelism, it is
anticipated that quantum image processing technologies will offer capabilities and
performance that are currently unrivaled by their traditional equivalents in areas
such as computing speed, tamperproof security, and minimal storage requirements.

This book is divided into seven chapters. In Chap. 1, the key fundamentals of
quantum computation and information are reviewed, and the history of quantum
image processing is introduced. The widely used quantum image representations
and their well-designed operations are presented in Chaps. 2 and 3. The outline
of quantum image security technologies and a few quantum image understanding
algorithms are suggested in Chaps. 4 and 5. The two emerging subtopics of quantum
movies and quantum audio are elaborated in Chap. 6. Chapter 7 discusses open
questions identified in the literature, along with future development trends in
quantum image processing.

It is hoped that this book offers a rigorous introduction to quantum image
processing and some thought-provoking snapshots of prospective developments.
The completion of this book relied greatly on the research achievements published
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in the field and the two bibles: Quantum Computation and Quantum Information
(Michael A. Nielsen et al.) and Digital Image Processing (Rafael C. Gonzalez et al.).

Immense gratitude is due to the emeritus professor of the Tokyo Institute of
Technology, Kaoru Hirota, and Professor Zhengang Jiang at Changchun University
of Science and Technology for their enlightenment and ongoing help that turned
this book from an idea into reality. In addition, special commendation goes to Kehan
Chen, Nianqiao Li, and Shan Zhao for their contributions to the timely and thorough
organization of the figures and references in the book.

This work is supported by the National Natural Science Foundation of China
(No. 61502053). SEVA gratefully acknowledges the financial support of CONACyT
(SNI 41594) and Fronteras de la Ciencia (1007). Additionally, SEVA dedicates his
work to his dearest wife Lourdes and beloved daughter Renata, his eternal gratitude
for their love, support, and patience.

Being subject to the limits of the authors’ ability and because quantum image
processing is still in its primary stage, it is hard to avoid errors and omissions. The
authors apologize for this and welcome criticism and suggestions.
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Chapter 1
Introduction and Overview

Quantum computation and quantum information comprise the study of information
processing tasks that can be accomplished using quantum mechanical systems
[3]. Goals include to study how information is represented and communicated
using quantum states, and how to describe and handle the corruption of quantum
and classical information [38]. Quantum computers, quantum cryptography, and
quantum teleportation are among the most celebrated topics that have emerged from
this field. These techniques rely distinctively on the quantum properties such as
uncertainty, interference, and entanglement [4, 59].

The disciplines of computer science and computer engineering have transformed
every aspect of human endeavors [50]. In these fields, exciting and cutting-edge
research into new computational models, materials, and techniques for building
computing hardware has been broached and/or realized [27]. Novel methods have
been proposed to speed up certain tasks, and to build bridges between computer
science and other scientific fields, allowing scientists to think of natural phenomena
as computational procedures and simulate them [52, 56].

In its canonical form, theoretical computer science takes no account of the
physical properties of the devices used to perform computational or information
processing tasks [35]. This could be perceived as a drawback because the behavior
of any physical device used for computation or information processing must
ultimately be predicted within the ambit of the laws of physics [28].

In 1982, Feynman proposed a novel computational model [19], quantum com-
putation, which was based on the principles of quantum physics. Quantum com-
putation constitutes a truly innovative paradigm of computation, which offers new
perspectives in many regards, among them future encouraging scenarios for high
performance computing as well as novel algorithms that solve seemingly intractable
problems in today’s advanced classical computer models and technologies. The
mathematical formulation and physical realization of quantum technology ensure
improved miniaturization, massively accelerated performance of certain tasks, and
new levels of secure communication, information processing, and ultra-precise

© Springer Nature Singapore Pte Ltd. 2020
F. Yan, S. E. Venegas-Andraca, Quantum Image Processing,
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2 1 Introduction and Overview

measurement [10]. These are some of the theoretical discoveries and promising
conjectures that have positioned quantum computation as a key element in modern
science.

In addition, a growing number of quantum computing applications in several
branches of science and technology have been suggested. One such emerging area
is the field of quantum image processing (QIMP) [51]. In its early stage, the field
is bedeviled with many questions [33]. To begin, what is the best way to represent
images on quantum computers, and how one should prepare, process, and retrieve
them? Then, to really say the field has matured, one should be capable of performing
some basic image processing tasks and realizing some high-level applications using
quantum computing hardware, before gradually accomplishing more advanced and
robust image processing tasks. The advances highlighted in the following chapters
indicate a promising role for QIMP in facilitating the acceleration, security, and
integrity of traditional (digital) image processing tasks [60].

The discussion in this chapter is twofold. First, some fundamental concepts and
theories of quantum computation and information are introduced. Further on, the
birth and development of QIMP as a background are discussed.

1.1 Quantum Computation and Information

A recent study [37] echoed a longstanding claim that quantum computing technolo-
gies would usher in unprecedented accuracy and sophistication to solve numerous
problems considered intractable using the best of today’s classical (i.e., digital or
nonquantum) computing resources. While acceptable large-scale quantum devices
are still unavailable, the immense potential of quantum computing has attracted
interest and investments aimed at the commercialization of its hardware and
software. These make quantum computation and information become a cynosure
among emerging computing paradigms [65].

1.1.1 Quantum Computers

An important law in the computer industry, Moore’s law states that the number
of transistors in a dense integrated circuit doubles roughly every 2 years [8]. This
observation of Gordon Moore, co-founder of the Intel Corporation, proved to be
accurate for several decades, and it has been used to guide long-term planning
and to set targets for research and development in the semiconductor industry
[15]. Advances in digital electronics are strongly tied to Moore’s law, including
quality-adjusted microprocessor prices, memory capacity, sensors, and even the
number and size of pixels in digital cameras. Digital electronics have been consistent
contributors to world economic growth in the late twentieth and early twenty-first
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centuries. Thus, Moore’s law embodies a driver of technological and social change,
productivity, and economic growth [30].

Moore’s law comprises an observation and projection of an historical trend and
is not a physical or natural law. Although the semiconductor industry’s growth rate
was steady from 1975 until approximately 2012, it was faster during the first decade
of the new millennium. In general, it does not sound logic to extrapolate from an
historical growth rate to an undefined future. For example, in the 2010 update to the
International Technology Roadmap for Semiconductors it was predicted that growth
would slow around 2013. Moreover, Gordon Moore himself, in 2015, foresaw that
the rate of progress would reach saturation: “I see Moore’s law dying here in the
next decade or so” [11]. This is mainly because transistors are made of silicon.
According to theoretical physicist Michio Kaku, when transistors are too closely
packed (layers are 20 atoms across now, and this will likely decrease to five atoms),
there will be two main problems [29]:

• The heat generated will be sufficient to melt the silicon.
• Quantum theory will dominate in the resultant small distance between atoms.

From the Heisenberg uncertainty principle, it will be impossible to accurately
locate electrons, which will result in leakage.

Therefore, while Moore’s law gave good predictions, for further advancement,
one should develop new technology and quantum computers are future candidates.
A quantum computer is a device that performs quantum computing [31]. Such a
computer is different from binary digital electronic computers based on transistors.
Although common digital computing requires that the data be encoded into binary
digits (bits), each of which is always in one of two definite states (0 or 1), quantum
computation uses quantum bits or qubits, which can be in superpositions of states,
i.e., linear combinations of their basis states.

As of 2019, quantum computer development is still in its infancy, but experiments
are being performed in which quantum computational operations are executed on a
very small number of quantum bits. Practical and theoretical research continues,
and many governments and military agencies are funding quantum computing
research in the hope of developing quantum computers for civilian, business, trade,
environmental, and national security purposes.

Several significant advances have occurred in recent years. In January 2017,
since its second-generation system (the 512-qubit D-Wave Two in May 2013) was
bought by Google and NASA for research and practical use, D-Wave is reportedly
selling a 2,000-qubit quantum computer (the D-Wave 2000Q [13], see Fig. 1.1),
whose special-purpose processor was designed to implement quantum annealing,
rather than operating as a universal-gate quantum computer [12]. In December 2017,
Microsoft released a preview version of a Quantum Development Kit, including a
programming language, Q#, which can be used to write programs for an emulated
quantum computer [36]. In late 2017 and early 2018, IBM, Intel, and Google
reported testing quantum processors containing 50, 49, and 72 qubits, respectively,
all realized using superconducting circuits [41]. These circuits are approaching the
number of qubits for which simulation of their quantum dynamics is expected to
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Fig. 1.1 D-Wave 2000Q
quantum computer

become prohibitive on classical computers, although it has been argued that further
improvements in error rates are required to put classical simulation out of reach.
In February 2018, scientists reported the discovery of a new form of light, which
possibly involves polaritons, which could be useful in the development of quantum
computers [34]. In July 2018, a team led by the University of Sydney achieved
the world’s first multi-qubit demonstration of a quantum chemistry calculation
performed on a system of trapped ions, one of the leading hardware platforms in
the race to develop a universal quantum computer [26].

Large-scale quantum computers would theoretically be able to solve certain
problems much more quickly than any classical computers that use even the best
current algorithms, such as integer factorization using Shor’s algorithm [48] and the
simulation of quantum many-body systems [57]. There exist quantum algorithms,
such as Simon’s algorithm [49], that run faster than any possible probabilistic
classical algorithm. A classical computer could in principle (with exponential
resources) simulate a quantum algorithm, as quantum computation does not violate
the Church–Turing thesis [66]. However, quantum computers may be able to
efficiently solve problems that are not feasible on classical computers.

1.1.2 Quantum Bits and Quantum Registers

1.1.2.1 Quantum Bits

Analogous to the fundamental concept of classical computation and information, the
bit, a quantum bit (or qubit) is the smallest unit of information in a quantum system
[38]. The difference between bits and qubits is that a qubit can be in a superposition
state, which can be described as a unit vector in two-dimensional Hilbert space (see
appendix for more mathematical descriptions). As shown in Fig. 1.2, the vector can
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Fig. 1.2 Diagram of a
qubit’s superposition state

always be written as |ϕ〉 = α| ↑〉 + β| →〉, where | ↑〉 and | →〉 are orthogonal
basis states and α and β are complex numbers for probability amplitudes. The
probabilities for |ϕ〉 to be in the | ↑〉 and | →〉 states are, respectively, |α|2 and
|β|2, where |α|2 + |β|2 = 1. Geometrically, this can be interpreted as the condition
that the qubit’s state is normalized to length 1 [38].

When |ϕ〉 is projected onto | ↑〉, |ϕ〉 becomes |ϕ〉↑ (= α| ↑〉), which is equivalent
to measuring |ϕ〉 in the | ↑〉 direction. Similarly, when |ϕ〉 is projected onto | →〉,
|ϕ〉 becomes |ϕ〉→ (= β| →〉), which is equivalent to measuring |ϕ〉 in the | →〉
direction. Therefore, when observing or measuring a qubit in a superposition state,
the state will be disturbed and changed; this phenomenon is called collapse. If one
lets | ↑〉 = |0〉 and | →〉 = |1〉, then |ϕ〉 = α|0〉 + β|1〉, so the states |0〉 and |1〉 are
known as computational basis states, and they form an orthonormal basis for this
vector space.

If one lets u ∈ {0, 1}, then |u〉 is a column vector (known as ket) with two

components in two-dimensional Hilbert space; that is, |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
.

In addition, 〈u| is the conjugate transpose of |u〉 and is a row vector (known as bra)
with two components: 〈0| = (

1 0
)

and 〈1| = (
0 1

)
. If one lets v ∈ {0, 1}, then

〈u|v〉 (= 〈u||v〉) is the inner product of |u〉 and |v〉. The inner product is a scalar,
for example, 〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 = 〈1|0〉 = 0. It is interesting that bra and
ket constitute bra(c)ket, so that when “〈” and “〉” match to form a complete bracket,
the bracket as a whole always represents a number [42].

In addition to the inner product, bra and ket may also be multiplied in reverse
order, and one can call |u〉〈v| the outer product of |u〉 and |v〉; it is an operator in
the matrix form. If |0〉〈0| is operated on |ϕ〉, the result of α|0〉 is obtained, which
indicates that |0〉〈0| has extracted the |0〉 component from |ϕ〉, or that |0〉〈0| projects
|ϕ〉 onto |0〉, and |ϕ〉 is measured in the |0〉 direction. Similarly, |1〉〈1| has extracted
the |1〉 component from |ϕ〉, or that |1〉〈1| projects |ϕ〉 onto |1〉, and |ϕ〉 is measured
in the |1〉 direction.

Even though a qubit can represent many states, when it is observed, the
measurement results can only be either 0 or 1, and each result exists with a certain
probability [38]. The measurement operation is represented by a “meter” symbol,
as shown in Fig. 1.3. As previously described, this operation converts a single-qubit
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Fig. 1.3 Quantum circuit
symbol for measurement

state |ϕ〉 to a probabilistic classical bit M (distinguished from a qubit by drawing it
as a double-line wire).

1.1.2.2 Quantum Registers

A quantum register is a system comprising multiple qubits [38]. It is the quantum
analog of the classical processor register. Quantum computers perform calculations
by manipulating qubits within a quantum register. While an n-size classical register
can store a single value of the 2n possibilities spanned by n bits, a quantum register
can store all 2n possibilities spanned by n qubits.

The state of a quantum register is the tensor product of n qubits’ states. The
tensor product is a way of combining vector spaces to form larger vector spaces [38].
This formation is crucial in understanding the quantum mechanics of multiparticle
systems. The notation for the tensor product, ⊗, is used to express the composition
of quantum systems. The short notation for the tensor product |u〉 ⊗ |v〉 of two
vectors or two kets, |u〉 and |v〉, is |uv〉 or |u〉|v〉, and A⊗n = A ⊗ A ⊗ · · · ⊗ A

denotes the tensor product of a matrix A for n times.
Suppose there are two qubits in a quantum register. A two-qubit system has four

computational basis states denoted as |00〉, |01〉, |10〉, and |11〉. A pair of qubits can
also exist in superpositions of these four states, so the quantum state of two qubits
involves associating a complex coefficient with each computational basis state, such
that

|ϕ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉. (1.1)

Similar to the case for a single qubit, the measurement result 00, 01, 10, and 11
occurs with probability |α00|2, |α01|2, |α10|2, |α11|2, and these probabilities sum to
one. For a two-qubit system, one could measure just a subset of the qubits, say the
first qubit. Measuring the first qubit alone gives 0 with probability |a00|2 + |a01|2,
leaving the post-measurement state:

|ϕ′〉 = α00|00〉 + α01|01〉√|a00|2 + |a01|2
. (1.2)

If the state of multiple qubits cannot be presented as a tensor product, then these
qubits are in the entangled state [38]. For instance, |ϕ〉A = 1√

2
(|00〉 + |11〉) and

|ϕ〉B = 1√
2
(|01〉 + |10〉) are in entangled states. In such a case, measurement

of one qubit will affect the measurement of the other qubits. For example, when
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one measures the state of |ϕ〉A, then the measurement of one qubit will make the
state of the other qubit the same, while when one measures the state of |ϕ〉B , the
measurement of one qubit will make the state of the other qubit the opposite.

1.1.3 Quantum Circuits and Quantum Gates

1.1.3.1 Quantum Circuits

Changes to a quantum state can be described in the language of quantum compu-
tation. A quantum circuit is a quantum computation model in which a computation
is a sequence of quantum logic gates (or simply quantum gates) [38]. Figure 1.4
shows a simple quantum circuit containing three quantum gates. The circuit is read
from left to right, and each line represents a wire in the quantum circuit. While this
may not correspond to a physical wire, it may instead correspond to the passage of
time, or perhaps to a physical particle, e.g., a photon moving through space from
one location to another [38]. It is conventionally assumed that the state input to the
circuit is a computational basis state that is usually the state consisting of all |0〉s.

The state of qubits in quantum circuits evolves naturally over time, different
combinations of quantum gates can implement specific quantum algorithms, and,
finally, the results are presented with quantum measurements. In quantum comput-
ing, and specifically the quantum circuit model of computation, a quantum gate is a
rudimentary quantum circuit operating on a small number of qubits [38]. Quantum
gates are represented by unitary matrices. The number of qubits in the input and
output of the gate must be equal; a gate which acts on n qubits is represented by
a 2n × 2n unitary matrix. It is noteworthy that it is impossible to make a copy of
an unknown quantum state by using a circuit. This property, namely that qubits
cannot be copied, is known as the no-cloning theorem [38], and is one of the primary
differences between quantum and classical information.

1.1.3.2 Quantum Gates

Suppose an operator Uf on a quantum state is a unitary matrix, i.e.,

Uf U
†
f = I, (1.3)

Fig. 1.4 Quantum swapping
gate
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Fig. 1.5 Commonly used quantum gates

where U
†
f is the conjugate-transpose matrix of Uf and I is an identity matrix as

shown in Fig. 1.5 when it is in the two-dimensional format.
The unitary transform uses the unitary matrix as the operator. The qubit is still

in its normalized state after the unitary transform. Since the unitary transform is
reversible, so is the quantum gate, i.e., the input state is turned into the output state
by using the quantum gate (composed of the Uf transform), and the quantum gate
(composed of the U

†
f transform), can turn the output state into the input state, i.e.,

Uf |x〉 = |f (x)〉, (1.4)

and

U
†
f |f (x)〉 = |x〉. (1.5)

It is noteworthy that quantum parallelism allows quantum computers to simultane-
ously evaluate a function f (x) for many values of x [38].
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Fig. 1.6 Quantum
controlled-U gate

Let us recall Fig. 1.4 to find that this circuit completes the swap operation, noting
that these gates have the following sequence of effects on a computational basis
state |a, b〉:

|a, b〉 CNOT−→ |a, a ⊕ b〉
CNOT−→ |a ⊕ (a ⊕ b), (a ⊕ b)〉 = |b, a ⊕ b〉
CNOT−→ |b, (a ⊕ b)⊕ b〉 = |b, a〉,

(1.6)

where all additions are of modulo 2. The circuit’s effect, therefore, is interchanging
the states of the two qubits.

Figure 1.5 presents some commonly used quantum gates, their matrix represen-
tations, and their circuits. In addition, supposing U is any unitary matrix acting on
some number n of qubits (in Fig. 1.6), U can be considered a quantum gate on these
qubits. One can then define a controlled-U gate, which is a natural extension of the
CNOT gate. This type of gate has a single control qubit, indicated by the line with
the solid black circle, and n target qubits, indicated by the boxed U. Setting the
control qubit to 0 has no effect on the target qubits. Setting it to 1, however, the gate
U is applied to the target qubits.

1.2 Background of Quantum Image Processing

Quantum computation and information are transitioning from emerging branches
of physics to mature research fields in science and engineering. Besides advancing
their mathematical and physical foundations, a growing number of scientists and
engineers are identifying and developing cross-fertilizing initiatives in quantum
information processing in fields, such as artificial intelligence, pattern recognition,
machine learning, neural network, cognition, and image processing [53].

1.2.1 Quantum Interdisciplinary Research

Several areas of quantum interdisciplinary research are now introduced and some
studies on these efforts are noted.
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1.2.1.1 Quantum Machine Learning

Quantum machine learning is an emerging interdisciplinary research area where
quantum physics and machine learning meet. It is most commonly used in machine
learning algorithms for analyzing classical data on quantum computers. It is
known that machine learning algorithms can process immense amounts of data,
but quantum machine learning intelligently increases such capabilities through
the creation of opportunities to analyze quantum states and systems, including
hybrid methods that involve both classical and quantum processing, in which
computationally difficult subroutines are outsourced to a quantum device. Since
these routines can be more complex, they can be executed more quickly assisted
by quantum devices [6, 44].

1.2.1.2 Quantum Neural Networks

Quantum neural networks are neural network models based on quantum mechanical
principles. Two approaches exist in quantum neural network research: one exploits
quantum information processing to improve existing neural network models (and
sometimes vice versa), while the other searches for potential quantum effects in the
human brain. Quantum neural network research is still a nascent field, with several
ideas of varying scope and mathematical rigor proposed, with most based on the
idea of replacing classical binary or McCulloch–Pitts neurons with a qubit (which
can be called a “quron”), resulting in neural units that can superpose the “firing” and
“resting” states [18, 40].

1.2.1.3 Quantum Cognition

Quantum cognition is an emerging area of study in which the mathematical
formalism of quantum theory is applied to model cognitive phenomena, such as
information processing by the human brain, language, decision-making, human
memory, conceptual reasoning, human judgment, and perception. Quantum cog-
nition is based on a quantum-like paradigm or a generalized quantum paradigm,
in which information processing by complex systems, such as the human brain,
accounts for the contextual dependence of information and probabilistic reasoning,
and which, in turn, can be mathematically described in the framework of quantum
information and quantum probability theory [9, 20].

Such thoughts have reinvigorated interest in answering questions about which
areas of classical computing—its components, devices, or technologies—quantum
computing could best replace, interact with, or simply coalesce with to produce
the envisioned supercomputing devices. Much like the transition from analog
devices (such as phones and computers) to their digital equivalents, as well as the
current use of mechanical and hybrid vehicles, it is envisaged that quantum and
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digital components, devices, and technologies will function seamlessly, whether
independently or as units of a hybrid system [65].

Considering the ubiquity and primacy of image and video processing in modern
life, a subdiscipline focused on ensuring a smooth transition from digital to quantum
image processing has emerged.

1.2.2 Quantum-Based Image Processing Techniques

Given the need to extract information from the three-dimensional world, the
storage, processing, and retrieval of visual information are first-order tasks for
research of image processing and related areas, such as pattern recognition and
artificial intelligence. However, the restricted architecture of classical computers
and the often overwhelming computational complexity of state-of-the-art classical
algorithms make it necessary to find better (i.e., more efficient) ways to manipulate
visual information [61].

With the rapid development of quantum computation and information, notably
Feynman’s quantum computation model [19], Deutsch’s quantum parallelism asser-
tion [14], Shor’s integer factoring algorithm [48], and Grover’s database searching
algorithm [25], the analysis of previously mentioned problems through the lens of
quantum computation and information may result in new ways of understanding the
nature of visual information [55].

1.2.2.1 Classifications of Quantum-Related Image Areas

Technically, efforts in quantum-related image processing can be classified into three
main groups [63], the first two being outside the scope of this book.

1. Quantum-assisted digital image processing (QDIP): These applications aim to
improve some well-known digital or classical image processing tasks and appli-
cations by exploiting some useful properties of quantum computing algorithms
[28, 62].

The first published material relating quantum mechanics to image processing
can be traced to Vlasov’s work [58] in 1997, which focused on the use of a
quantum system to recognize orthogonal images. Years later, a signal processing
framework [16] that was aimed at developing new or modifying existing signal
processing algorithms was proposed by borrowing from the principles of quan-
tum mechanics. By means of a simple example, Schützhold demonstrated that
the task of finding and identifying certain patterns in an otherwise unstructured
picture dataset can be accomplished efficiently by a quantum computer [45].
This was followed by the conclusion that quantum algorithms (such as Grover’s
algorithm) can be used in image processing in [2]. In that paper, they described a
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method which used a quantum algorithm to detect the posture of certain targets
and perform the image template matching.

2. Optics-based quantum imaging (OQI): These applications focus on techniques
for optical imaging and parallel information processing at the quantum level by
exploiting the quantum nature of light and the intrinsic parallelism of optical
signals [7, 23].

A primary technique in OQI, ghost imaging is used to retrieve an object
from the cross-correlation function of two separate beams, neither of which
obtains the information from the object [1]. One beam interrogates a target and
illuminates a single-pixel detector that provides no spatial resolution, while the
other does not interact with the target, but it impinges on a high-resolution
camera, hence affording a multiple-pixel output [17]. The timeline for this
subdiscipline’s development shows its modest beginning in 1995, when the
two beams of ghost imaging were formed from a stream of entangled photons
[39]. The reconstruction of the image was attributed to the nonlocal quantum
correlations between the photon pairs. For several years, ghost imaging was
considered an effect of quantum nonlocality due to the earlier experiments.
Challenging this interpretation, Bennink et al. demonstrated ghost imaging
using two classically correlated beams [5], following which it was found that
many of the features obtained with entangled photons could be reproduced
with a classical pseudothermal light source. However, the nature of the spatial
correlations exhibited with a pseudothermal source, and whether they can be
interpreted as classical intensity correlations or are fundamentally nonlocal
quantum correlations, is still uncertain [22, 43, 46, 47].

3. Classically inspired quantum image processing (QIMP): Inspired by the impend-
ing realization of quantum computing hardware, these applications focus on
extending classical image processing tasks and applications to a quantum
computing framework [28, 62].

The pioneering research that led to what is now called QIMP should be
attributed to Venegas-Andraca and Bose’s qubit lattice description for quantum
images in 2003 [55]. Lattore then proposed another kind of representation, the
real ket [32], whose purpose was to encode quantum images as a basis for further
applications in QIMP. Recently, an integrated method of OQI and QIMP was
proposed to implement the ghost imaging experiment by utilizing the quantum
image circuit [64]. A complete ghost imaging circuit was established, including
the creation of quantum speckle patterns, the interaction between the patterns
and the quantum phase mask, and quantum computation of the cross-correlation.
The proposed protocol provided a platform to circumvent the need for computing
overhead in quantum ghost imaging.

The emerging subdiscipline of QIMP focuses on extending conventional image
processing operations to the quantum computing framework [28]. Because of some
of the powerful properties of quantum computation, notably entanglement and
parallelism, QIMP is already living up to its promise to herald the realization of
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technologies with unrivalled competition in terms of computing speed, security, and
storage requirements [62].

1.2.2.2 Storing an Image in a Quantum System

Image processing is a branch of computer science and engineering in which
information coming from the perception of electromagnetic waves is captured,
stored, and manipulated [24]. It is of interest to the scientific community for
two main reasons: improvement and availability of visual information for human
interpretation, and processing of scene data for autonomous machine perception
and artificial intelligence processes [54]. The raw material for image processing is
grayscale and/or color images (video can ultimately be converted to sets of frames).
In particular, the use of color is motivated by two principal factors: (1) color is a
powerful descriptor for object recognition, identification, and delimitation; and (2)
the human vision system is excellent at detecting thousands of color shades and
intensities, compared to only about two dozen shades of gray [51].

Human color perception is a physiopsychological phenomenon whose origin is
in the fact that the human eye can detect electromagnetic waves within a certain
frequency range (roughly 400–700 nm) [55]. Due to the structure of the human eye,
almost all colors are seen as combinations of the three so-called primary colors:
red, green, and blue (RGB). Several models have been developed to standardize
the specification of colors (some are hardware-oriented, while others are oriented
toward manipulation and hardcopy printing). Two color models are extensively used
in image processing, i.e., RGB and HSI (hue, saturation, and intensity) [24].

Color models are used to specify colors in a standard way that makes sense under
the theoretical and technological assumptions of classical computers and/or printing
systems. In the case of quantum computers, the continuous nature of the parameters
of a qubit allows to store information without preprocessing. This approach has a
clear advantage over color models: every color can be studied and analyzed using
actual values of its physical parameter (i.e., frequency), rather than a representation
(e.g., a linear combination of RGB) [55].

When Venegas-Andraca and Bose proposed the qubit lattice representation [55]
in 2003, they defined a machine A capable of detecting electromagnetic waves and,
depending on the frequency of the detected wave, outputting an initialized qubit
(note that a necessary property of A is to initialize qubits in different quantum states
for different detected frequencies). A acts like an injective function: F �→ ψ , where
F is the set of monochromatic electromagnetic waves whose frequencies can be
detected by A, and ψ is the set of quantum states of the form:

|ψ〉 = cos
θ

2
|0〉 + eiγ sin

θ

2
|1〉, (1.7)

where θ ∈ [0, π ]. Thus for each frequency value of a particular monochromatic
electromagnetic wave, it is always possible to find a value for θ in Eq. (1.7) such
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Fig. 1.7 Comparison of image processing by classical and quantum computers (figure and
descriptions adapted from [67])

that A can initialize qubits in different states when different waves are detected.
Parameter γ is left uninitialized for the moment, as the focus of the study is on how
to store, process, and retrieve information using a single quantum parameter [55].

An example of a realization of machine A is given here. First, build an apparatus
for frequency detection and recording; then, apply a magnetic field proportional to
the stored frequency to a spin-half particle originally prepared in either the spin-up
or spin-down state. In that way, it is possible to produce a quantum state whose
real parameter θ is proportional to the recorded frequency [21]. Because of the
continuous nature of θ , it is easy to accommodate the recording of a new color
whose frequency lies anywhere in a given domain without readjusting the storage
protocol. With digital storage protocols, the number of bits required to record color
must be adjusted once the storage capacity limit is reached [51].

In addition, image processing by classical and quantum computers is briefly
compared, as shown in Fig. 1.7, where F and G are the input and output images,
respectively. On a classic computer, an M×L image can be represented as a matrix,
encoded with at least 2n bits

(
n = �log2(ML)). Classical image transformation is

conducted by matrix computation U. Alternatively, the same image can be repre-
sented as a quantum state and encoded in n qubits. Quantum image transformation
is carried out by unitary evolution Û under a suitable Hamiltonian [67].

In this chapter, some essentials of quantum computation and information are
reviewed to help readers outside of quantum physics (e.g., computer scientists)
to understand the kernel of the QIMP area. Also introduced are several similar
concepts originated from both quantum computation and information and computer
science and engineering, such as quantum machine learning and quantum neural
networks. The background of QIMP and its radical difference from digital image
processing on classical computers are suggested as the cornerstone of the discus-
sions in this book.
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In the rest of the book, the popular quantum image representations and their
operations and applications are introduced. In fact, these pioneering representations
and the ensuing developments provide the essential proof that image processing in
the quantum computing domain can accelerate processing tasks, reduce computa-
tional requirements, and facilitate secure transmission. These benefits are attributed
to the characteristics of quantum computation and information, e.g., entanglement
and parallelism.
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Chapter 2
Quantum Image Representations

QIMP is devoted to utilizing quantum computing technologies to capture, manip-
ulate, and recover quantum images in different formats for various purposes [28].
This requires the encoding of images based on the quantum mechanical composition
of any potential quantum computing hardware to be developed [5]. This chapter
discusses several current mainstream quantum image representations (QIRs) and
their basic transformations.

2.1 Quantum Image Models

Available QIRs can be classified under various categories based on the requirements
defined to store the content of an image in a quantum system, i.e., image color
model, image coordinate model, and image color information encoding model [28].
In the following lines, each group is discussed.

2.1.1 Image Color Model

All of the QIRs in this group utilize the color model/visual difference to encode the
content of an image. In their qubit lattice QIR, Venegas-Andraca et al. averred that
the frequency of the physical nature of color could represent a color instead of the
traditional color models, e.g., RGB or HSI, so a color could be represented by one
qubit in a quantum computing system [27]. Similarly, all of the other QIRs using
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this model are built on the chromatic content of the image. Typically, the QIRs in
this model can be further grouped as follows:

• Binary-based
• Grayscale-based
• RGB-based

In [26], a method for storing and retrieving geometrical patterns using maximally
entangled states on binary images was presented. It harnesses entangled states so
that object shapes can be reconstructed without the use of auxiliary information.
The binary-based QIR in [26] can be used as a basis for more sophisticated QIMP
algorithms like segmentation, thresholding, and dithering. Furthermore, advanced
methods for storing and retrieving patterns using quantum entangled systems should
include more color details.

Along these lines, a flexible representation for quantum images (FRQI) was
proposed to integrate the grayscale color and position information of an image in
a normalized state that facilitates geometric and color transformations on the image
[10]. A single qubit is dedicated to encoding color information, thereby ensuring that
transformations on the image content can target the color only, or both the color and
position simultaneously. Specified quantum gates applied on predetermined areas of
the image can transform the color information as desired [15].

To effectively mimic human perception of visual effects, a true color image with
the three primary colors R, G, and B is a natural extension in the QIMP area.
Color image representations either utilize two sets of quantum states to, respectively,
represent M colors and N pixels in an image [16], or use different levels of angles
for RGB information and the tensor product with location information (Y- and X-
axis) to represent an image [23, 29]. Different from the simple color operations that
can be performed on a quantum image encoded in the FRQI representation, RGB-
based QIRs can separate an image into more than just its R, G, and B components.
They have an additional α channel to facilitate operations on the image’s content,
as in multi-channel quantum images (MCQI) [24], that can operate on the color of
interest (COI), color swapping (CS), and α blending transformations, which will be
reviewed in Sect. 2.3. In color image representation utilizing two sets of quantum
states for M colors and N coordinates, respectively (QSMC&QSNC) [16], it uses
two sets of quantum states for M colors and N coordinates, respectively, which
can both represent grayscale and color information of an image. In addition, it can
provide lossless compression with acceptable compression ratios and a quantum
search-based image segmentation method that is universal for grayscale and color
images.
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2.1.2 Image Coordinate Model

QIRs that utilize different coordinate systems to capture information about an image
are now addressed. QIRs that conform to this model include:

• Cartesian coordinate system-based
• Log-polar coordinate system-based
• Multi-dimension-based

A typical example of a coordinate system is the Cartesian coordinate system.
Pioneer QIRs include the qubit lattice, which maps every pixel to a single qubit
and stores images in two-dimensional arrays of qubits without preprocessing [27],
and the real ket, which utilizes the coefficients of a basis state of a qubit sequence
to represent the grayscale value of every pixel and stores an image in a quantum
superposition [9]. These could be described as QIRs processed on the basis of
intuitive, two-dimensional Cartesian coordinate systems, and most importantly, they
facilitate the basic geometric transformations on an image due to their special
coordinate structures. The third pioneering QIR, the FRQI representation [12], also
falls under the Cartesian coordinate system, and the flip, coordinate swapping,
orthogonal rotation, and their variants for quantum images have been fully studied
[11, 15].

Image representations on various coordinate systems often yield different oper-
ations and applications. Many complex affine transformations, such as rotation and
scaling, are not easily performed on QIRs based on the image coordinate model
because many irreversible interpolations are needed. Log-polar coordinates are
widely employed in sampling in classical image processing, where the sampling
resolutions of the log-radius and angular orientations are assumed to be 2m and
2n, respectively, in a 2m × 2n log-polar image. A quantum log-polar image
(QUALPI) has been proposed [31] for storing and processing images sampled
in log-polar coordinates. Complex geometric transformations can be performed
based on QUALPI images. For example, symmetry transformations, including
quantum centrosymmetry and quantum axisymmetry, can be efficiently performed,
and the rotation transformation by shifting the angular directions is lossless and
reversible because there is no interpolation. A fast rotation-invariant quantum
image registration algorithm was designed for QUALPI images, through which
the exact rotation difference between two quantum images can be found. The
relationship between these two kinds of two-dimensional image sampling methods
(the coordinate transformation between Cartesian coordinate system-based and log-
polar coordinate system-based images) is discussed in [31].

Three-dimensional descriptions of objects are useful because they rely on human
intuition and experience with the physical world. Furthermore, in science and
engineering, expressing problems within the frame of multi-dimensional Cartesian
systems using n-dimensional Euclidean spaces is common practice [18]. A multi-
dimensional image representation using a normal arbitrary quantum superposition
state (NAQSS) [17] expands the position information of an image to k binary
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arrays in k coordinates in the k-dimensional space. NAQSS requires n+1 qubits,
where n qubits represent colors and coordinates of 2n pixels, one qubit represents
information to improve the accuracy of image segmentation, and n+1 qubits
describe only the image (not including additional segmentation information) in
FRQI representation. In addition, due to a bijective function between color and
angle built in this quantum image model, it has no constraints in terms of the color
representation (it can represent both grayscale and RGB images by adjusting the
bijective function) [3].

2.1.3 Image Color Information Encoding Model

Finally, similar to the different classical image file formats, e.g., BMP, TIFF, and
JPEG, an image’s two fundamental items of information, i.e., color and position,
can be encoded in various ways. Considering this, QIRs under the color information
encoding model are divided into two categories:

• Encoded using one qubit through its angle parameter
• Encoded in the basis states of a sequence of qubits

In the first category are some of the pioneer QIRs. Representation models encode
the color information in the state of one qubit by establishing a bijective relationship
between the frequency of the monochromatic electromagnetic wave that determines
the color, and the angle parameter of a qubit, such as a qubit lattice [27], FRQI
[12], or QSMC&QSNC [16]. While their pixel position encoding varies—e.g., the
qubit lattice model uses no explicit quantum encoding of position information—
the position information of every pixel can be stored in a basis state of a 2n-qubit
sequence in the FRQI representation, and the position information can be encoded
in the angle parameter of a qubit by creating a bijection between the set of pixel
coordinates and a set of angles in the QSMC&QSNC method. It should be noted
that in this classification, the original classical image cannot be accurately retrieved,
notwithstanding a finite number of measurements. This is because the quantum
measurements only provide probabilistic results of the color angle [19]. Therefore,
multiple copies of the same quantum image must be prepared, followed by a
statistical procedure to estimate the probability amplitudes of the quantum states
encoding the colors of each pixel with a given accuracy [14].

Furthermore, Caraiman’s QIR approach (CQIR) in [1] and the novel enhanced
quantum representation (NEQR) model [30] were simultaneously and indepen-
dently proposed. In both QIRs, color information is encoded in the basis states of a
sequence of qubits so that the whole image is stored in two qubit sequences. This
is the second category identified above. Assume m qubits are used to encode all
of the possible gray levels presented in the image, which means the color model
is an m-qubit register. Both the color and position of a pixel are encoded in the
basic quantum states (instead of the superposition state with complex numbers as
coefficients); therefore, both the color and position information can be possibly
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retrieved deterministically through a finite number of projective measurements. In
addition, the number of representable colors and positions in an image does not
depend on the actual physical implementation of the quantum system, and a larger
class of more complex image processing operations can be applied using this model
because the color is represented using a computational basis state that can act as a
control for applying value-dependent color transforms and for computing statistics
in the image, as addressed in [2]. However, additional qubits are required to encode
the color information of images in this complex representation.

2.2 Flexible Representation for Quantum Images

The FRQI representation has shown widespread appeal in recent QIMP literature.
This representation is now introduced and some of its properties, as well as related
transformations, are highlighted [12].

2.2.1 FRQI Representation and Initialization

FRQI is similar to pixel representation of images on traditional computers. It
captures the essential information about the colors and the position of every point in
an image, and integrates them into a quantum state with the formula:

|I 〉 = 1

2n

22n−1∑
i=0

|ci〉 ⊗ |i〉, (2.1)

where

|ci〉 = cos θi |0〉 + sin θi |1〉, (2.2)

where |0〉 and |1〉 are two-dimensional computational basis states; |i〉, i =
0, 1,. . . , 22n − 1, are 22n-dimensional computational basis states; and θ =
(θ0, θ1, . . . , θ22n−1), θi ∈ [0, π

2 ], is the vector of angles encoding colors. The
two parts in the FRQI representation of an image, |ci〉 and |i〉, respectively encode
information about the colors and corresponding positions in the image. An example
of a 2× 2 FRQI image with its quantum state is shown in Fig. 2.1.

In quantum computation, computers are usually initialized in well-prepared
states [19]. Hence, a preparation process is necessary to transform quantum com-
puters from the initialized state to the desired quantum image state. The polynomial
preparation theorem (PPT), which follows from Theorem 2.1, demonstrates an
efficient preparation process [12].
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Fig. 2.1 A 2× 2 FRQI image and its quantum state

Theorem 2.1 Given a vector θ = (θ0, θ1, · · · , θ22n−1) of angles (θi ∈ [0, π
2 ], i =

0, 1, · · · , 22n − 1), there is a unitary transform P that turns quantum computers
from the initialized state, |0〉⊗2n+1, to the FRQI state in Eq. (2.1), composed of a
polynomial number of simple gates.

Proof There are two steps to achieve the unitary transform P , where Hadamard
transforms are first used to change |0〉⊗2n+1 to |H 〉, followed by controlled-rotation
transforms from |H 〉 to |I 〉.

Considering the two-dimensional identity matrix I and the 2n Hadamard matrices
H⊗2n, applying the transform H = I ⊗H⊗2n on |0〉⊗2n+1 produces the state |H 〉:

H (|0〉⊗2n+1) = 1

2n
|0〉 ⊗

22n−1∑
i=0

|i〉 = |H 〉. (2.3)

In addition, the rotation matrices Ry(2θi) and controlled-rotation matrices Ri

with i = 0, 1, · · · , 22n − 1 are considered, i.e.,

Ry(2θi) =
(

cos θi − sin θi

sin θi cos θi

)
, (2.4)

Ri =
(
I ⊗

22n−1∑
j=0,j �=i

|j 〉〈j |
)
+ Ry(2θi)⊗ |i〉〈i|. (2.5)

The controlled-rotation Ri is a unitary matrix, since RiR
†
i = I⊗2n+1. Applying

Rk and RlRk on |H 〉 gives:

Rk(|H 〉) = Rk

⎛
⎝ 1

2n
|0〉 ⊗

22n−1∑
i=0

|i〉
⎞
⎠

= 1

2n

⎡
⎣I |0〉 ⊗

⎛
⎝ 22n−1∑

i=0,i �=k

|i〉〈i|
⎞
⎠

⎛
⎝22n−1∑

i=0

|i〉
⎞
⎠
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+Ry(2θk)|0〉 ⊗ |k〉〈k|
⎛
⎝22n−1∑

i=0

|i〉
⎞
⎠

⎤
⎦ (2.6)

= 1

2n

⎡
⎣|0〉 ⊗

⎛
⎝ 22n−1∑

i=0,i �=k

|i〉
⎞
⎠+ (cos θk|0〉 + sin θk|1〉)⊗ |k〉

⎤
⎦ ,

and

RlRk|H 〉 = Rl(Rk|H 〉)

= 1

2n

⎡
⎣|0〉 ⊗

⎛
⎝ 22n−1∑

i=0,i �=k,l

|i〉
⎞
⎠+ (cos θk|0〉 + sin θk|1〉)⊗ |k〉

+ (cos θl |0〉 + sin θl |1〉)⊗ |l〉
⎤
⎦ .

(2.7)

It is obvious from Eq. (2.7) that

R|H 〉 =
⎛
⎝22n−1∏

i=0

Ri

⎞
⎠ |H 〉 = |I 〉. (2.8)

Therefore, the unitary transform P = RH turns quantum computers from the
initialized state |0〉⊗2n+1 to the FRQI state |I 〉. The computational complexity of
the preparation for FRQI image can be calculated as O(24n) [12].

The essential requirements to represent a classical or quantum image are
simplicity and efficiency in the storage and retrieval of the image [14]. The storage
of an FRQI image is achieved by the preparation process using the PPT as discussed
earlier. The measurement of the quantum image state produces a probability
distribution that is used for the retrieval of the image. As presented in Sect. 1.1.2,
measuring a quantum state produces an outcome and a post-measurement quantum
state, which is a projection of the state vector onto the basis vector that corresponds
to the outcome obtained. Therefore, to extract the angles encoding the gray levels
and the corresponding positions from the image, many identical FRQI states are
required. Multiple measurement operations on these identical quantum states give
information about the quantum state in the form of a probability distribution [12].

It is noteworthy that with general quantum states, the probability distributions are
not enough to clearly understand the states because their coefficients are complex
numbers. The FRQI, however, contains only real-valued coefficients that enable
retrieval of all of the information about the state [14].
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2.2.2 Geometric Transformations on FRQI Images

Having the basic model to represent images on a quantum computer, a discussion
of transformations used to change information on quantum images can begin.
Fast geometric transformations on quantum images (GTQI) [11] are operations
performed based on the geometric information of images, i.e., information about
the position of every point in the image. The flips, coordinate swapping, orthogonal
rotations, and their variants for FRQI images are introduced using basic NOT,
CNOT, and Toffoli gates (refer to Fig. 1.5 for a reminder of those gates).

2.2.2.1 Flip and Coordinate Swap Operations

Flip and coordinate swaps are fundamental operations in classical image processing,
hence both operations must be defined within the quantum computing realm. The
flipping operation on FRQI images is defined as follows [11].

Definition 2.1 The flipping operations on FRQI images along the X- and Y -axis
are the operations FX

I and FY
I , which, when applied on |I 〉 in Eq. (2.1), produce

outputs of the form:

FX
I (|I 〉) = 1

2n

22n−1∑
k=0

|ck〉 ⊗ FX (|k〉) , (2.9)

FY
I (|I 〉) = 1

2n

22n−1∑
k=0

|ck〉 ⊗ FY (|k〉) , (2.10)

where |k〉 = |y〉|x〉 and

FX (|y〉|x〉) = |ȳ〉|x〉, (2.11)

FY (|y〉|x〉) = |y〉|x̄〉, (2.12)

|x〉 = |xn−1xn−2 . . . x0〉, |y〉 = |yn−1yn−2 . . . y0〉, (2.13)

|x̄〉 = |x̄n−1x̄n−2 . . . x̄0〉, |ȳ〉 = |ȳn−1ȳn−2 . . . ȳ0〉, (2.14)

where

x̄i = 1− xi, ȳi = 1− yi, i = 0, 1, . . . , n− 1. (2.15)

It is found that FX and FY operations can be built using NOT gates and the
complexity of flipping operations, as in Eqs. (2.11) and (2.12), is O(n) on 2n-qubit



2.2 Flexible Representation for Quantum Images 27

Fig. 2.2 (a) Image flipping along X-axis and (b) its circuit

Fig. 2.3 (a) Image flipping along Y-axis and (b) its circuit

FRQI images [12]. Figures 2.2 and 2.3 show examples of image flipping along the
X- and Y-axis, respectively, where the original position of the block is depicted by
red dotted lines for comparison.

These flipping operations can be naturally extended to coordinate-swapping
operations, which are defined as follows [11].
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Fig. 2.4 (a) An example of a coordinate-swapping operation and (b) its circuit

Definition 2.2 The coordinate-swapping operation CI , when applied on |I 〉 in
Eq. (2.1), produces outputs of the form:

CI (|I 〉) = 1

2n

22n−1∑
k=0

|ck〉 ⊗ C (|k〉) , (2.16)

where |k〉 = |yx〉 and

C (|yx〉) = |xy〉. (2.17)

The complexity of the coordinate-swapping operation CI , as in Eq. (2.16), on
2n-qubit FRQI images is O(n) [12]. Figure 2.4 shows an example of a coordinate-
swapping operation and its circuit, in which the swap gate can be built from three
CNOT gates, as shown in Fig. 1.4 in Sect. 1.1.3.1.

2.2.2.2 Orthogonal Rotation Operations

Image orthogonal rotations are image rotations with the angles 90◦, 180◦, and 270◦.
Mathematical results show that orthogonal rotations can be achieved by flipping and
coordinate swapping [11].
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Definition 2.3 The orthogonal rotation operations on FRQI images are the opera-
tions R90

I , R180
I , and R270

I , which, when applied on |I 〉 in Eq. (2.1), produce outputs
of the form:

Ra
I (|I 〉) = 1

2n

22n−1∑
k=0

(cos θk|0〉 + sin θk|1〉)⊗ Ra (|k〉) , (2.18)

where a ∈ {90, 180, 270}, |k〉 = |yx〉, and

R90 (|yx〉) = |xȳ〉,
R180 (|yx〉) = |ȳx̄〉,
R270 (|yx〉) = |x̄y〉.

(2.19)

Proof The rotations can be built from flipping and coordinate-swapping operations
as

R90 = CFX,

R180 = FY FX,

R270 = CFY .

(2.20)

The complexity of the orthogonal rotations R90, R180, and R270 on 2n-qubit
FRQI images is O(n) [12]. Figures 2.5 show examples of image orthogonal
rotations and their corresponding circuits.

2.2.2.3 Restricted Geometric Transformations

Once geometric transformations became well understood, quantum programmers
thought of designing smaller versions of geometric transformations as the main
components to realize other more complex operations [6]. By imposing additional
restrictions to indicate specific locations, the transformations described earlier can
be confined to small subareas within a larger image. Operations restricted to smaller
subareas of an image are referred to as restricted geometric transformations on
quantum images [7].

In the FRQI representation, the realization of these kinds of transformations
becomes simple by exercising more control over the original transformation.
Figure 2.6 shows the example of a 90◦ rotation of the lower-left quarter of an image.
To clarify the circuit’s complexity when the additional control conditions are added
to the GTQI operations, Le et al. discussed regarding the relationship between the
number of control conditions and the size of the affected area in an FRQI image
[15]. The more controls a transformation has, the smaller the size of the affected
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Fig. 2.6 (a) 90◦ image rotation (lower-left quarter) and (b) its circuit

area. Specifying the area in which the transformation will be applied increases the
complexity of the new transformation in terms of the depth and the number of basic
gates in the corresponding circuit.

2.2.3 Color Transformations on FRQI Images

Color transformation on quantum images (CTQI) [13] is an operation used to
process the color information of FRQI images (either an area of an image or the
whole image). FRQI utilizes a single qubit to store the color information of the
image, which ensures that the transformation of the image content can focus on
only the color of the pixels, or both their color and position. When a single-qubit
gate is applied on the color wire in FRQI representation, the color of every position
in the entire image is changed. The basic single-qubit gates and their performance
on FRQI images are discussed below.

2.2.3.1 Color Transformation Based on NOT Gate

The first single-qubit gate is a NOT gate or X gate. Its function is defined as

X =
(

0 1
1 0

)
, (2.21)

X|0〉 = |1〉, X|1〉 = |0〉. (2.22)
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When the X gate is applied on a color wire, its performance is

X(|c(θk)〉) = |c
(π

2
− θk

)
〉,∀k ∈

{
0, 1, . . . , 22n − 1

}
, (2.23)

where |c(θk)〉 is the color information, as defined in Eq. (2.2).
The function of the X gate is like a color-inversion operation. It inverts the color

of an entire image, from black to white and vice versa.

2.2.3.2 Color Transformation Based on Pauli-Z Gate

The second single-qubit gate is the Pauli-Z gate (or Z gate), whose function is
defined as

Z =
(

1 0
0 − 1

)
, (2.24)

Z|0〉 = |0〉, Z|1〉 = −|1〉. (2.25)

When applied on a color wire, the Z gate performs the transformation:

Z(|c(θk)〉) = |c(−θk)〉,∀k ∈ {0, 1, . . . , 22n − 1}. (2.26)

Its function is to change the sign of the angle that encodes the color information,
which is useful when combined with other gates.

2.2.3.3 Color Transformation Based on Hadamard Gate

The third single-qubit gate is the Hadamard gate, or H gate, whose function is

H = 1√
2

(
1 1
1 − 1

)
, (2.27)

H |0〉 = 1√
2
(|0〉 + |1〉),H |1〉 = 1√

2
(|0〉 − |1〉). (2.28)

When the H gate is applied on a color wire, its performance is

H(|c(θk)〉) = |c
(π

4
− θk

)
〉,∀k ∈

{
0, 1, . . . , 22n − 1

}
, (2.29)

whose function is to neutralize the color of every position in the image.
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2.2.3.4 General Form of Color Transformations

The general form of the above transformations, X, Z, and H, can be expressed as the
unitary matrix:

C(2θ) =
(

cos θ sin θ

sin θ − cos θ

)
, (2.30)

where θ ∈ [
0, π

2

]
. When applied on the color wire of an image, the C(2θ) operator

transforms the color information as

C(2θ)(|c(θk)〉) = |c(θ − θk)〉,∀k ∈
{

0, 1, . . . , 22n − 1
}

. (2.31)

This operation changes the original color, encoded by θk , to a new color, encoded
by θ − θk . Combining this operation with the Z gate, one can obtain a new color
represented by θ + θk . The transformations X, H, and Z are special cases of C(θ),
where θ equals π , π

2 , and 0, respectively.
Finally, an example of color transformation on a quantum image is shown in

Fig. 2.7, where (a) is the original 8 × 8 FRQI image that includes four gray levels
(black, dark gray, light gray, and white). Applying the NOT gate on the color wire
of the circuit in (b), the color-transformed image shown in (c) can be obtained. The
function of the NOT gate is analogous to inverting all the color information of the
image. In fact, by specifying the subareas and imposing the necessary constraints
as discussed in Sect. 2.2.2.3, multiple color transformations can be run on a single
FRQI image.

To summarize, FRQI is a normalized quantum state which captures the color and
position information of each pixel in the image. Based on its flexible model, basic
geometric and color transformations similar to classical image processing can be
easily constructed. Other FRQI-based operations as well as related applications will
be introduced in the following chapters.

Fig. 2.7 (a) A synthetic 8×8 FRQI image; (b) the quantum circuit; and (c) the transformed image
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2.3 Multi-Channel Representation for Quantum Images

By extending the grayscale information encoded in an FRQI image to a color
representation, a multi-channel representation for quantum images (MCQI), which
uses R, G, and B channels to represent color information about the image while
retaining its normalized state, was proposed in [23]. MCQI allows to design some
low-complexity color information operators. These can be realized by applying
quantum gates on the R, G, and/or B wires of the circuits, which implies that
the computational complexities of these operators are independent of the image
size. Moreover, MCQI and related operations provide efficient tools for quantum
watermarking algorithms, etc. based on color images by hiding secret information
in the design of quantum circuits [24].

2.3.1 RGBα Color Space

The RGB color model [21], one of the best-known multi-channel color models,
specifies colors in three primary channels or components, i.e., red (R), green (G),
and blue (B). It is an additive color model in which red, green, and blue light are
combined in various ways to reproduce a broad array of colors. The amount of each
component gives an image intensity. If all components have the highest intensity,
then the resulting color is white. In the RGB color model, one original color image
can be constructed from three grayscale images (channels or components). As the
most widely used color spaces for sensing, representation, and display of images
in electronic systems, the RGB color model plays an important role in image
processing [21].

The RGBα color space is actually a use of the RGB color model with extra
information. The color belongs to the RGB color space, as discussed earlier, and α

represents the α channel, which is normally used as an opacity channel [4].
Specifically, if a pixel has a value of 0 in its alpha channel (i.e., Tα = 0), then

this pixel is fully transparent (thus invisible), whereas a value of 255 in the alpha
channel (Tα = 255) gives a fully opaque pixel (i.e., traditional digital images).
Values between 0 and 255 make it possible for pixels to show through a background
like a glass (i.e., translucency). For example, given two images A and B (assuming
images of the same size), A is the original image and B is the background image,
and after α blending, the obtained image D can be defined as

DX(i, j) = [
TαAX(i, j)+ (255− Tα)BX(i, j)

]
/255, (2.32)

where AX(i, j), BX(i, j), and DX(i, j) are the X channel’s grayscale values
of pixels of images A, B, and D, respectively, and X ∈ {R,G,B}. Tα is the
transparency parameter of the α channel. Examples of α blending images are shown
in Fig. 2.8.
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Fig. 2.8 Example of α blending operation: (a) Image A; (b) Image B; (c) Tα = 178; (d) Tα = 128;
and (e) Tα = 77

2.3.2 MCQI Representation and Initialization

To process color images on quantum computers, a new representation encoding
information from the R, G, and B channels should be established, and this multi-
channel information should be stored in quantum states simultaneously. Based
on FRQI representation, multi-channel representation of quantum images (MCQI)
was proposed to capture RGB channel information [24]. This is accomplished by
assigning three qubits to encode color information about images. The mathematical
expression is

|I 〉 = 1

2n+1

22n−1∑
i=0

|Ci
RGB〉 ⊗ |i〉, (2.33)

where |Ci
RGB〉 encodes R, G, and B channel information and is defined as

|Ci
RGB〉 = cos θi

R|000〉 + cos θi
G|001〉 + cos θi

B |010〉
+ sin θi

R|100〉 + sin θi
G|101〉 + sin θi

B |110〉
+ cos θα|011〉 + sin θα|111〉,

(2.34)
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Fig. 2.9 A 2× 2 MCQI image and its quantum state

where |000〉, |001〉, . . . , |111〉 are eight-dimensional computational basis states;
{θi

R, θ i
G, θ i

B} ∈ [0, π/2] are three angles encoding colors of the R, G, and B
channels, respectively, of the i-th pixel; and |i〉, i = 0, 1, . . . , 22n − 1, are 22n-
dimensional computational basis states. Only three channels (i.e., six coefficients)
are enough to encode the RGB information of the MCQI image. Hence, the
coefficients of |011〉 and |111〉 (i.e., cos θα and sin θα) are set to be constant (θα = 0)
to carry no information [23]. An example of a 2× 2 MCQI image with its quantum
state is presented in Fig. 2.9. The computational complexity of preparing the MCQI
image is the same as for FRQI, i.e., O(24n) [24].

An MCQI image is stored in the preparation process using the MC-PPT that
extends the vector in Theorem 2.1 to three vectors of angles [24]. MC-PPT steers
an MCQI image from its initialized state to the desired quantum image state, which
captures all of the information about the image. In addition, to retrieve the quantum
image, the R, G, and B states must be measured separately. To illustrate this point,
Eq. (2.34) is rewritten as

|Ci
RGB〉 = |CR〉|00〉 + |CG〉|01〉 + |CB〉|10〉 + |Cα〉|11〉, (2.35)

where

|CR〉 = cos θi
R|0〉 + sin θi

R|1〉,
|CG〉 = cos θi

G|0〉 + sin θi
G|1〉,

|CB〉 = cos θi
B |0〉 + sin θi

B |1〉,
|Cα〉 = cos θα|0〉 + sin θα|1〉.

(2.36)

From Eqs. (2.35) and (2.36), the measurement operation is applied separately to
|CR〉, |CG〉, and |CB〉, encoding the grayscale values of the R, G, and B channels
using two control operations from c2 and c3 qubits, as shown in Fig. 2.10. Each
measurement on |CX〉 (where X ∈ {R,G,B}) gives either 0 or 1 as a result. Many
measurements reveal either 0 with probability cos2 θi

X or 1 with probability sin2 θi
X.

The grayscale value of the X channel can be retrieved from this probability.
An improved version of MCQI representation, color quantum image based

on phase transform (CQIPT) [22], was proposed, where the color information is
prepared by controlled-phase gates. This is especially flexible for many image
processing and security algorithms based on phase encoding.
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Fig. 2.10 General quantum circuit for measurement operations on |CX〉

2.3.3 Color Transformations on MCQI Images

FRQI and MCQI representations use the same method for position information
encoding, e.g., the same arrangement for position qubits. They differ in their use
of color qubits; FRQI uses one qubit to encode an image color, whereas MCQI
uses three qubits to carry multi-channel color information. Consequently, MCQI
representation exhibits two features:

• All of the FRQI-based geometric operations, such as flipping and coordinate
swapping, are directly extended to MCQI images.

• Since multi-channel information is stored in three color qubits, more color
information-based image operations can be developed.

Color transformations on MCQI images [25] are now introduced. These are
executed using the basic quantum gates, including NOT, CNOT, and swap gates.
None of these transformations can be executed on FRQI images.

2.3.3.1 Channel of Interest Operation

The channel of interest (COI) operator shifts the grayscale value of a color channel
(R, G, B, or α) [25], and is defined as

COIX = UX ⊗ I⊗2n, X ∈ {R,G,B, α}. (2.37)

The COIX operator is realized by using a UX = C2(Ry(2θ)) gate, where θ is the
shifting parameter. The calculation produces the result |IX〉 from the application of
COIX on |I 〉, given as

|IX〉 = COIX|I 〉

= (
UX ⊗ I⊗2n

)
⎛
⎝ 1

2n+1

22n−1∑
i=0

|Ci
RGBα〉 ⊗ |i〉

⎞
⎠

= 1

2n+1

22n−1∑
i=0

|CXi

RGBα〉 ⊗ |i〉,

(2.38)
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Fig. 2.11 General quantum circuit for UX operations

Fig. 2.12 A C2(Ry(2θ)) gate can be built from C(Ry(θ)), C(Ry(−θ)), and CNOT gates

where the |Ci
RGBα〉 state carries the RGB color information defined in Eq. (2.34),

and |CXi

RGBα〉 is the new color state after applying the COIX operator, shown as

|CRi

RGBα〉 = cos(θ i
R − θ)|000〉 + cos θi

G|001〉 + cos θi
B |010〉 + cos θi

α|011〉
+ sin(θ i

R − θ)|100〉 + sin θi
G|101〉 + sin θi

B |110〉 + sin θi
α|111〉,

(2.39)

|CGi

RGBα〉 = cos θi
R|000〉 + cos(θ i

G − θ)|001〉 + cos θi
B |010〉 + cos θi

α|011〉
+ sin θi

R|100〉 + sin(θ i
G − θ)|101〉 + sin θi

B |110〉 + sin θi
α|111〉,

(2.40)

|CBi

RGBα〉 = cos θi
R|000〉 + cos θi

G|001〉 + cos(θ i
B − θ)|010〉 + cos θi

α|011〉
+ sin θi

R|100〉 + sin θi
G|101〉 + sin(θ i

B − θ)|110〉 + sin θi
α|111〉,

(2.41)

|Cαi

RGBα〉 = cos θi
R|000〉 + cos θi

G|001〉 + cos θi
B |010〉 + cos(θ i

α − θ)|011〉
+ sin θi

R|100〉 + sin θi
G|101〉 + sin θi

B |110〉 + sin(θ i
α − θ)|111〉.

(2.42)

All of the colors in the quantum image |IX〉 come from the original image |I 〉 by
shifting the angle θ on the R, G, B, or α channel. The quantum circuits of UX (UR ,
UG, UB , and Uα) are C2(Ry(2θ)) gates, as shown in Fig. 2.11, and the C2(Ry(2θ))

can be constructed from elementary gates (controlled-rotation and CNOT gates), as
shown in Fig. 2.12.
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Specifically, the rotation operation is applied to the c1 qubit, and control
operations are from the c2 and c3 qubits. No operation is applied to position qubits,
so the complexity of the COI operation on a quantum computer is independent of
image size, and is O(1) [25].

2.3.3.2 Channel-Swapping Operation

The channel-swapping (CS) operator is used to swap the grayscale values between
two channels (R and G, R and B, or G and B) [25], and is defined as

CSY = I ⊗ UY ⊗ I⊗2n, Y ∈ {RG,RB,GB}. (2.43)

The CSY operator uses a CNOT gate or swap gate on c2 and c3 color qubits. The
application of CSY on |I 〉 produces the result |IY 〉, given as

|IY 〉 = CSY |I 〉

= (
I ⊗ UY ⊗ I⊗2n

)
⎛
⎝ 1

2n+1

22n−1∑
i=0

|Ci
RGBα〉 ⊗ |i〉

⎞
⎠

= 1

2n+1

22n−1∑
i=0

|CYi

RGBα〉 ⊗ |i〉,

(2.44)

where |CYi

RGBα〉 is the new color state after applying the CSY operator, shown as

|CRGi

RGBα〉 = cos θi
G|000〉 + cos θi

R|001〉 + cos θi
B |010〉 + cos θi

α|011〉
+ sin θi

G|100〉 + sin θi
R|101〉 + sin θi

B |110〉 + sin θi
α|111〉,

(2.45)

|CRBi

RGBα〉 = cos θi
B |000〉 + cos θi

G|001〉 + cos θi
R|010〉 + cos θi

α|011〉
+ sin θi

B |100〉 + sin θi
G|101〉 + sin θi

R|110〉 + sin θi
α|111〉,

(2.46)

|CGBi

RGBα〉 = cos θi
R|000〉 + cos θi

B |001〉 + cos θi
G|010〉 + cos θi

α|011〉
+ sin θi

R|100〉 + sin θi
B |101〉 + sin θi

G|110〉 + sin θi
α|111〉.

(2.47)

Quantum image |IY 〉 is obtained from the original image |I 〉 by applying the
CSY operation. The quantum circuits of UY (URG, URB , and UGB ) are shown in
Fig. 2.13. Since unitary operations (URG, URB , and UGB ) are constructed using two
CNOT gates (Fig. 2.13a, b) and one swap gate (Fig. 2.13c), the complexity of the
channel-swapping operation is O(1) [25].
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Fig. 2.13 General quantum circuit for UY operations

2.3.3.3 α Blending Operation

The α blending (αB) operator is used to blend an image A with a background image
B to create the appearance of partial or full transparency [25], and is defined as

αBAB = UAB ⊗ I⊗2n. (2.48)

Assume that images A and B are MCQI images of the same size with four
components (R, G, B, and α), where A is the image to be blended and B is the
background image. To encode the two images in MCQI states, one ancilla qubit is
used with the MCQI qubits (three color qubits and 2n position qubits for a 2n × 2n

image), shown as

|IAB〉 = 1

2n+ 3
2

2n−1∑
i=0

(|0〉 ⊗ |Ci
A〉 + |1〉 ⊗ |Ci

B〉
)⊗ |i〉, (2.49)

where |Ci
A〉 and |Ci

B〉 are the color states of images A and B, respectively, and are
defined as

|Ci
A〉 = cos θi

AR|000〉 + cos θi
AG|001〉 + cos θi

AB |010〉 + cos θi
Aα|011〉

+ sin θi
AR|100〉 + sin θi

AG|101〉 + sin θi
AB |110〉 + sin θi

Aα|111〉,
(2.50)

|Ci
B〉 = cos θi

BR|000〉 + cos θi
BG|001〉 + cos θi

BB |010〉 + cos θi
Bα|011〉

+ sin θi
BR|100〉 + sin θi

BG|101〉 + sin θi
BB |110〉 + sin θi

Bα|111〉,
(2.51)

where θAX and θBX (X ∈ {R,G,B, α}) are angles encoding the color information
of images A and B, respectively. Since the two images are totally opaque before
blending, the initial values of θi

Aα and θi
Bα are 0. After storing the two images

concurrently, two controlled-rotation gates are applied on the a1 and color (c1, c2,
c3) qubits, where the control operations are on a1, c2, and c3 and the rotations are
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Fig. 2.14 General quantum circuit for UAB operations

on the c1 qubits (as shown in Fig. 2.14). The computational procedure is

|IαB〉 = αBAB |IAB〉

= 1

2n+ 3
2

2n−1∑
i=0

UAB

(|0〉 ⊗ |Ci
A〉 + |1〉 ⊗ |Ci

B〉
)⊗ I⊗2n|i〉

= 1

2n+ 3
2

2n−1∑
i=0

(|0〉 ⊗ |C′iA〉 + |1〉 ⊗ |C′iB〉)⊗ |i〉,
(2.52)

where

|C′iA〉 = cos θi
AR|000〉 + cos θi

AG|001〉 + cos θi
AB |010〉 + cos(θ i

Aα − θ)|011〉
+ sin θi

AR|100〉 + sin θi
AG|101〉 + sin θi

AB |110〉 + sin(θ i
Aα − θ)|111〉,

(2.53)

|C′iB〉 = cos θi
BR|000〉 + cos θi

BG|001〉 + cos θi
BB |010〉 + cos

(
θi
Bα + θ − π

2

)
|011〉

+ sin θi
BR|100〉 + sin θi

BG|101〉 + sin θi
BB |110〉 + sin

(
θi
Bα + θ − π

2

)
|111〉.
(2.54)

Generally, αB operations can be used in image matte, image rendering, and
watermarking. In addition, by utilizing the restricted geometric transformations
in Sect. 2.2.2.3, the color transformations above can realize a restricted color
transformation, which is a color transformation on just the part of the image of
interest.

To summarize, MCQI representation is an extension of FRQI representation that
facilitates more advanced color image processing by applying different operations
on the R, G, and B channels. Related applications will be discussed in later chapters.
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2.4 Novel Enhanced Representation for Quantum Images

In the FRQI and MCQI representations, the color information is encoded by the
superposition of one and three qubits, separately. Therefore, these quantum images
will probably be retrieved based on multiple measurements. A novel enhanced
quantum representation for digital images (NEQR) [30] that improves on the
earlier models is now introduced. The new model uses the basis state of a qubit
sequence to store the grayscale value of every pixel. Therefore, two qubit sequences,
representing the grayscale and positional information of all of the pixels, are used
in NEQR representation to store the whole image.

2.4.1 NEQR Representation and Initialization

NEQR representation uses the basis state of a qubit sequence to store the grayscale
value of every pixel, instead of an angle encoded in a qubit, as in FRQI representa-
tion [30]. The representation of a 2n × 2n NEQR image is defined as

|I 〉 = 1

2n

2n−1∑
y=0

2n−1∑
x=0

|f (y, x)〉|yx〉 = 1

2n

2n−1∑
y=0

2n−1∑
x=0

q−1⊗
i=0

|Ci
yx〉|yx〉. (2.55)

where f (y, x) is the grayscale value, defined as

f (y, x) = C
q−1
yx C

q−2
yx . . . C1

yxC
0
yx, (2.56)

where Ci
yx ∈ {0, 1} and f (y, x) ∈ [0, 2q − 1]. An example of a 2× 2 NEQR image

and its quantum state is shown in Fig. 2.15.
The computational complexity of preparing an NEQR image exhibits an approx-

imately quadratic decrease, i.e., O(qn · 22n), compared to FRQI and MCQI images
[30]. However, it should be stressed that NEQR representation uses more qubits
to encode a quantum image. From its representation, q+2n qubits are needed to
construct the quantum image model for a 2n× 2n image with gray range 2q . The 2n
qubits for position information is the same as for FRQI and MCQI representation.
NEQR uses q qubits for color information, while FRQI and MCQI use one qubit

Fig. 2.15 A 2× 2 NEQR image and its quantum state
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and three qubits, respectively. Researchers have devised improved NEQR (INEQR)
and generalized QIR (GQIR) by resizing the quantum image to an arbitrary size for
wider applications [8].

The first step in preparing an NEQR image is similar to that for an FRQI
image, as presented in Sect. 2.2.1, hence, it is not repeated here. In the second
step, the grayscale value for every pixel is set. This step is divided into 22n sub-
operations to store the grayscale information for every pixel. During image retrieval
from the quantum image, every pixel should be recovered individually by quantum
measurements over the computational basis. After all pixels are recovered, the
accurate classical image will be retrieved from the NEQR image model [30].

2.4.2 Color Transformations on NEQR Images

This section will discuss how to use the NEQR representation for QIMP, including
complement color transformation as well as color transformation on the quantum
image [30].

2.4.2.1 Complement Color Transformation

Complement color transformation changes all the grayscales of the pixels in
an NEQR image to the complement values on 2q [30]. The complement color
transformation UC is defined as

UC = X⊗q ⊗ I⊗2n, (2.57)

where X denotes the NOT gate and I represents the identity gate, as presented in
Fig. 1.5.

For a quantum image |I 〉, UC takes q NOT gates for each color qubit and 2n
identity gates for others. Therefore, this operation inverts all the color qubits in
the NEQR model and changes the grayscale value of every pixel in the image to
its opposite value. Equation (2.58) produces the result of the UC operation on the
quantum image |I 〉 as

UC(|I 〉) = UC

⎛
⎝ 1

2n

2n−1∑
y=0

2n−1∑
x=0

|f (y, x)〉|y〉|x〉
⎞
⎠

= 1

2n

2n−1∑
y=0

2n−1∑
x=0

(
q−1⊗
i=0

(
X|Ci

yx〉
)
|y〉|x〉

)

= 1

2n

2n−1∑
y=0

2n−1∑
x=0

|2q − 1− f (y, x)〉|y〉|x〉.

(2.58)
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Fig. 2.16 (a) Quantum circuit of UC transformation; (b) Lena image; and (c) the transformed
image (reprinted from ref. [30], with permission of Springer)

Figure 2.16 shows the quantum circuit of UC on the NEQR model, with the Lena
image used as an example. This complement color transformation makes the target
in the image (notably medical images) easier to be found [30].

In the NEQR image, all of the pixels are stored in a 2n+ q qubit sequence. This
means that all of the color transformations for all of the pixels can be performed
simultaneously. Hence, complement color transformations have a computational
complexity of no more than O(2n+ q) [30].

2.4.2.2 And/or Color Transformation

Digital and/or binary gates, as traditionally defined in computer science, are
irreversible operations. Since unitary operators are reversible and all operations in
quantum computation are required to be physically realizable, then and/or operators
must be reformulated in quantum computation. Luckily, any irreversible operation
can be expressed as a reversible operation (usually at the expense of some ancilla
information).
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Fig. 2.17 (a) Quantum ∩ gate and (b) quantum ∪ gate

Two common quantum gates (the Toffoli gate and swap gate, introduced in
Sect. 1.1.3) and an ancillary qubit are utilized to construct quantum and/or gates
[30]. The following notations are used: symbols ∧ and ∨ are used to refer to and/or
operations over binary variables, respectively, while the symbols ∩ and ∪ are used
to refer to and/or operations over qubits.

An ancillary qubit initialized as |0〉 is employed to construct the quantum circuit
of the quantum ∩ gate, shown in Fig. 2.17a. The quantum transform is

∩ : |a〉|b〉|0〉 → |a〉|a ∩ b〉|b〉. (2.59)

Similarly, a quantum ∪ gate is constructed with an ancillary qubit initialized as
|1〉 as in Fig. 2.17b. The transformation of a quantum ∪ gate is given by

∪ : |a〉|b〉|1〉 → |a〉|a ∪ b〉|b〉. (2.60)

The quantum ∩ gate is utilized to design the operation US [30], defined as

US : |Cq−1
yx 〉|C0

yx〉|0〉 → |Cq−1
yx 〉|Cq−1

yx ∩ C0
yx〉|C0

yx〉, (2.61)

whose input is the highest qubit |Cq−1
yx 〉 and lowest qubit |C0

yx〉 in the color qubit

sequence, and whose output will be stored in the qubit |C0
yx〉. The US transformation

on a quantum image |I 〉 is

US : |I 〉|0〉 → 1

2n

2n−1∑
y=0

2n−1∑
x=0

(
q−1⊗
i=0
|Ci

yx〉
)
|Cq−1

yx ∩ C0
yx〉|y〉|x〉|C0

yx〉

= 1

2n

2n−1∑
y=0

2n−1∑
x=0,C

q−1
yx =1

|1〉
(

q−2⊗
i=0
|Ci

yx〉
)
|C0

yx〉|y〉|x〉|C0
yx〉

+ 1

2n

2n−1∑
y=0

2n−1∑
x=0,C

q−1
yx =0

|0〉
(

q−2⊗
i=0
|Ci

yx〉
)
|0〉|y〉|x〉|C0

yx〉.

(2.62)
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Fig. 2.18 (a) Quantum circuit of US transformation; (b) Lena image; and (c) the transformed
image (reprinted from ref. [30], with permission of Springer)

Figure 2.18 shows the quantum circuit of the US transformation and the
comparative results, where a quantum ∩ gate is taken on |C7

yx〉, |C0
yx〉, and an

ancillary qubit |0〉. This kind of transformation can be applied in image-adaptive
quantization [20].

To summarize, the NEQR representation utilizes the basis state of a qubit
sequence to represent the grayscale of pixels, instead of the probability amplitude
of a single qubit used in the FRQI representation. In this manner, it reduces
the computational complexity of image preparation and provides more accurate
information retrieval. In the following chapters, some NEQR-based quantum image
applications will be introduced.

In this chapter, mainstream QIRs are reviewed and classified into three models
based on different requirements to capture the content of a quantum image. They
are thoroughly compared in terms of their color information encoding strategies,
computational complexities of preparation, and measurement-based retrievals. The
preparation, compression, and retrieval of FRQI, MCQI, and NEQR representations
are fully introduced. While designing the position and color transformations of
these QIRs, some definitions and theorems are given, which will guide in part the
subsequent QIMP studies.
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Chapter 3
Quantum Image Operations

A crucial feature in image processing consists of developing and providing access
to a toolbox of mathematical operations to transform image contents. Quantum
operations can be applied to a quantum image to transform an input image to an
output image (or another representation). In these operations, what kind of results
one might expect to achieve with a given type of operation, and what might be
the computational burden associated with a given operation, should be understood.
Currently available quantum image operations include interpolation [8, 16, 27, 28],
translation [22], compression [7], and restoration [9]. In this chapter, the operations
of quantum image comparison [25], scaling [6], and rotation [26] are introduced.

3.1 Parallel Comparison of Multiple Pairs of Quantum
Images

Image searching can be defined as a computational process in which an image is
provided as input and the corresponding output is a set of images that are related
to the input image. Inspired by the paramount importance of image searching and
its achievements on conventional computers [3], image searching appears to be an
indispensable operation in QIMP [1].

It is envisaged that quantum image searching will likely become faster than
classical searching because of the inherent parallelism of quantum computation
[11]. A first step on the development of quantum image searching algorithms would
be to propose a scheme to evaluate the extent to which two or more images are

© Portions of this chapter are reprinted from ref. [26], with permission of Springer.
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similar [25]. The main content of this section is tailored toward achieving this
essential step of quantum image searching.

3.1.1 Representation of Strip Using Multiple Quantum Images

The strip representation is a method to encode 2m FRQI images as a single array.
Thanks to quantum parallelism, the strip representation can be used to transform
multiple images using a limited amount of quantum resources. The definition and
main properties of strip representation are now introduced.

Definition 3.1 A strip |S(m)〉 is an array comprising 2m FRQI images, which is
defined by

|S(m)〉 = 1

2m/2

22m−1∑
s=0

|Is〉 ⊗ |s〉, (3.1)

where

|Is〉 = 1

2n

22n−1∑
i=0

|cs,i〉 ⊗ |i〉, (3.2)

|cs,i〉 = cos θs,i |0〉 + sin θs,i |1〉, (3.3)

θs,i ∈
[
0,

π

2

]
, i = 0, 1, . . . , 22n − 1, s = 0, 1, . . . , 2m − 1, (3.4)

where |s〉 is the position of each image in the strip, m is the number of qubits
required to encode the images being compared, |Is〉 is an FRQI image as defined
in Eq. (2.1) at position |s〉, and |cs,i〉 and |i〉 encode the information about the colors
and their corresponding positions in the image |Is〉. Furthermore, the state |S(m)〉 is
normalized, confirmed by

‖|S(m)〉‖ = 1

2m/2

√√√√2m−1∑
s=0

‖|Is〉‖2

= 1

2m/2+n

√√√√2m−1∑
s=0

22n−1∑
i=0

(cos2 θs,i + sin2 θs,i) = 1.

(3.5)

The size of a strip in the representation captures the input state of the strip
comprising 2m quantum images. Each image in the strip is an FRQI state, while
the combination of such states in the strip is best represented as a multiple FRQI, or
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simply an mFRQI state. The mFRQI state can represent 2m quantum images using
only m+ 2n+ 1 qubits, since all of the images in this strip have the same size. The
mathematical structure of a strip and FRQI images allow us to have full access to
each and every image as well as all pixels in a given image.

3.1.2 Scheme to Compare Quantum Images in Parallel

A scheme to compare quantum images, together with several definitions, which will
form the basis of further discussion, is presented. First, two arbitrary FRQI images
|Ik〉 and |It 〉 are defined as

|Ik〉 = 1

2n

22n−1∑
i=0

(cos θk,i |0〉 + sin θk,i |1〉)⊗ |i〉, (3.6)

and

|It 〉 = 1

2n

22n−1∑
i=0

(cos θt,i |0〉 + sin θt,i |1〉)⊗ |i〉. (3.7)

In the following lines, a definition of similarity between two FRQI images is
presented, which consists of a function whose domain is the set of FRQI image
pairs and corresponding range is the set [0, 1]. In addition, given a strip comprising
2m quantum images, parallel comparison of quantum images allows us to retrieve
the similarities between 2m−1 pairs of images in the strip simultaneously.

Definition 3.2 The difference between the i-th pixels of two FRQI images |Ik〉 and
|It 〉, as defined in Eqs. (3.6) and (3.7), is given by

σ i
k,t = |θk,i − θt,i |, σ i

k,t ∈ [0, π/2], (3.8)

where θk,i and θt,i represent the respective color information at position i of the two
images.

Definition 3.3 The similarity between two FRQI images |Ik〉 and |It 〉, as defined in
Eqs. (3.6) and (3.7), is a function of the pixel difference σk,t at every position of the
images, given by

sim(|Ik〉, |It 〉) = f
(
σ 0

k,t , σ
1
k,t , . . . , σ

22n−1
k,t

)
, (3.9)

where sim(|Ik〉, |It 〉) ∈ [0, 1].
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Two special cases of the similarity between two quantum images are as fol-
lows:

• if ∀i,σ i
k,t = π/2, then sim(|Ik〉, |It 〉) = 0 and the two images are totally different;

• if ∀i,σ i
k,t = 0, then sim(|Ik〉, |It 〉) = 1 and the two images are exactly the same,

where i = 0, 1, . . . , 22n − 1, and σ i
k,t is the pixel difference at position i as defined

in Definition 3.2.

The strip representation introduced in Definition 3.1 is used to compare quantum
images of equal size and it provides an efficient way to compare multiple pairs of
quantum images in parallel. The comparison of quantum images in parallel consists
of the following three steps [25]:

Step 1: Preparation of the strip comprising 2m quantum images

The color information and corresponding positions of every point in the classical
version are integrated into the quantum state, and 2m quantum images to be
compared are combined to form a strip. The routine involved in preparing FRQI
images and its extension to encode multiple FRQI images as a strip are discussed
thoroughly in Sect. 2.2.1 and [4]. Availability of a classical version of each image
from which their quantum versions are prepared is assumed.

Step 2: Comparison of quantum images through quantum operations

The strip is transformed using a gate array comprising geometric transformation
(in Sect. 2.2.2) and color transformation (in Sect. 2.2.3) on all images contained
in it. For this step, transformations are built in order to compute the function
of pixel difference as defined in Eq. (3.8). This transformation step is followed
by a measurement strategy designed to obtain a probability distribution. Since
measurements are known to destroy the superposition state in quantum systems (as
discussed in Sect. 1.1.2), the strip must be prepared n > 1 times.

Step 3: Observation of readouts from quantum measurements

The readouts from the n quantum measurements are used to generate prob-
ability distributions. Extracting and analyzing these distributions give informa-
tion about the similarity values between the quantum images being compared.
The strip preparation will continue until min(P (|sm−1, . . . , s0〉)) ≥ δ, where
min(P (|sm−1, . . . , s0〉)) is the minimum of the probabilities of the readouts from the
experiments, and δ ∈ [0, 1] is a preset threshold, which can be read as a reasonable
estimate of the similarity between the two quantum images being compared.

The comparison of quantum images in this scheme is further specified below,
where the evaluation of the similarity between two images and parallel comparison
of multiple pairs of images are discussed.
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3.1.3 Evaluation of Similarity Between Two Quantum Images

As the basis of parallel quantum image comparison, the comparison between two
quantum images [24] is discussed first. According to Eqs. (3.1), (3.6), and (3.7), the
state of the strip comprising two images (m = 1, k = 0, t = 1, s = 0, 1) becomes

|S(1)〉 = 1√
2
(|I0〉 ⊗ |0〉 + |I1〉 ⊗ |1〉), (3.10)

where

|I0〉 = 1

2n

22n−1∑
i=0

(cos θ0,i |0〉 + sin θ0,i |1〉)⊗ |i〉, (3.11)

and

|I1〉 = 1

2n

22n−1∑
i=0

(cos θ1,i |0〉 + sin θ1,i |1〉)⊗ |i〉, (3.12)

are the two FRQI images being compared, which are, respectively, located in the
upper and lower part of the strip.

The structure of the circuit employed to compare two FRQI images is shown in
Fig. 3.1. A Hadamard gate, which maps the basis state |0〉 to (|0〉 + |1〉)/√2 and |1〉
to (|0〉 − |1〉)/√2, is applied on the strip wire s0 to obtain the recombination of |I0〉
and |I1〉. This is followed by a measurement operation M0.

Corresponding to the circuit shown in Fig. 3.1, the new state of the quantum
system after applying the Hadamard gate on the strip wire s0 (denoted by H0|S(1)〉)

Fig. 3.1 Generalized circuit
for comparing two FRQI
images
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is given by

H0|S(1)〉 = 1√
2
(|I0〉 ⊗H |0〉 + |I1〉 ⊗H |1〉)

= 1

2

[|I0〉 ⊗ (|0〉 + |1〉)+ |I1〉 ⊗ (|0〉 − |1〉)]

= 1

2

[
(|I0〉 + |I1〉)⊗ |0〉 + (|I0〉 − |I1〉)⊗ |1〉

]
,

(3.13)

where

|I0〉 ± |I1〉 = 1

2n

22n−1∑
i=0

[
(cos θ0,i ± cos θ1,i )|0〉 + (sin θ0,i ± sin θ1,i )|1〉

]
|i〉.

(3.14)
The result of the measurement M0 obviously depends on the disparities between

|I0〉 and |I1〉. In accordance with the measurement postulate in [12], the probability
of state |1〉 on strip wire s0 is

Ps0(|1〉) =
( 1

2n+1

)222n−1∑
i=0

[
(cos θ0,i − cos θ1,i )

2 + (sin θ0,i − sin θ1,i )
2
]

= 1

22n+1

22n−1∑
i=0

[
1− cos(θ0,i − θ1,i )

]

= 1

2
− 1

22n+1

22n−1∑
i=0

cos σ i
0,1.

(3.15)

It is apparent from Eq. (3.15) that the pixel difference σ i
0,1 is related to the

probability Ps0(|1〉) of getting a readout of 1 from strip wire s0 in the measurement,
and Ps0(|1〉) will increase with the pixel difference. Furthermore, the similarity
between |I0〉 and |I1〉, which is a function of the pixel differences at every position,
depends on Ps0(|1〉), as given by

sim(|I0〉, |I1〉) = 1− 2Ps0(|1〉)

= 1

22n

22n−1∑
i=0

cos σ i
0,1,

(3.16)

which is in line with the definition of similarity between two FRQI images in
Eq. (3.9). Extension to compare many pairs of quantum images in parallel will be
discussed and exemplified in the next subsection.
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3.1.4 Parallel Comparison of Multiple Quantum Images
in a Strip

Operations on a strip (in Definition 3.1) facilitate simultaneously transforming the
information in every image contained in the strip. The generalized circuit structure
to compare 2m−1 pairs of quantum images in parallel is presented in Fig. 3.2.

Let |Ik〉 and |Ik+2r 〉 (r is the index of sr in the circuit) denote the k-th and (k+2r )-
th images, respectively, in a strip. Then, the mFRQI state of the strip is given by

|S(m)〉 = 1

2m/2

2m−1∑
s=0

|Is〉 ⊗ |s〉

= 1

2m/2

2m−r−1∑
z=1

1
2 g(2z)−1∑
k=g(z)

(
|Ik〉 ⊗ |k〉 + |Ik+2r 〉 ⊗ |k + 2r 〉

)
,

(3.17)

where

g(z) = (z− 1)2r+1, (3.18)

where m ≥ 2, |s〉 = |sm−1, . . . , sr+1, sr , sr−1, . . . , s0〉, and sr ∈ {0, 1}.

Fig. 3.2 Generalized circuit
for comparing multiple FRQI
images in parallel
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Applying the Hadamard gate on the strip wire sr (indicated by Hr |S(m)〉)
transforms the state of the strip to

Hr |S(m)〉 = 1

2m/2

2m−1∑
s=0

|Is ⊗ |sm−1, . . . , sr+1〉 ⊗H |sr 〉 ⊗ |sr−1, . . . , s0〉

= 1

2m/2

2m−r−1∑
z=1

1
2 g(2z)−1∑
k=g(z)

|Ik〉 ⊗ |sm−1, . . . , sr+1〉 ⊗H |0〉 ⊗ |sr−1, . . . , s0〉

+ 1

2m/2

2m−r−1∑
z=1

1
2 g(2z)−1∑
k=g(z)

|Ik+2r 〉 ⊗ |sm−1, . . . , sr+1〉 ⊗H |1〉 ⊗ |sr−1, . . . , s0〉

= 1

2(m+1)/2

2m−r−1∑
z=1

1
2 g(2z)−1∑
k=g(z)

(|Ik〉 + |Ik+2r 〉)⊗ |sm−1, . . . , sr+1, 0, sr−1, . . . , s0〉

+ 1

2(m+1)/2

2m−r−1∑
z=1

1
2 g(2z)−1∑
k=g(z)

(|Ik〉−|Ik+2r 〉)⊗|sm−1, . . . , sr+1,1,sr−1, . . . ,s0〉,
(3.19)

where

|Ik〉 ± |Ik+2r 〉 = 1

2n

22n−1∑
i=0

(|ck,i〉 ± |ck+2r ,i )⊗ |i〉

= 1

2n

22n−1∑
i=0

[
(cos θk,i ± cos θk+2r ,i )|0〉

+ (sin θk,i ± sin θk+2r ,i )|1〉
]
⊗ |i〉. (3.20)

The probabilities of the readouts from the m measurements are given by

Psr (|sm−1, . . . , sr+1, 1, sr−1, . . . , s0〉)

= 1

2m+2n

2m−r−1∑
z=1

1
2 g(2z)−1∑
k=g(z)

22n−1∑
i=0

1− cos(θk − θk+2r )

= 1

2
− 1

2m+2n

2m−r−1∑
z=1

1
2 g(2z)−1∑
k=g(z)

22n−1∑
i=0

cos σ i
k,k+2r .

(3.21)
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The states |sm−1, . . . , sr+1, 0, sr−1, . . . , s0〉 and |sm−1, . . . , sr+1, 1, sr−1, . . . , s0〉
represent a pair of images that are, respectively, at the k-th and (k+ 2r )-th positions
of the strip. To determine the similarity of every pair of images, the generalized
representation of the probability of |Ik+2r 〉 in the strip is given by

Psr (|k + 2r 〉) = 1

2m+2n

22n−1∑
i=0

1− cos(θk − θk+2r )

= 1

2m
− 1

2m+2n

22n−1∑
i=0

cos σ i
k+2r .

(3.22)

In addition, the similarity between |Ik〉 and |Ik+2r 〉, which are encoded in the
strip comprising 2m images, is

sim(|Ik〉, |Ik+2r 〉) = 1− 2mPsr (|k + 2r 〉)

= 1

22n

22n−1∑
i=0

cos σ i
k,k+2r ,

(3.23)

which is also determined in accordance with Eq. (3.9).
An example to demonstrate how two pairs of images can be compared and

the implication of applying the Hadamard gate on different strip wires [25] is
presented in Fig. 3.3. A strip comprising four images |I0〉, |I1〉, |I2〉, and |I3〉, with
the differences between their content captured by their varying color angles, is
presented in Fig. 3.3a. The circuit in Fig. 3.3b is used to compare |I0〉 with |I2〉 and
|I1〉 with |I3〉 by applying a Hadamard gate on the strip wire s1, while the circuit in
Fig. 3.3c is used to compare |I0〉with |I1〉 and |I2〉with |I3〉 by applying a Hadamard
gate on the strip wire s0.

According to Eq. (3.1), the mFRQI state of this strip (m = 2) is given by

|S(2)〉 = 1

2
(|I0〉 ⊗ |00〉 + |I1〉 ⊗ |01〉 + |I2〉 ⊗ |10〉 + |I3〉 ⊗ |11〉). (3.24)

The difference between applying the Hadamard gate on strip wire s1 and s0 is
elaborated in Table 3.1. The table also shows the transformed state, the probability
of the state on strip wires, and the similarity between the images being compared.
The probability and similarity are calculated using Eqs. (3.22) and (3.23), where
m = 2, n = 1, and r = 0 or 1, respectively.

From Fig. 3.3 and Table 3.1, it is evident that different pairs of images can be
compared by simply moving the Hadamard operation from one wire on the S-axis
to another. However, comparing several pairs of images, such as |I0〉 with |I3〉
and |I1〉 with |I2〉 in Fig. 3.3, is difficult to accomplish in this manner because
they do not satisfy the relationship defined earlier in Eq. (3.23). To compare two
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Fig. 3.3 An example to realize the simultaneous comparison of two pairs of images

Table 3.1 Image comparison by applying Hadamard operation on different strip wires

Image comparison Circuit Transformed state Probability Similarity

|I0〉, |I2〉 Fig. 3.3b

1
2
√

2
[(|I0〉 + |I2〉)|00〉

+(|I1〉 + |I3〉)|01〉
+(|I0〉 − |I2〉)|10〉
+(|I1〉 − |I3〉)|11〉]

Ps1 (|10〉) = 0.033 sim(|I0〉, |I2〉) = 0.866

|I1〉, |I3〉 Ps1 (|11〉) = 0 sim(|I1〉, |I3〉) = 1

|I0〉, |I1〉 Fig. 3.3c

1
2
√

2
[(|I0〉 + |I1〉)|00〉

+(|I0〉 − |I1〉)|01〉
+(|I2〉 + |I3〉)|10〉
+(|I2〉 − |I3〉)|11〉]

Ps0 (|01〉) = 0.185 sim(|I0〉, |I1〉) = 0.259

|I2〉, |I3〉 Ps0 (|11〉) = 0.073 sim(|I2〉, |I3〉) = 0.707
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arbitrary quantum images and/or contents of their sub-blocks from a strip, additional
geometric transformations (in Sect. 2.2.2) and control conditions are required in the
current quantum system [25].

To summarize, a method to compare multiple pairs of quantum images, whose
similarities are estimated according to the probability distributions of the readouts
from quantum measurements, has been introduced. The method offers a first step
toward an image database search on quantum computers, whereby an image could
be retrieved as a search result from a database based on the extent of its similarity
to a reference image. Exploiting the parallelism of quantum computation, it is
envisaged that quantum image database searches could be significantly faster than
those on classical computers [23].

3.2 Quantum Image Up-Scaling Based on Nearest-Neighbor
Interpolation

Image scaling, which has been extensively studied and widely used as a basic image
processing method, aims to resize a digital image, where interpolation methods
are necessary to produce new pixels (when up-scaling) or delete redundant pixels
(when down-scaling). In [5], Jiang et al. proposed a quantum image scaling method,
including up-scaling and down-scaling with a 2ry × 2rx scaling ratio on a 2n1 × 2n2

quantum image, while later in [6], they improved the method with an ry×rx scaling
ratio on a quantum image of arbitrary size H ×W , where ry × rx ∈ N. The latter
method is now introduced.

3.2.1 Generalized Quantum Image Representation

Developed from NEQR representation, a generalized quantum image representation
(GQIR) was proposed [6] to store a quantum image of arbitrary size H ×W . GQIR
uses h = �log2 H qubits for the Y-axis and w = �log2 W qubits for the X-axis to
represent an H ×W image, which is defined as

|I 〉 = 1√
2
h+w

⎛
⎝H−1∑

y=0

W−1∑
x=0

q−1⊗
i=0

|Ci
yx〉|yx〉

⎞
⎠ , (3.25)

where

|yx〉 = |y〉|x〉 = |y0y1 . . . yh−1〉|x0x1 . . . xw−1〉, yi, xi ∈ {0, 1}, (3.26)
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Fig. 3.4 (a) A 1× 3 GQIR image and its quantum state and (b) its circuit initialization

is the location information and

|Cyx〉 = |C0
yxC

1
yx . . . C

q−1
yx 〉, Ci

yx ∈ {0, 1}, (3.27)

is the color information. GQIR requires h + w + q qubits to represent an H ×W

quantum image with gray range 2q . However, it will generate a (2h − H )-row and
(2w−W )-column redundancy, which is caused by an intrinsic property of the binary
computation.

Figure 3.4 shows a 1 × 3 GQIR image, its quantum state, and its circuit
initialization. The image is put into a 21 × 22 = 2 × 4 box, where only three
effective pixels, |yx〉 = |000〉, |001〉, |010〉, are set to the desired value, while others
are redundant (i.e., they remain the initial state |0〉).

3.2.2 Scheme of Quantum Image Up-Scaling Operation

Regardless of the interpolation used, image scaling can be decomposed in two
directions, e.g., first in the horizontal direction, and then in the vertical direction
[3]. The function of image scaling can be presented as

I ′ = S(I, rx, ry) = Sy

(
Sx(I, rx), ry

) = Sx

(
Sy(I, ry), rx

)
, (3.28)

where I is the original image, I ′ is the scaled image, and rx and ry are, respectively,
the horizontal and vertical scaling ratios. S can be decomposed into Sx and Sy ,
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Fig. 3.5 Essence of up-scaling based on nearest-neighbor interpolation

which are the horizontal and vertical scaling functions, respectively [6]. For brevity,
this section only discusses up-scaling, i.e., r > 1; down-scaling can be implemented
following the discussion in [5].

Nearest-neighbor interpolation [3], which is technically the repetition of pixels
within an image, is used here for image up-scaling. As shown in Fig. 3.5, if the
scaling ratio is ry × rx , then the pixel (i, j) in the original image is enlarged to
an ry × rx image block in the up-scaled image. Because i rows and j columns are
before pixel (i, j) in the original image, there are ryi rows and rxj columns before
the corresponding image block in the up-scaled image [6].

3.2.3 Circuit Implementation of Up-Scaling Operation

Assume that an H × W quantum image |I 〉 is up-scaled to an H ′ × W ′ quantum
image |I ′〉 based on nearest-neighbor interpolation. The scale ratio is ry × rx , i.e.,
H ′ = ryH and W ′ = rxW , where rx, ry ∈ N. According to Fig. 3.5, the quantum
up-scaling scheme is as follows [6].

First, an operation is defined as

U(ryi+k),(rxj+l) =
q−1⊗
t=0

Ut
(ry i+k),(rxj+l), (3.29)

where Ut
(ry i+k),(rxj+l) is an (h + w + h′ + w′ + 1)-CONT gate that transforms

|C′t(ry i+k),(rxj+l)〉 (which is initialized as |0〉) to the state |Ct
ij 〉. Therefore, the color

information |C′(ry i+k),(rxj+l)〉 of a pixel in the up-scaled image |I ′〉 can be set to its
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Fig. 3.6 Quantum module CV (10) with a NOT gate as its target

desired color information |Cij 〉,

U(ryi+k),(rxj+l)|C′(ry i+k),(rxj+l)〉 =
q−1⊗
t=0

Ut
(ry i+k),(rxj+l)|C′t(ry i+k),(rxj+l)〉

= |C0
ijC

1
ij . . . C

q−1
ij 〉 = |Cij 〉.

(3.30)

Considering that an (h+w+ h′ +w′ + 1)-CONT gate includes multiple control
qubits, a circuit module CV (v) has been defined [6]. CV (v) is a control unit with
an n-qubit binary sequence as its input, where 0 ≤ v ≤ 2n−1. A simple example of
the CV (v) module is given in Fig. 3.6, where the target is a NOT gate, so it is a 4-
CONT gate. Since the control value is (1010)2 = (10)10, the module is represented
as CV (10).

The circuit to implement the Ut
(ry i+k),(rxj+l) operation is shown in Fig. 3.7a, and

it includes four CV control units. When y = i, x = j , y′ = ryi + k, and x′ =
rxj + l, |C′t(ry i+k),(rxj+l)〉 is set to the value of |Ct

ij 〉. Figure 3.7b shows the circuit of

U(ryi+k),(rxj+l) = ⊗q−1
t=0 Ut

(ry i+k),(rxj+l), where U(ryi+k),(rxj+l) is simply denoted
as U for the ensuing computations.

As discussed earlier, the module U with four control units sets the color
information |Cij 〉 of a pixel in the up-scaled image. Next, it should be repeated
ryrxHW times to realize the initialization of all of the color information in the up-
scaled image [6]. The repetition is accompanied by updating the parameters, i.e.,
CV (i) (0 ≤ i ≤ H − 1), CV (j) (0 ≤ j ≤ W − 1), CV (ryi + k) (0 ≤ k ≤ ry − 1),
and CV (rxj + l) (0 ≤ l ≤ rx − 1).

The circuit implementation of quantum image up-scaling is presented in Fig. 3.8.
In its first part, h′ + w′ Hadamard gates are used to obtain the position information
y′0, y′1, . . . , y′

h′−1 and x′0, x′1, . . . , x′
w′−1 of the up-scaled image (i.e., an H ′ ×W ′

blank box). The latter part realizes the color initialization of these pixels in the blank
box to build up a complete up-scaled image [6].
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Fig. 3.7 Circuit modules of (a) Ut
(ry i+k),(rx j+l) and (b) U(ry i+k),(rx j+l) (reprinted from ref. [6],

with permission of Springer)

3.2.4 Example of Quantum Image Up-Scaling

An example to illustrate the up-scaling circuit [6] is given. Suppose the gray range
of a 1× 2 GQIR image is 21, i.e., H = 1, W = 2, and q = 1, as shown in Fig. 3.9a.
It is worth noting that when H = 1 or W = 1 in Eq. (3.25), one has h = 1 or w = 1.
If the scaling ratio is ry × rx = 5 × 3, then the size of the up-scaled image should
be 5× 6, and then h′ = �log2 5 = 3 and w′ = �log2 6 = 3.

Figure 3.10 shows the quantum circuit of the example, where seven |0〉 qubits
are used to initialize the color and position information of the up-scaled image. The
circuit includes 30 layers, where the first 15 layers (in the dark-gray background)
enlarge pixel (0, 0) and the others (in the light-gray background) enlarge pixel (0, 1)
in the original image, respectively, to two 5 × 3 blocks in the up-scaled image, as
seen in Fig. 3.9b. The simplification of the up-scaling circuit is fully discussed in
[6].

To summarize, to encode a quantum image of arbitrary size, a generalized
quantum image representation (GQIR) was introduced. Based on this, a quantum
image up-scaling algorithm using nearest-neighbor interpolation with an integer
scaling ratio was discussed. The presented method encourages research such as
improving the scaling ratio from integers to real numbers, and realizing quantum
scaling circuits based on other interpolation methods, e.g., bilinear and bicubic.
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Fig. 3.8 Circuit implementation of quantum image up-scaling (reprinted from ref. [6], with
permission of Springer)

Fig. 3.9 (a) A 1× 2 GQIR image and (b) the 5× 6 up-scaled image
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Fig. 3.10 Quantum image up-scaling circuit for the example in Fig. 3.9 (reprinted from ref. [6],
with permission of Springer)

3.3 Quantum Image Rotation by an Arbitrary Angle

In classical image processing and related fields, such as computer vision and
pattern recognition, image rotation is regarded as a key tool for activities, such
as image registration, fusion, and mosaicing. Nonetheless, image rotation has not
been sufficiently studied as it relates to quantum computing. This section introduces
a quantum algorithm for image rotation consisting of a sequence of three shear
mappings (horizontal, vertical, then horizontal again) onto NEQR images [26].

3.3.1 Three Shear Transformations

In digital image processing, it is known that an arbitrary two-dimensional rotation
can be performed by a series of three shear transformations [14, 19],

(
cos θ sin θ

− sin θ cos θ

)
=

(
1 α

0 1

) (
1 0
β 1

) (
1 α

0 1

)
, (3.31)

where

(
1 α

0 1

)
and

(
1 0
β 1

)
are, respectively, horizontal and vertical shearing

transformations. A shear transformation can be defined as a transformation in which
all of the points along a given line L remain fixed, while other points are shifted
parallel to L by a distance proportional to their perpendicular distance from L
[17]. Moreover, the shear factor is defined as the proportionality constant, which is
the distance a point P moves divided by the perpendicular distance of P from L
[10].

The ideas of quantum image rotation are provided by using the three shear trans-
formations. In such case, quantum images are partitioned into halves by a reference
line to obtain top-bottom or left-right sub-images, and shear transformations are
computed on both halves. As a result, the computation of each shear transformation
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displaces quantum pixels in different halves in opposite directions (which is also the
expected behavior of shear transformations on classical pixels).

The shear factor is always presented by a trigonometric function of an angle, and
consequently, pixel displacements produced by shear transformations are usually
expressed as floating point numbers. This is in accordance with Eq. (3.31), as
rotations generally produce pixel positions described by vectors yi ∈ R

2. Similar
with the problem in classical image processing [18], since the positions of quantum
pixels are described by vectors xi ∈ Z

2, one must define a quantum procedure to
accommodate yi in xi .

A quantum computer system can be viewed as a quantum network consisting of
quantum logic gates, each performing an elementary unitary operation on one or
more two-state quantum systems [21]. As Eq. (3.31) shows, shear transformations
are not unitary operations, but it is known that any classical irreversible circuit can
be substituted by a reversible circuit that uses Toffoli gates [13]. Moreover, a Toffoli
gate can be implemented both as a classical and quantum logic gate. Following that
rationale, the quantum circuits that compute shear transformations and subsequent
rotations on quantum images are presented in the following subsections.

3.3.2 Quantum Modules for Shear Transformations

To achieve the quantum rotation method, some quantum computing units and
modules of shear mapping operations should be understood.

3.3.2.1 Quantum Adder

In this subsection, a quantum adder circuit, as originally introduced in [20], is
presented. The aim is to perform the following computation:

|a, b〉 → |a, a + b〉, (3.32)

where |a〉 and |b〉 are two input quantum kets, and the two output kets are |a〉 and
|d〉, where |d〉 = |a〉 + |b〉. As presented in Fig. 3.11, a quantum adder consists of
2n − 1 carry modules and 2n sum modules. In addition, the carry module can be
decomposed to two Toffoli gates and one CNOT gate, while the sum module can
be executed by two CNOT gates, as presented in Fig. 3.11b and c. Moreover, as
discussed in [2] and [20], quantum subtraction can be implemented by the quantum
adder(s) because quantum gates are reversible. The subtraction is illustrated by
locating the black bar at the left side of the module from the original right within
the adder.
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Fig. 3.12 Circuit to realize the quantum self-adder [26]

3.3.2.2 Quantum Self-Adder

Let x be a binary number, then the binary representation of 2x can be achieved
simply by concatenating x with a zero at the least significant position. Formally,

x =
n−1∑
i=0

αi2
i ⇒ 2x =

n∑
j=0

βj 2j , (3.33)

where β0 = 0 and βj = αi−1 for j ∈ {1, . . . , n}. Inspired by this procedure, the
following computation is presented:

(Un−1 ⊗ Un−2 ⊗ · · · ⊗ U0 ⊗ I )|x〉 ⊗ |0〉⊗n+1 = |x〉 ⊗ |xn−1xn−2 . . . x00〉
= |x〉 ⊗ |2x〉,

(3.34)

where unitary operators Un−1Un−2 . . . U0 are CNOT quantum gates [26]. For
instance, let |x〉 = |x2x1x0〉 = |110〉, then |2x〉 = |1100〉, through which U2 =
NOT, U1 = NOT, and U0 = I . The quantum circuit of a self-adder (sometimes
labeled “S-A”) in Fig. 3.12 implements Eq. (3.34).

3.3.2.3 Quantum Controlled-Multiplier

Let a and x be binary numbers, where x = ∑n−1
i=0 2ixi , then the multiplication ax

can be expressed as

ax = a

n−1∑
i=0

2ixi =
n−1∑
i=0

(2ia)xi . (3.35)
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Fig. 3.13 Circuit to realize the quantum controlled-multiplier [26]

A quantum controlled-multiplier (C-MULTI) is provided that, based on the self-
adder circuit presented above and Eq. (3.35), performs the following operation:

C-MULTI|a〉|b〉|0〉 = |a〉|b〉|ab〉. (3.36)

The circuit to implement C-MULTI module is presented in Fig. 3.13, and it is
realized by n stages of quantum adders. During each stage, it must be considered
whether 2ia should be added according to the state of the qubit |xi〉, i = 0, 1, . . . n−
1.

As presented in Sect. 1.1.2.2, inputs that are encoded in binary form for the
computational basis of the selected qubits are called a quantum register, or simply
a register. For instance, if the number 5 is loaded into a quantum register, one must
prepare three qubits in the state of |1〉 ⊗ |0〉 ⊗ |1〉. Given one quantum control
multiplier [26], two registers (denoted as Registers A and B) are required during the
three steps that follow Fig. 3.13.

Step 1: Initializing Registers A and B as |0〉⊗n and |a〉, respectively. A Toffoli
gate controlled by ancilla qubit “c” and x0 is responsible for manipulating
Register A or B and is taken as an input of the quantum adder in the step
when i = 0. The other input is temporarily set to |0〉.

Step 2: Updating Register B to 2a by executing the S-A module in the step when
i = 1. Similarly, the Toffoli gate that is controlled by the ancilla qubit “c”
and x1 (in this turn) takes Register A or B as an input of the quantum
adder. During the addition, the other input is the temporary addition
outcome through the previous step, i.e., i = 0.
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Fig. 3.14 Circuit to realize the quantum interpolation [26]

Step 3: Following the rationale described in Steps 1 and 2, go through the circuit
stages defined for i ∈ {2, . . . , n−1}. The output of the last quantum adder
is ax.

3.3.2.4 Quantum Interpolation

As stated earlier, the shear factor, which is essentially a trigonometric function of
a rotation angle, is seldom an integer. To locate a sheared pixel in the coordinate
system, the nearest-neighbor value (NNV) interpolation [15] according to the
smallest absolute difference to the four known adjacent position values is employed
to determine a proper pixel position.

Given the NNV interpolation in a quantum computing framework, the circuit
design is shown in Fig. 3.14, in which |a〉 = |an−1 . . . a0〉 is the integer part of
a decimal and |b〉 = |b3b2b1b0〉 is the fractional part with four effective decimal
places. |b3〉 is the most critical bit when converting a decimal to an integer. If it
is 1, then the integer part should be increased by 1; otherwise, the integer part is
left as it was. The operation is executed by the CNOT gate and the adder module,
and its output |d〉 = |dn−1 . . . d0〉 is the result of the quantum interpolation [26].
The quantum interpolation operation is referred to as the IP module in the following
discussions.

3.3.3 Scheme of Quantum Image Rotation Operation

Image rotation is a process of generating another image, whose pixels are all rotated
by a certain angle about a specified point. In this section, the strategy to realize
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quantum image rotation will be introduced based on three-phase shear mappings,
i.e., horizontal shear, vertical shear, and a second horizontal shear.

3.3.3.1 Quantum Image Rotation Based on Three-Phase Shear Mappings

As introduced earlier, image rotation can be formulated as

(
yt

xt

)
= R

(
y0

x0

)
, (3.37)

where y0 and x0 represent the pixel position within the original image, while yt and
xt represent the corresponding position within the rotated image [3]. R denotes the
rotation matrix:

R =
(

cos θ sin θ

− sin θ cos θ

)
, (3.38)

where θ represents the rotation angle and its sign indicates the rotation direction,
i.e., clockwise (−) or counterclockwise (+). To realize the quantum image rotation
operation using shear mappings, the matrix R can be rewritten as

R =
(

1 0
tan(θ/2) 1

)−1 (
1 0

tan(θ/2) 1

) (
cos θ sin θ

− sin θ cos θ

)

=
(

1 0
tan(θ/2) 1

)−1 (
cos θ sin θ

− tan(θ/2) 1

)

=
(

1 0
tan(θ/2) 1

)−1 (
cos θ sin θ

− tan(θ/2) 1

) (
1 0

tan(θ/2) 1

) (
1 0

tan(θ/2) 1

)−1

=
(

1 0
tan(θ/2) 1

)−1 (
1 sin θ

0 1

) (
1 0

tan(θ/2) 1

)−1

.

(3.39)

The multiple output values obtained through the above process must be dis-
tributed to the corresponding output pixels to prevent more than one pixel being
located at the same position [3]. Therefore, the matrix R−1 (the inverse of R) is used
and Eq. (3.37) is transformed to:

R−1
(

yt

xt

)
=

(
y0

x0

)
=

(
1 0

tan(θ/2) 1

) (
1 − sin θ

0 1

) (
1 0

tan(θ/2) 1

) (
yt

xt

)
.

(3.40)
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It has been shown how the operation of quantum image rotation is decomposed
into three phases (two horizontal shears and one vertical shear). During the three-
phase shear mappings, the pixels in each row or column are translated by the same
distance (i.e., the relative positions of these pixels remain unchanged), which results
in a favorable anti-aliasing property. The realization of horizontal and vertical shears
as unitary circuits is now discussed.

3.3.3.2 Shear Mapping Operations

Shear mapping can be either horizontal (shear parallel to the X-axis) or vertical
(shear parallel to the Y-axis). Horizontal shear is a function that shifts an original
point with coordinates (x, y) to another point at (x + y tan(θ/2), y), while vertical
shear is a movement from a point (x, y) to another one, (x, y − x sin θ). In the
following, the function tan(θ/2) is known as the shear factor and θ as the rotation
angle.

It is suggested to select the image centroid as the rotation center instead of the
default upper-left corner. Thus, one quantum image can be divided into two halves,
i.e., top-bottom halves by a horizontal reference line or left-right halves by a vertical
reference line. Consequently, equations for shear mapping are stated as follows:

1. Shear top half along the negative direction of X-axis (STH−x ):

xs = x − (Ymid − y)tan(θ/2), (3.41)

2. Shear bottom half along the positive direction of X-axis (SBH+x ):

xs = x + (y − Ymid)tan(θ/2), (3.42)

3. Shear left half along the positive direction of Y-axis (SLH+y ):

ys = y + (Xmid − x)sinθ, (3.43)

4. Shear right half along the negative direction of Y-axis (SRH−y ):

ys = y − (x −Xmid)sinθ, (3.44)

where xs and ys are the pixel position after shear mapping, and Xmid and Ymid
indicate the reference line, i.e., the median of the X- and Y-axis, respectively. Since
pixel points on separated sides around the reference line are displaced in opposite
directions, the image rotation with the image centroid as the rotation center works.

Referring to STH−x in Eq. (3.41), Fig. 3.15 depicts the solution in terms of a
quantum circuit, in which |x〉 and |y〉 represent the coordinates of a pixel before
the shear. |Y 〉 represents the horizontal median Ymid of the quantum image, and |a〉
represents the shear factor, i.e., | tan(θ/2)〉.
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The quantum circuit to compute horizontal shear mapping on the top-half
quantum image is illustrated as follows [26]:

Step 1: Constrained by a CNOT gate, the horizontal shear acts within the top-half
image when the control qubit is |0〉. An adder module labeled with the
left-side black bar is deployed to execute the subtraction operation (cf.
Sect. 3.3.1). With the subtraction, |Ymid〉 − |y〉 is computed similarly.

Step 2: With the result of Step 1 as an input, |a〉 = | tan θ/2〉 is also used as
an input to the C-MULTI module to obtain the multiplication result of
(|Ymid〉 − |y〉) and | tan(θ/2)〉.

Step 3: The result through Step 2 usually manifests itself as a binary decimal
that cannot reflect the precise position of the displaced pixel. Thus, the IP
module is used to round the fractional part up or down and to produce the
corresponding integer, i.e., �(|Ymid〉 − |y〉)| tan(θ/2)〉�.

Step 4: Another adder module is applied to execute the subtraction operation
(where the result obtained in Step 3 is the minuend and the original
coordinate value |x〉 is the subtractor) to achieve the new location of the
displaced pixel.

A shear mapping on the pixels at the bottom half of the quantum image is now
applied. As shown in Eq. (3.42), the difference to realize SBH+x is to calculate |y〉−
|Ymid〉, first using the subtraction operation in the circuit when the control qubit is
|1〉. In the final operation, the quantum adder module is used to compute the addition
of |x〉 and (|y〉−|Ymid〉)|tan(θ/2)〉. The circuit implementing the procedure is shown
in Fig. 3.16. After these two phases, the horizontal shear to a quantum image is
achieved by taking the image centroid as the shear center. Similar to horizontal
shears, to make a vertical shear centered at the image centroid, as in Eqs. (3.43) and
(3.44), requires to divide the quantum image into left and right halves [26].

3.3.4 Example of Quantum Image Rotation

To illustrate the procedure of horizontal and vertical shear, a 4×4 NEQR image with
different colors for each row [26] is presented in Fig. 3.17. In Fig. 3.17a, the image is
divided into halves by the horizontal axis, in which the top two rows are sheared to
the negative direction while the bottom two rows are sheared to the positive direction
(in this case, the shear factor is tan 45◦ = 1). As presented in Eqs. (3.41) and (3.42),
the displacements of each row are 2, 1, 0, and 1, in that order. The arrowhead and tail
indicate the direction and distance of the displacement. The dashed boxes indicate
the vacated locations after the pixels have moved out.

Turning the discussion to Fig. 3.17b, the image is divided into halves by the
vertical axis, where the left two columns are sheared in the negative direction and
the right two columns in the positive direction. The depiction and illustration of
Fig. 3.17b are similar to those of Fig. 3.17a.
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Fig. 3.17 A 4× 4 NEQR image to illustrate the (a) horizontal and (b) vertical shear [26]

Fig. 3.18 Procedure of shear mappings from the original quantum image [26]

Along three-phase shear mappings for the operation of quantum image rotation,
both half images are sheared in opposite directions so as to make the quantum image
rotate around the image centroid. With the original quantum Lena image, there are
two potential ways of shear mapping: horizontal shear and vertical shear. To operate
the horizontal shear, one could use the shear top half (STH) first, and then perform
the shear bottom half (SBH), or vice versa [26]. In a similar way, to operate the
vertical shear, one could execute the shear left half (SLH) first, and then invoke the
shear right half (SRH), or vice versa, as shown in Fig. 3.18.

Utilizing the horizontal shear and the vertical shear separately to rotate the
quantum image ensures that each interpolation only concerns two adjacent pixel
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points along either the X- or Y-axis, which has lower computational complexity
than simultaneous interpolations in the two-dimensional plane. In addition, the shear
factor in each row or column is invariant so that the relative locations of the pixels
in each row or column are preserved. Therefore, the problems of blocking and/or
blurring can be avoided during the rotation [26].

To summarize, a novel method of quantum image rotation based on shear
transformations on NEQR images was given. To compute the horizontal and vertical
shear mappings required for rotation, the quantum self-adder, quantum controlled-
multiplier, and quantum interpolation circuits were provided as the basic computing
units in the implementation of quantum image rotation.

In this chapter, some advanced quantum image operations are designed in
order to realize some meaningful and useful QIMP applications. By employing
the quantum properties, notably computational parallelism, the quantum image
comparison, scaling, and rotation operations are introduced and their quantum
circuit implementations are illustrated. While their classical counterparts have been
fully studied, it has been demonstrated how these quantum algorithms perform
similar tasks by reducing the required computing resources and accelerating the
computing process. Some operations are encapsulated in several QIMP-customized
toolkits that are expected to be involved as basic computing modules in more
sophisticated calculations.
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Chapter 4
Quantum Image Security

The advent of digital technology has created a heightened need for secure communi-
cation. QIMP seeks to facilitate a transition from image processing and applications
using traditional (digital) computing to the more sophisticated quantum computing
paradigm as well as the potential development of hybrid (i.e., classical-quantum)
devices and algorithms for image processing. Indeed, quantum computation and
QIMP offer possibilities for secure communication in areas such as encryption,
steganography, and watermarking [35]. In this chapter, these QIMP-based security
technologies are introduced.

4.1 QIMP-Based Security Technologies

As highlighted in the opening section of this book, QIMP is built on the extension of
digital image processing to the quantum computing realm, leading to the realization
of secure, efficient, and advanced technologies for cryptography and information
hiding. Figure 4.1 provides an outline of quantum image security technologies
within these two broad areas.

As a direct application in the science of cryptography, encryption is considered
as the process of obscuring information to make it unreadable without special
knowledge [29]. This is usually done for secrecy, and typically for confiden-
tial communications. Cryptography is about protecting the content of messages,
whereas information hiding focuses on concealing their very existence [17]. Hiding
information using strategies such as steganography and watermarking seems more
secure because such techniques are not easily noticed by attackers. However, among
its main constraints is its high demand related to the amount of information that can
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Fig. 4.1 Outline of quantum image security technologies

be hidden inside a cover image without distortions to its visible imperceptibility.
While steganography and watermarking are interrelated, they differ in terms of
purpose and/or applications, and in terms of the requirements of those purposes
[17].

1. In watermarking, the conspicuous (or visible) content is the carrier image,
whereas the copyright or ownership is hidden and subject to authentication.
The objective of steganography is to securely communicate a secret message by
camouflaging it as a meaningless part of a carrier image without triggering any
suspicions from third-party adversaries.

2. In watermarking, information is hidden in the form of a stochastic serial number
or some image, such as a logo. Therefore, watermarked images usually carry a
small amount of information about the copyright ownership. Since the objective
of steganography is to camouflage the presence of the hidden message, it often
requires large carrying capacity in terms of the carrier image.

3. In watermarking, the watermarked content is susceptible to numerous types of
infringements, such as cropping, filtering, or channel noise, which are not of
concern in stego images.

In the remainder of this section, several advances in quantum image security
protocols in the areas of watermarking, encryption, and steganography are discussed
[35].

4.1.1 Algorithms for Quantum Watermarking

Like digital watermarking, quantum watermarking aims to protect the copyright of
an image and authenticate its ownership using visible or invisible signals (mostly
logos) embedded in the cover (or carrier) image. Figure 4.2 presents the schematic
outlining the approach used in quantum watermarking.

Based on the description of a quantum image and the resulting interpretation
of QIMP in Chap. 2, for FRQI representation in particular, the work of Iliyasu et
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Fig. 4.2 Schematic for quantum watermarking algorithms

al. [8] is credited as the first quantum image security protocol. In that study, a
scheme called watermarking and authentication of quantum images (WaQI) was
proposed based on restricted geometric transformations on the images. Proposed as
an invisible watermarking strategy, WaQI is thought to be a secure, keyless, blind,
and computationally efficient scheme that can perfectly authenticate ownership
of watermarked images. WaQI is based on the use of a cover and watermark
image to produce a watermark embedding circuit that is used to randomly hide
the watermark inside the carrier image. This same circuit is reversed to recover
the original (unmarked) image during the validation of copyright ownership. Its
grayscale version, gray WaQI [9], was proposed as a two-tier watermark strategy
that facilitates embedding a conspicuous watermark logo in a predetermined subarea
of the cover image; the same watermark signal (logo) is also embedded to cover the
rest of the image in an obscure manner.

The original WaQI scheme has proven effective in authenticating ownership of
watermarked images, but it has the drawback that the content of the watermark
is required to realize the watermark authentication circuit, which is needed to
validate the ownership of the marked images. Many of the studies that followed
focused on eliminating this shortcoming. In [41], the quantum Fourier transform
(QFT) was used to extract the watermarking image without having to know what
it looked like. However, this approach has its own drawbacks, since as a result
of the computation, the hitherto normalized quantum image state is lost. This
is attributed to the fixed embedding strength controlling parameter [40, 41]. In
addition, two dynamic watermarking schemes, i.e., quantum Wavelet transform
(QWT)-based watermarking [25] and Hadamard transform-based watermarking
[26], were proposed. Instead of the fixed embedding strength parameter used in
[41], this scheme utilizes dynamic vectors to control the embedding strength. This
improves on previous efforts in the form of a better trade-off between visual quality
and embedding capacity.
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The quantum watermarking strategies reviewed thus far are all based on FRQI
representation for the carrier images and watermark logos. Using the multi-channel
extension of FRQI representation, i.e., MCQI representation, a multi-channel
extension of the WaQI scheme (MC-WaQI) was proposed [33]. In MC-WaQI, two
keys are generated from the color and position information of an MCQI image in
the preprocessing stage. Following this, two watermark images are embedded in the
spatial and frequency domains, respectively, of the cover image. The adoption of
MCQI representation for the carrier and watermark images facilitates the protection
of colored quantum images and improves the capability of watermarked images to
withstand malicious attacks.

In extending quantum watermarking to grayscale images, Miyake et al. proposed
the use of simple and small-scale quantum circuits to embed a scrambled image in
the carrier image using the XOR (exclusive or) operation [22]. Simulation-based
results presented in the study validated the performance of the proposed scheme in
terms of visual quality, robustness, and computational complexity. More recently,
a new watermarking strategy stored the carrier and the watermark images in the
θ and ϕ phases, respectively, of the same qubit [18]. The study claims that visual
imperceptibility is guaranteed regardless of the size of the embedded image, i.e., the
embedding capacity of the carrier image.

4.1.2 Algorithms for Quantum Image Encryption

Encryption is pivotal to secure communication and information sharing, especially
in warfare, military communication, politics, and even the daily lives of ordinary
people, as necessitated by the ubiquity of information, notably images and video,
sharing and storage. Quantum image encryption technologies could be broadly
classified as spatial or frequency domain-based strategies, whose schematic is
shown in Fig. 4.3.

Fig. 4.3 Schematic for quantum image encryption algorithms
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Information about the spatial domain of a quantum image is also described
by its position information (pixel position) and color information (pixel value).
Therefore, algorithms for quantum image encryption are mainly focused on these
two parameters [35]. Image encryption methods often used in this regard are
the scrambling approach (to transform pixel positions to disorder an image) and
replacement approach (to transform pixel values to alter the statistical properties
of the encrypted image). Indeed, the combination of these two methods is also an
available solution.

Popular scrambling algorithms used on position information include the Hilbert,
Arnold, and Fibonacci transforms. These traditional approaches have been extended
to encryption applications in the QIMP domain. The Arnold and Fibonacci scram-
bling circuits [13] take advantage of the plain adder and adder modulo N by
modifying operations on the input and output in order to scramble the images, while
the Hilbert scrambling circuit [12] uses the Hilbert scanning matrix that is generated
by a recursive algorithm. Preceding this, an encryption and decryption algorithm
using geometric transformations on FRQI images was investigated to reverse the
correlations among adjacent pixels, but the encrypted images were not noise-like,
and the sketches could be identified visually [42].

In addition to position space scrambling, algorithms utilizing or combining
the replacement approach have also been studied. Zhou et al. (2015) proposed
a quantum image gray-code and bit-plane scrambling scheme based on NEQR
representations [43]. The scheme’s reported cost was rather low, and the scrambling
speed was very high compared to other quantum image scrambling methods, such
as quantum Hilbert scrambling [12]. Moreover, the encryption scheme in [27] used
geometric transformations to shuffle the codes of pixel positions, and further color
transformations were performed to recode the color codings in the FRQI images.
Targeting the RGB-based MCQI image, [34] introduced a method that applies
both color and geometric transformations to an image, where the color information
is transformed by quantum rotation operations and the geometric information
is scrambled using an improved partition scrambling method, thereby ensuring
the security of the quantum images. Finally, a novel quantum image encryption
algorithm combining the generalized affine transform with a logistic map was
studied [19], by which the gray-level information of the quantum image is encrypted
by the XOR operation with a key generator controlled by the logistic map, while the
position information of the quantum image is encoded by the generalized affine
transform. The proposed algorithm is considered robust, with better performance
than its classical counterpart in terms of computational complexity [19].

Turning to frequency domain-based quantum image encryption protocols, the
double random-phase encoding technique was generalized to the quantum comput-
ing realm, and it was used together with the QFT to realize a robust quantum image
encryption method [37]. Similarly, a novel encryption algorithm for FRQI images
based on the QWT and double diffusions was discussed in [31]. In another effort,
quantum encryption and decryption methods for color images were proposed, whose
encryption process can be realized by performing secret random-phase encoding
operations in the input and the QFT planes [38]. Meanwhile, in [39], a novel
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quantum image encryption algorithm was proposed, which can be realized by subtly
constructing the evolution rules of one-dimensional quantum cellular automata. The
algorithm’s complexity was claimed to be lower than that of other quantum image
encryption schemes based on QFT.

4.1.3 Algorithms for Quantum Image Steganography

As discussed earlier, image steganography is a technique for information hiding
focused on concealing a secret message in a carrier image [5]. Figure 4.4 provides
the general schematic for quantum image steganography protocols, while the
remainder of this section highlights some advances based on them.

In 2014, Jiang et al. proposed a Moiré pattern-based NEQR image steganography
strategy [11]. The strategy was designed primarily as a steganographic algorithm
with corresponding quantum circuits to hide a binary image in a grayscale image.
The embedding algorithm begins with the choice of an initial Moiré grating, i.e.,
a stochastic image, as the cover image. The initial Moiré grating is then modified
according to the secret image, and the deformed Moiré grating is regarded as the
Moiré pattern. Finally, the Moiré pattern is altered to obtain the stego image.

Following that study, an enhanced version using two blind least significant bit
(LSB) steganography algorithms in the form of quantum circuits based on NEQR
representations [14] was proposed. The first algorithm is anchored on the standard
(or plain) LSB, which uses message qubits to directly substitute for the pixels’ LSB.
While the standard LSB steganography system is simple, its robustness is poor.
The other algorithm is block LSB, which embeds a message qubit to a number of
pixels that belong to one image block. The block LSB steganography network aims
to improve the robustness and undetectability of the standard LSB scheme. This is
accomplished by partitioning the cover image into blocks, each hiding one message

Fig. 4.4 Schematic for quantum image steganography algorithms
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qubit instead of a pixel. The experimental results presented in that study demonstrate
that the invisibility is good, and the balance between the capacity and robustness can
be adjusted according to the needs of applications.

Elsewhere, a least significant qubit (LSQb) information hiding algorithm for
NEQR images was proposed by Wang et al. [32]. This algorithm embeds a secret
message qubit stream into the last qubit of the color information of a quantum cover
image. To further enhance security, they proposed an LSQb frequency domain-based
information hiding algorithm. QFT is executed on the cover image, and then the
qubit of color encoding information in the secret image is compared with the last
qubit of color encoding information in the QFTed cover image using the two-qubit
quantum comparator (which will be introduced in Sect. 4.4.2.1). According to the
outputs of the quantum comparator circuit, different unitary transformations will
facilitate the secret information to be embedded into the QFTed cover image.

To summarize, the study of quantum image security technologies (e.g., water-
marking, encryption, and steganography) has become widely popular within the
QIMP community. Some more recent studies are recommended to those seeking fur-
ther understanding of developments in this field [1, 3, 4, 7, 20, 23, 44]. Advances in
QIMP have inspired studies to extend watermarking, encryption, and steganography
applications to related media, i.e., quantum movies and audio. With recent efforts
related to quantum movie/audio representation and accompanying operations, it
seems worthwhile to explore the encryption of quantum movies and quantum audio.
While these subareas are not as advanced as QIMP, activity is taking on renewed
intensity. Some of this work on multimedia is discussed in Chap. 6.

4.2 Duple Watermarking Strategy for Quantum Images

In this section, a double-key, double-domain, multi-channel watermarking strategy
for quantum images (MC-WaQI) [33] is introduced, such that verification of the
authentic owner of the image is guaranteed without compromising the security of
the content of the cover image. In the MC-WaQI strategy, both the watermark image
and carrier image are encoded in MCQI representation.

4.2.1 Double Information Key Generation

4.2.1.1 Two Watermark Information

In the MC-WaQI strategy, the secret information is embedded in both the frequency
and spatial domains of the carrier image; hence, there is the need to generate two
sets of data from the original carrier image with the additional requirement that
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Fig. 4.5 (a) Separations of
MCQI watermark image in R,
G, and B channels and (b)
their combination [33]

these data should be half the size of the carrier image. Assuming the size of the
carrier image is n × n, the size of the watermark image is supposed to be n/2 ×
n/2; otherwise, the stratagem requires that the watermark image be “polished” by
adding/reducing some redundancies [41].

The MCQI image is a multiple channel quantum image with the original RGB
channels and α channel for processing the color information, as shown in Eqs. (2.33)
and (2.34). The watermark images in different channels are presented in Fig. 4.5a,
where the α channel is the redundant channel with all of the black pixels of the same
size as the watermark. The separations of watermark information in R, G, B, and α

channels are combined to constitute a grayscale image |FW 〉 for the watermarking
in the frequency domain, as shown in Fig. 4.5b. Notice that |WR〉, |WG〉, and |WB〉
are grayscale quantum images in FRQI representation, and |FW 〉 is twice as large
as the original watermark image |W 〉.

4.2.1.2 Color Information Key Generation

As presented in Sect. 1.1.2.1, a measurement applied on a superposition state α|0〉+
β|1〉 will lead to the collapse of this state to produce the result 0 with probability
|α|2 or 1 with probability |β|2, where |α|2 + |β|2 = 1. The color information key
(CIK) is generated by means of such a basic property, which is defined below [33].

Definition 4.1 A CIK in MC-WaQI is a sequence of numbers assigned by an
encoding rule, which is used to transform the color information on the watermark
image.

Since the CIK is generated by performing quantum measurements, it is updated
every time the watermark image is measured. Therefore, the CIK is regarded as an
“unknown” key to public users. A simple example of how a CIK is generated is
presented in Fig. 4.6. First, according to the MC-PPT in Sect. 2.3.2, the watermark
image is prepared and stored as a quantum state, and then a quantum measurement
is applied on each channel of the watermark image to lead the different color
information to collapse to a certain color, as shown in the post-measurement image
in Fig. 4.6a. The circuit structure of this measurement is presented in Fig. 4.6b.

To further clarify the collapse of the color information, consider, for example,
the purple pixel in Fig. 4.7, which is composed of R (128), G (64), and B (128), but
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Fig. 4.6 (a) Generation procedure of CIK and (b) its circuit realization [33]

Fig. 4.7 An example to show the color collapse in quantum measurement [33]
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collapses to either black or white with probabilities (indicated as P0–P7) on each
channel after the measurement on these three channels. It is trivial to see from this
that there are only eight possible colors in the post-measurement image according
to the composition of basic colors in the RGB color model [33].

Eight indices are assigned, from 0 to 7, to the different colors from black through
white; based on this, an encoding rule is generated for the CIK, which is presented
in Fig. 4.8. The CIK is obtained by the quantum measurement, and it has the same
length as the number of pixels in the post-measurement image. For example, the
length of CIK in Fig. 4.6 is 64, which is the same size as the watermark image. The
first element in that CIK is 6, the second is 3, the third is 1, and so on. Each number
in the CIK is assigned a different operation based on a specified COI or CS operation
(as presented in Sect. 2.3.3) so that the color information in the watermark image can
be transformed. The rule set governing the relationship between the value of the CIK
and the color operation, including a brief description of the operations, is presented
in Fig. 4.8. Specifically, the COI operation (COIR , COIG, or COIB ) changes the
grayscale value of one channel (R, G, or B) of an image, and the CS operation

Fig. 4.8 Encoding rule and quantum operations corresponding to different elements in CIK [33]
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(CSRG, CSRB , or CSGB ) swaps the grayscale value between two channels (RG,
RB, or GB).

4.2.1.3 Position Information Key Generation

The position information key (PIK) is used to protect the position information on
the watermark image, and is defined as follows [33].

Definition 4.2 A PIK in MC-WaQI is a sequence combining two random permuta-
tions M and N, sized m and n, respectively, to scramble the position information on
the watermark image.

Specifically, given an m× n-sized image, there are two random permutations M
and N (where M and N build up the PIK) of size m and n, respectively. The pixel
(M(i), N(j)) of the watermark image replaces the pixel at position (i, j) in the original
image, where M(i) and N(j) are the i-th and j -th elements of M and N, respectively.
After traversing all of the pixels of an image, the position information of the image is
scrambled to produce a meaningless image [41]. Considering a 4× 4-sized quantum
image in Fig. 4.9, the original alphabet sequence is from A through P. If one lets
M = 3, 0, 1, 2; N = 1, 2, 0, 3, then the alphabet is rearranged to “H E F G P M
N O D A B C L I J K.” In the quantum circuit in Fig. 4.9c, the last two qubits of
the X- and Y-axis are ancilla states prepared in the standard states |0〉 and they are
transformed into the scrambled image at the output.

Fig. 4.9 Image scrambling method on (a) a 4×4 quantum image; (b) the scrambled image; and
(c) the circuit implementation (reprinted from ref. [41], with permission of Springer)
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4.2.2 Watermark Image Embedding and Extraction

A color image consists of many pixels, and the color information of each pixel can
be separated into its three channels. According to Eq. (2.33), an MCQI image state
can be rewritten as

|I 〉 =
N−1∑
i=0

(Xi
R|0〉 +Xi

G|1〉 +Xi
B |2〉 +Xα|3〉)|i〉, (4.1)

where i is the position information, N is the number of pixels in the image,
Xi

R , Xi
G, and Xi

B are color channel information, and Xα is made to carry no
information. The watermark image will be embedded in both the frequency domain
(QFT coefficients) and spatial domain (RGB channels) of the carrier image, so
the embedding and extraction procedures from these two domains are discussed
separately.

1. Embedding in frequency domain
Based on the above image scrambling method and the PIK, the watermark

image is embedded in the frequency domain of the carrier image. To guarantee
that the pixel values of the embedded carrier image |I ′〉 are still real, the revised
value of the QFT coefficients should be symmetric. If the size of carrier image is
m×n, then the revised values of the QFT coefficients should meet the conditions:

CEX(i, j) = CEX(m− 1− i, n− 1− j), X ∈ {R,G,B, α}, (4.2)

where CEX(i, j) is the revised value of the QFT coefficients in the X channel of
the carrier image. Accordingly, the watermark image |W 〉 to be embedded in the
carrier image should also be symmetric implies that:

WX(i, j) = WX(m− 1− i, n− 1− j). (4.3)

In addition, the image |W 〉 used for embedding in the frequency domain
should be twice the size of the image |I 〉 because of the symmetric property of
QFT [24]. Using the scrambling method discussed in Sect. 4.2.1.3, image |FW 〉
is processed, with the resultant image |FW ′〉, as shown in Fig. 4.10. The whole
procedure of embedding in the frequency domain is as follows [33]:

(a) Preprocessing of watermark image yields the procedure W → |W 〉 →
|FW 〉 → |FW ′〉, as introduced earlier.

(b) Execute QFT on the carrier image to obtain its QFT coefficients.
(c) Embed each channel of image |FW ′〉 in the corresponding channels of the

QFT coefficients of image |I 〉. The embedding procedure is implemented by
performing the phase-rotation operation on the carrier image [36].

(d) Execute the inverse QFT on each channel of the embedded image to get the
intermediate watermarked image |I ′〉.
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Fig. 4.10 (a) Resized watermark image and (b) its scrambled version [33]

Fig. 4.11 (a) Original watermark image; (b) color-transformed image; and (c) position-scrambled
image [33]

2. Embedding in spatial domain.
As stated previously, the procedure of embedding in the spatial domain

includes the following steps [33]:

(a) Preprocessing on watermark image |W 〉, as introduced earlier. First, CIK
operations are applied on image |W 〉 to transform it to |SW 〉, then an optional
PIK operation is used to further scramble the position information of |SW 〉
to obtain |SW ′〉. Resulting images in this process are presented in Fig. 4.11.

(b) Embed each channel of image |SW ′〉 in the corresponding channel of image
|I ′〉 to obtain the final watermarked image |I ′′〉. In particular, the COI
operator in Sect. 4.2.1.2 is adopted to shift the grayscale value of the R, G, or
B channel in |I ′〉. According to Eqs. (2.37) and (2.38), the final watermarked
image |I ′′〉 will have all of its colors coming from |I ′〉 and |SW ′〉.

Using the generated CIK and related operations, it is apparent that the color
information of image |W 〉 has been protected. Such an embedding method in spatial
domain ensures that the key will be updated every time watermark information
is produced, which means that illegal users will find it hard to steal keys. It is
different from the available literature [41] in that the key is assigned by the copyright
owner. However, the position information in |SW 〉 is still exposed after the color
transformation using CIK operations. The PIK introduced in Sect. 4.2.1.3 can be
used to further scramble the position information of |SW 〉 in order to improve the
security of the carrier image, as presented in Fig. 4.11c.
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In the procedure of watermark extraction, the watermark images are extracted
from both the frequency and spatial domains by means of two kinds of extraction
circuits [33, 36]. The procedure is basically the inverse of watermark embedding
in the frequency and spatial domains. This procedure is feasible because all of
the quantum gates involved in the implementation of watermark embedding are
invertible operations.

4.2.3 Metric for Estimating Congruity Between Quantum
Images

In QIMP applications, most researchers are content to adopt the classical peak-
signal-to-noise-ratio (PSNR) image quality measure to benchmark and validate their
approaches (i.e., to assess likeness between two or more quantum images). This
is mainly attributed to the absence of a quantum-based metric equivalent to the
PSNR. However, the often confounding contrariety between classical and quantum
information processing makes the widely accepted PSNR ill-suited to the quantum
computing framework, hence, these classical metrics are insufficient to effectively
quantify the fidelity between two or more quantum images [10].

An enhanced quantum-based image fidelity metric, the QIFM, is introduced in
[10] as a tool to assess the “congruity” between two or more quantum images.
Unlike the aforementioned image quality measures, the QIFM is calibrated as a
pixel difference-based image quality measure that is sensitive to the intricacies
of QIMP. The design of QIFM moderates its execution cost in order to estimate
the congruity between two or more quantum images. A statistical analysis also
shows that the QIFM has a better correlation with the digital expectation of likeness
between images than other available quantum image quality measures. Therefore,
the QIFM is an effective substitute for the PSNR as an image quality measure in
the quantum computing framework, thereby providing a tool to effectively assess
the fidelity between images in quantum watermarking, quantum movie aggregation,
and other applications in QIMP.

To summarize, a new multi-channel watermarking strategy that integrates a
double-key and double-domain idea, aimed at enhancing the security of quantum
images, was presented in this section. The hidden watermark logo in the spatial and
frequency domains can be retrieved by using CIK and PIK that are unaccessible
to unauthorized users, hence safeguarding the published versions of an image from
illicit tampering. Finally, a quantum-based image fidelity metric was mentioned to
assess the fidelity between images in QIMP applications.
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4.3 Quantum Image Encryption Using One-Dimensional
Quantum Cellular Automata

In any encryption scheme, the sender encrypts and transmits data in a public
environment, and only the designated receiver should be able to decrypt the data
using the decryption key. In contrast to watermarking, the attacker can detect
the existence of the secret information but cannot receive it. In this section, a
quantum cellular automata (QCA)-based quantum image encryption method [39]
is introduced as a quantum counterpart of classical encryption schemes.

4.3.1 Quantum Cellular Automata

In the QCA algorithm [15], each cell comprises two qubits, i.e., the x-qubit and
y-qubit. The state of the i-th QCA cell at computation step t is defined as

|yt
i x

t
i 〉 = ct

0,i |00〉 + ct
1,i |01〉 + ct

2,i |10〉 + ct
3,i |11〉, (4.4)

where |ct
k,i〉, k = 0, 1, 2, 3, are the coefficients of four basis states for each cell, for

which
∑3

k=0 |ct
k,i |2 = 1. Therefore, during QCA evolution, the state of a cell may

be a superposition of these four basis states.
The global state of the QCA at computation step t is the tensor product of the

states of its n cells, which is expressed as

|St 〉 = |yt
n−1x

t
n−1y

t
n−2x

t
n−2 · · · yt

0x
t
0〉. (4.5)

The cell states of the QCA evolve based on a global unitary rule R. The global
state’s evolution from computation step t to t + 1 is given by

|St+1〉 = R|St 〉. (4.6)

The evolution operator R has two phases [39]. In the interaction phase, the state of
the x-qubit in each cell is controlled by the states of the y-qubits in the neighboring
cells by the application of controlled quantum gates. In the evaluation phase, a two
input quantum gate or a combination of quantum gates is applied to the x- and y-
qubit in each cell, thereby facilitating information flow in the QCA lattice and the
simultaneous change of all x-qubit states. Therefore, Eq. (4.6) can be rewritten as

|St+1〉 = R|St 〉 = RERI |St 〉, (4.7)
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where RI and RE are two unitary operators associated with the evolution rule R
which are in the interaction and evaluation phases, respectively [16].

4.3.2 Scheme of Quantum Image Encryption Operation

The one-step evolution rule R is operated on the original quantum image, as
presented in Fig. 4.12. In the interaction phase, a Toffoli gate is applied to every
three neighboring cells. The control qubits are the y-qubits of the (j + 1)-th and
(j −1)-th cells, while the target qubit is the x-qubit of the j-th cell. In the evaluation
phase, a quantum gate U (which is a rotation operation as defined in Eq. (3.39)) is
applied to the x- and y-qubit in each cell. In this phase, the operator RI is composed
by a series of tensor products of Toffoli gates,

RI = T ⊗ T ⊗ · · · ⊗ T , (4.8)

and RE is defined as

RE = U ⊗ U ⊗ · · · ⊗ U. (4.9)

Fig. 4.12 Quantum circuit for one-step evolution rule R (reprinted from ref. [39], with permission
of Elsevier)
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Therefore, the QCA-based quantum image encryption scheme is described as
follows [39]:

Step 1: Encode plaintext image |I 〉 (as defined in Eq. (2.55)) to obtain |M1〉 using
the RI operation, i.e.,

|M1〉 = (RI ⊗ I )|I 〉

= (RI ⊗ I )
1

2n

2n−1∑
y=0

2n−1∑
x=0

q−1⊗
i=0

|Ci
yx〉|yx〉

= 1

2n

2n−1∑
y=0

2n−1∑
x=0

RI |C0
yxC

1
yx · · ·Cq−1

yx 〉|yx〉.

(4.10)

Step 2: Encode confused image |M1〉 to obtain |I 1〉, using the RE operation, i.e.,

|I 1〉 = (RE ⊗ I )|M1〉

= (RE ⊗ I )
1

2n

2n−1∑
y=0

2n−1∑
x=0

RI |C0
yxC

1
yx · · ·Cq−1

yx 〉|yx〉

= 1

2n

2n−1∑
y=0

2n−1∑
x=0

RERI |C0
yxC

1
yx · · ·Cq−1

yx 〉|yx〉.

(4.11)

Step 3: Repeat above two steps for t times. The encrypted quantum image then
changes to

|I t 〉 =
t⊗

i=1

(R ⊗ I )|I 〉 =
t⊗

i=1

(RERI ⊗ I )|I 〉, (4.12)

where the value of t should depend on the trade-off between computa-
tional complexity and encryption effect.

Since all the quantum operations are invertible, the decryption process is the
inverse of the encryption process; that is, if the encrypted quantum image is |I t 〉,
then the decryption process is

|I 〉 =
t⊗

i=1

(R† ⊗ I )|I 〉 =
t⊗

i=1

(R
†
I R

†
E ⊗ I )|I t 〉, (4.13)

where R† is the conjugate-transpose matrix of R, as defined in Sect. 1.1.3.2.
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Fig. 4.13 Example of quantum image encryption: (a) original image; (b) encrypted image; and
(c) decrypted image (reprinted from ref. [39], with permission of Elsevier)

4.3.3 Example of Quantum Image Encryption

In the simulation, an image with 256×256 pixels is taken as the original image [39],
as shown in Fig. 4.13a, and the encrypted image is shown in Fig. 4.13b. The image
encryption process can be achieved through subtle construction of the evolution
rules of one-dimensional QCA. The encryption algorithm provided has a complexity
O(n), which is superior to the complexity O(n2) of existing QFT-based quantum
image encryption schemes [39].

To summarize, a quantum cellular automata (QCA)-based quantum image
encryption method has been introduced in this section. The algorithm, supported
by the results of detailed numerical simulation and theoretical analysis, is shown to
have advantages in security, computational complexity, and robustness over classical
counterparts and some existing representative quantum image encryption schemes.

4.4 LSB-Based Quantum Image Steganography Algorithm

In digital steganography, sensitive messages may be concealed by manipulating and
storing information in the LSB of an image or sound file [6]. In this section, two
blind LSB steganography algorithms in the form of quantum circuits are provided
based on the NEQR images [14]. One of these algorithms is plain LSB, which uses
the message qubits to substitute for the pixels’ LSB directly, and the other is block
LSB, which embeds a message qubit in a number of pixels belonging to a single
image block.
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4.4.1 Plain LSB Steganography Operation

Assume the cover image is a 2n × 2n quantum image |I 〉 with gray range 2q (as
defined in Eq. (2.55)), and the message is a 2n × 2n binary quantum image |M〉, as
presented below:

|M〉 = 1

2n

22n−1∑
i=0

|mi〉 ⊗ |i〉, (4.14)

where

mi ∈ {0, 1} , i = 0, 1, · · · , 22n − 1. (4.15)

The embedding circuit of plain LSB algorithm is presented in Fig. 4.14a, in which
2n CNOT gates are used to test whether or not the position information of |I 〉 and
|M〉 is the same. If the position information is identical, that of |M〉 is changed to
|00 · · · 0〉. Therefore, under their control, the LSB of |I 〉 (i.e., |C0

i 〉) is swapped with
the message qubit |mi〉 to obtain the stego image |I ′〉.

The extraction circuit is shown in Fig. 4.14b, where 2n Hadamard gates are
utilized to transform the initial state (i.e., a sequence of |0〉) to a blank image. Similar

Fig. 4.14 Quantum circuit of plain LSB algorithm: (a) embedding circuit and (b) extraction circuit
(reprinted from ref. [14], with permission of Springer)
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with the embedding circuit, when the position information of |I 〉 and |M〉 is equal,
the LSB of |I 〉 (i.e., |C0

i 〉) is swapped with the message qubit |mi〉 to obtain the
message |M〉.

4.4.2 Block LSB Steganography Operation

Although the plain LSB steganography algorithm is simple, it exhibits poor
robustness [14]. To improve the robustness and undetectability of the LSB scheme,
the block LSB steganography algorithm divides the cover image into blocks,
each block (instead of each pixel) hides one message qubit. Actually, plain LSB
steganography can be viewed as a special case of block LSB in which every block
only accommodates one pixel.

4.4.2.1 Quantum Counter and Comparator

(1) Quantum counter

A quantum counter circuit [21] is shown in Fig. 4.15, where |b〉 is the input
qubit and b ∈ {0, 1}. |an−1 · · · a1a0〉 is a counter with initial value |0 · · · 00〉. If the
input qubit |b〉 is |1〉, then |an−1 · · · a1a0〉 increases by 1; otherwise, |an−1 · · · a1a0〉
remains unchanged.

(2) Quantum comparator

A quantum comparator circuit [30] is shown in Fig. 4.16. The comparator
compares a and b, where |a〉 = |an−1 · · · a1a0〉 and |b〉 = |bn−1 · · · b1b0〉, ai, bi ∈
{0, 1}, i = 0, 1, · · · , n − 1. Qubits |e1〉 and |e0〉 are outputs. If e1e0 = 10, then
a > b; if e1e0 = 01, then a < b; and if e1e0 = 00, then a = b. The usage and its
optical implementation are presented in [2] and [28].

Fig. 4.15 Quantum counter circuit
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Fig. 4.16 Quantum comparator circuit

4.4.2.2 Block Embedding Procedure

In block LSB scheme, the 2n × 2n cover image |I 〉 (shown in Eq. (2.55)) must be
divided into 2n−p1 × 2n−p2 blocks, each block of size 2p1 × 2p2 , where p1, p2 ∈
{0, 1, · · · , n}. The image block |B〉 can be defined as

|Bk,l〉 = 1

2n

2n−1∑
k=0

2n−1∑
l=0

|bk,l〉 ⊗ |kl〉, (4.16)

where

|k〉 = |yn−1yn−2 · · · yp1〉, |l〉 = |xn−1xn−2 · · · xp2〉. (4.17)

Assume the message is a binary quantum image, as presented in Eq. (4.14).
Its size is 2n−p1 × 2n−p2 , and the color information mk,l ∈ {0, 1}, where k =
yn−1yn−2 · · · yp1 and l = xn−1xn−2 · · · xp2 . The embedding procedure is as follows
[14]:

Step 1: The cover image |I 〉 is scrambled to enhance its undetectability in the
scheme. The quantum Hilbert image scrambling algorithm [12] is used in
this process.
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Step 2: If the position information |yn−1yn−2 · · · yp1xn−1xn−2 · · · xp2〉 of |I 〉 is
equal to that of |M〉, then the embedding operation swaps the LSB of |I 〉
(i.e., |C0

yx〉) and the message qubit |mk,l〉.
Step 3: The inverse Hilbert scrambling is used to recover from the scrambled

image.

4.4.2.3 Block Extraction Procedure

Following the embedding of every message qubit 2p times (where p = p1 + p2),
the stego image can be attacked maliciously, which might change some of the LSB
values. This will result in the sum of all of the pixels’ LSBs belonging to one block
to be equal not to 0 or 2p, but rather to a value between them.

Determining whether the extracted message qubit is 0 or 1 according to the sum
value is facilitated by setting a threshold. If the sum is greater than or equal to
the threshold, then the message qubit is 1; otherwise, the message qubit is 0. The
extraction procedure is as follows [14]:

Step 1: This is the same as Step 1 of the embedding procedure.
Step 2: A control circuit (i.e., partition module, shown in Fig. 4.19) is used to sep-

arate the stego image into 2n−p1×2n−p2 = 22n−p1−p2 blocks. In addition,
the circuit includes 22n−p1−p2 control layers, each corresponding to one
image block.

Step 3: Quantum counters (see Sect. 4.4.2.1) are used to sum all of the pixels’
LSBs that belong to one block. It contains 22n−p1−p2 counters, and the
counting numbers are represented as ayn−1···yp1xn−1···xp2

.
Step 4: Since each block comprises 2p pixels, the counting number from Step 3

should be compared with 2p−1, which is the threshold T that is set by
using the quantum comparator (in Sect. 4.4.2.1). If ayn−1···yp1xn−1···xp2

≥
2p−1, then the extracted message is 1; otherwise, the extracted message is
0.

4.4.3 Example of Quantum Image Steganography

In this subsection, an example is provided to describe the steganography algorithm
[14]. Considering a simple 4×4 cover image and an 8-bit message, 00110110, which
is the ASCII code of the character “6,” the cover image is partitioned into eight
blocks sized 1 × 2 (in this case, in Eqs. (4.16) and (4.17), n = 2, p1 = 0, p2 = 1)
and the message is rearranged into a 4× 2 binary image [14], as shown in Fig. 4.17.

Figure 4.18 shows the block LSB embedding circuit, which consists of three
parts corresponding to the three steps detailed in Sect. 4.4.2.2. The first and third
parts accomplish Hilbert image scrambling and its inverse operation [12].
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Fig. 4.17 (a) Cover image and (b) message image of the example (the numbers in the pixels are
their gray values)

Fig. 4.18 Block LSB embedding circuit of the example (reprinted from ref. [14], with permission
of Springer)

The block LSB extraction circuit (in Fig. 4.19) includes four parts, which
correspond to the four steps in Sect. 4.4.2.3. The Hilbert scrambling part is the
same as in the embedding operation. The partition module is a control circuit that
determines which counter C0

y1y0x1x0
enters. For instance, if the control value is 000,

then C0
000x0

swaps with the first auxiliary qubit |0〉, i.e., it enters the first counter.
The counting module consists of 2n−p1 × 2n−p2 = 8 counters, which correspond
to the eight blocks. Each counter ay1y0x1 sums the LSB of the pixels of block
By1y0x1 . Since each block has two pixels, the maximum value of ay1y0x1 is 2, so
two qubits are enough, i.e., |ay1y0x1〉 = |a1

y1y0x1
a0
y1y0x1

〉. In addition, the comparing
part contains 2n−p1 × 2n−p2 = 8 comparators, which compare ay1y0x1 with the
threshold 2p−1 = (01)2. As presented in Sect. 4.4.2.1, if ay1y0x1 > 01, then the
bottom two qubits of each comparator are 10, and so on. Hence, one only needs to
invert the bottom qubit to obtain the message qubit |my1y0x1〉.

To summarize, two LSB-based steganography algorithms for quantum images
were introduced. They differ by whether the message qubit is embedded in a pixel or
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Fig. 4.19 Block LSB extraction circuit of the example (reprinted from ref. [14], with permission
of Springer)

a block of the cover image. Both algorithms are blind, i.e., the extraction procedure
does not need the original cover or the original message. Analysis and simulation-
based experimental results demonstrate that the invisibility of the algorithms is
good, and there is an inherent trade-off between their capacity and robustness.

In this chapter, the discussion is started by dividing quantum image secu-
rity techniques into the two categories of cryptography and information hiding.
Specifically, the background and advances of quantum image scrambling, encryp-
tion, watermarking, and steganography are discussed. In addition to the fast
computing speed brought by parallel computation, the main emphases in these
techniques are on ensured security (by means of quantum measurement) compared
to their classical counterparts. The schematics of the embedding/extraction and
encryption/decryption procedures are depicted to show the implementation and
distinctiveness of these algorithms.
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Chapter 5
Quantum Image Understanding

Image understanding transforms data extracted from images to certain commonly
understood descriptions, and it makes subsequent decisions and actions according to
the interpretation of the images [6]. Image understanding is a broad area of research.
In the QIMP field, it includes quantum image classification [12], morphology [15,
22], pseudocolor [7], registration [18], and synthesis [5]. Some typical contributions
related to this field are discussed, namely quantum feature extraction [20], filtering
[8], and segmentation [4].

5.1 Local Feature Point Extraction for Quantum Images

Feature extraction is aimed at detecting and isolating various desired portions or
shapes (features) of digital images [6]. A novel quantum image edge extraction
algorithm (QSobel) was proposed in 2014 [21] that is based on FRQI representation
and the classical edge extraction algorithm Sobel. QSobel was proved capable of
extracting edges of computational complexity O(n2) for a FRQI image of size 2n×
2n. The same research group later proposed a quantum feature extraction framework
based on a NEQR representation [20]. Their framework, utilizing the quantum
addition/subtraction operations and several quantum image transformations, showed
that the feature points (i.e., corner points) could be extracted by comparing and
thresholding the pixel gradients. This feature extraction framework is introduced
below.
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5.1.1 Quantum Image Color Transformations

Three types of color operations used in the design of a feature extraction algorithm
are discussed. The first is the complement operation UC , which is important in
designing a quantum image subtraction operation. This operation changes all the
grayscales of the pixels in an NEQR image to their complementary values on 2q .
For details of the operation and its circuit implementation, see Sect. 2.4.2.1.

The second operation is the halving operation UH , which reduces the grayscale
of all of the pixels in an NEQR image by half [20]. Equation (5.1) expresses the
transformation of the quantum operation UH as

UH (|I 〉) = UH

⎛
⎝ 1

2n

2n−1∑
y=0

2n−1∑
x=0

|f (y, x)〉|y〉|x〉
⎞
⎠

= UH

⎛
⎝ 1

2n

2n−1∑
y=0

2n−1∑
x=0

q−1⊗
i=0

∣∣Ci
yx

〉∣∣y〉∣∣x〉⎞⎠

= 1

2n

2n−1∑
y=0

2n−1∑
x=0

⎛
⎝∣∣C0

yx

〉 q−2⊗
i=0

∣∣Ci+1
yx

〉∣∣y〉∣∣x〉⎞⎠

= 1

2n

2n−1∑
y=0

2n−1∑
x=0

∣∣C0
yx

〉∣∣f (y, x)/2
〉∣∣y〉∣∣x〉

.

(5.1)

The third operation is the classification operation UT of all of the pixels in an
image [20]. A threshold T is set, and all the pixels with grayscale values less than the
threshold belong to one group, while the remaining pixels belong to the other group.
An auxiliary qubit (initialized as |0〉) is needed to store the classification result,
which should be integrated with the image state. This operation UT is executed as

UT

(|I 〉|0〉) = UT

⎛
⎝ 1

2n

2n−1∑
y=0

2n−1∑
x=0

|f (y, x)〉|yx〉|0〉
⎞
⎠

= 1

2n

⎛
⎝ ∑

f (y,x)≥T

|f (y, x)〉|yx〉|1〉 +
∑

f (y,x)<T

|f (y, x)〉|yx〉|0〉
⎞
⎠ .

(5.2)

Generally, when a threshold T is chosen, the auxiliary qubit corresponding to
all of the pixels with grayscale values no less than T should be inverted (from |0〉
to |1〉). For simplicity, taking an image with a gray range [0, 2q − 1], a threshold
equaling a power of 2 is often selected, and it is thus easy to design the quantum
circuit [20].
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5.1.2 Quantum Image Addition and Subtraction Operations

To compute the gradients for all the pixels in the quantum image [10] and further
extract its feature points, focus must be directed to the addition and subtraction
operations of two quantum images in the NEQR model [20]. Regarding the image
addition operation on the two images, the pixels of the resultant image incur the
arithmetic additions of the grayscales of the corresponding pixels in the two images.

Consider that the two quantum images |IA〉 and |IB〉 are both of size 2n × 2n,
with a gray range [0, 2q − 1], i.e.,

|IA〉 = 1

2n

22n−1∑
yx=0

|Ayx〉|yx〉, (5.3)

and

|IB〉 = 1

2n

22n−1∑
yx=0

|Byx〉|yx〉, (5.4)

where |Ayx〉 = ⊗q−1
i=0 |ai〉 and |Byx〉 = ⊗q−1

i=0 |bi〉. Further consider that the resulting
quantum image is |IC〉 as

|IC〉 = 1

2n

22n−1∑
yx=0

|Cyx〉|yx〉 = 1

2n

22n−1∑
yx=0

|Ayx + Byx〉|yx〉. (5.5)

For every pixel (y, x) in |IC〉, the grayscale Cyx is equal to the sum of Ayx and Byx .
Since Ayx , Byx ∈ [0, 2q − 1], it is known that Cyx ∈ [0, 2q+1 − 2], and, therefore,
that q + 1 qubits are required to store the result, i.e., |Cyx〉 = ⊗q

i=0|ci〉.
A quantum adder (see Sect. 3.3.2.1) is then used to compute the arithmetic result

|Cyx〉 = |Ayx + Byx〉 of the two quantum states |Ayx〉 and |Byx〉. Therefore, the
quantum image addition operation of |IA〉 and |IB〉 can be carried out using a
quantum adder on the two color qubit sequences of the two images to obtain the
resulting image |IC〉, which is defined as

|IC〉 = add(|IA〉, |IB〉). (5.6)

To compute the result of the subtraction of two quantum images |IA〉 and |IB〉,
an image complementing operation can be applied to |IB〉 to obtain |IB̄〉 (where
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|IB̄〉 = UC |IB〉). Therefore, the quantum image subtraction operation can be defined
as

|IC〉 = sub(|IA〉, |IB〉)
= add(|IA〉, |IB̄〉)

= 1

2n

22n−1∑
yx=0

|Ayx − Byx〉|yx〉.
(5.7)

Similarly, q + 1 qubits are required to store the grayscale values of the pixels
of the resulting image |IC〉. The highest qubit being |0〉 implies that Ayx ≥ Byx ;
otherwise, Ayx < Byx . If the highest qubit is neglected, then the operation will be
to compute the absolute value of the subtraction of Ayx and Byx [20].

5.1.3 Scheme of Quantum Image Feature Extraction

In this subsection, the feature points to be extracted from the images are the corner
pixels that have grayscales that differ from the neighborhood pixels in all directions.
Generally, the gradient of every direction of a single pixel is used to represent the
degree of difference from its neighbors.

One simple method of computing the pixel gradients is the 1-order differential
coefficient [9], which uses the 3×3 neighborhood of the pixel, as shown in Fig. 5.1.
The framework of the quantum image feature extraction based on the NEQR model
is then given [20].

Fig. 5.1 3× 3 neighborhood
pixels of pixel (y, x); G1–G4
are the subgradients of the
four common orientations in
this mask
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Step 1: Generate the eight shifted quantum images using cycle-shift operations
(cf. Sect. 5.2.1) on |Iyx〉. The quantum image set is now expressed as

{
|Iyx〉, |Iy−1x〉, |Iy+1x〉, |Iy−1x−1〉, |Iyx−1〉,

|Iy+1x−1〉, |Iy−1x+1〉, |Iyx+1〉, |Iy+1x+1〉
}
.

(5.8)

The eight shifted images are computed and stored in the quantum states; in
contrast, in traditional methods, only one temporal image is used and the
neighboring pixels are not stored separately.

Step 2: Obtain the 1-order differential coefficient of the image by using a
sequence of quantum image addition and subtraction operations on the relative
images in the quantum image set (in Step 1), and compute the gradient of every
pixel using the halving operation UH on the image.
When implementing the zero-cross method [9], the subgradients of four direc-
tions of every pixel must be computed, as shown in Fig. 5.1. For pixel (y, x),
the gradients are computed based on its 3 × 3 neighborhood information. The
procedure used to compute all four subgradients for all the pixels in the quantum
image is presented as

|G1〉 = UH

{
sub

[
add

(|Iyx〉, |Iyx〉
)
, add

(|Iy+1x〉, |Iy−1x〉
)]}

,

|G2〉 = UH

{
sub

[
add

(|Iyx〉, |Iyx〉
)
, add

(|Iy+1x+1〉, |Iy−1x−1〉
)]}

,

|G3〉 = UH

{
sub

[
add

(|Iyx〉, |Iyx〉
)
, add

(|Iyx+1〉, |Iyx−1〉
)]}

,

|G4〉 = UH

{
sub

[
add

(|Iyx〉, |Iyx〉
)
, add

(|Iy+1x−1〉, |Iy−1x+1〉
)]}

.

(5.9)

Step 3: Construct the quantum circuit of the classification operation UT in this
scheme, which, since it depends on the threshold value, requires setting a fixed
threshold before extracting the image features. Four auxiliary qubits (|zi〉, 1 ≤
i ≤ 4) are used to record whether the four subgradients of every pixel (in
Step 2) are larger than the threshold and store the classification results of these
subgradients.

Step 4: Produce the entanglement state of the position qubit sequence and the four
classification result qubits |z〉, which is expressed as

|ϕ〉 = 1

2n

22n−1∑
yx=0

|yx〉 ⊗ |z〉. (5.10)

It is known that the feature points are the pixels having grayscales significantly
different than the neighborhood pixels in all directions. This indicates that a pixel
can be considered to be a feature point only when every classification result |zi〉
(in Step 3) is equal to |1〉.
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Fig. 5.2 Feature extraction result from the test image using the zero-cross method, where T

denotes the threshold and N is the number of extracted feature points: (a) T = 8, N = 304;
(b) T = 16, N = 298; and (c) T = 32, N = 236 (reprinted from ref. [20], with permission of
Springer)

Based on the above discussion, the method used to compute the gradient and
the selected threshold are the two important factors influencing the performance of
the feature extraction algorithm. The feature extraction results using the zero-cross
method and different thresholds (T = 8, 16, and 32) for the test image [13] are shown
in Fig. 5.2. It has been claimed that since only the 3× 3 neighborhood information
is used in the simple zero-cross method, some incorrect features are inevitable in
the resulting images [20].

To summarize, a quantum feature extraction framework has been introduced
based on the NEQR model. Since the pixels’ color information is stored in the
basis state of a qubit sequence in the NEQR model, the quantum image addition
and subtraction operations can be carried out flexibly using a quantum adder. The
gradients of all the pixels can then be computed simultaneously through a sequence
of quantum arithmetic operations. Finally, the feature points can be effectively
extracted from the quantum image by setting a certain gradient threshold.

5.2 Quantum Image Median Filtering in Spatial Domain

The aim of image filtering is to suppress noise without loss of image details
and features, and it is an indispensable operation in image preprocessing [6]. In
2013, Caraiman et al. elucidated a method of achieving quantum image filtering by
exploiting QFT and the quantum oracle principle [2]. Yuan et al. recently proposed
a spatial filtering method for quantum images [16]. In this method, however,
the specific values of the filter coefficients must be known before each filtering
operation. Moreover, this method is only suitable for integer filter coefficients [17].
It is noteworthy that these two methods only apply to mean filtering and not to
median filtering. In this section, spatial filtering of a quantum image, with emphasis
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on the design of the quantum median filter and its application to image denoising
[8], is introduced.

5.2.1 Quantum Modules for Median Filter

To complete the quantum image median filtering operation, several basic modules,
namely the cycle-shift, sort, and median calculation modules, are used [8].

(1) Cycle-shift modules

The four cycle-shift modules used here are represented as Sy−, Sy+, Sx−, and
Sy+. They are used to translate all the pixels in the image by one unit. For example,
for an 2n× 2n-sized NEQR image, and assuming the position qubit to be |y〉|x〉, the
roles of these four modules can be described as follows [8]:

Sy−(|y〉) = |(y − 1) mod 2n〉,
Sy+(|y〉) = |(y + 1) mod 2n〉,
Sx−(|x〉) = |(x − 1) mod 2n〉,
Sx+(|x〉) = |(x + 1) mod 2n〉.

(5.11)

Figure 5.3 shows the quantum circuits and examples of these four modules. In
accordance with Eq. (5.11), this operation is a cycle addition of the edge pixels of
the image; that is, during the operation Sx+, the pixels located at the right edges will
move to the left edge in the transformed image [14, 20].

(2) Sort module

The sort module sorts two integers in ascending order and consists of a
comparator and swap sub-module (see Fig. 5.4a). In this module [8], the quantum
comparator (see Sect. 4.4.2.1) is used to compare two input integers a and b. A
decision is then made whether to swap a and b according to the value of e1e0; if and
only if e1e0 = 10 (i.e., a > b), a is swapped with b using the swap module (see
Fig. 5.4b). At this point, in the module output, â and b̂ are the sorting results of a
and b.

(3) Median calculation module

The median calculation module calculates the median of the nine integers and is
composed of 30 sort sub-modules [8]. Figure 5.5 shows its quantum circuit structure,
in which c1, c2,. . ., c9 are nine integers that are inputted to this module. In brief, in
operation it first obtains the median of the nine integers, based on the bubble-sort
principle, and uses the 30 sort sub-modules to order the nine integers c1, c2,. . ., c9.
After sorting, the fifth integer ĉ5 = M is clearly the median of the nine integers.
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Fig. 5.3 Cycle-shift modules: quantum circuit that translates all of the pixels in the image to the
(a) top; (b) bottom; (c) left; and (d) right by one unit

5.2.2 Circuit Implementation of Median Filtering Operation

5.2.2.1 Background on Median Filtering Technique

Median filters replace a pixel’s value with the median of the intensity values in
the neighborhood of that pixel, which are capable of excellent noise reduction for
certain types of random noise [6]. To perform median filtering at a point in an image,
the values of the pixels are first sorted in the neighborhood, their median determined,
and that value assigned to the corresponding pixel in the filtered image. Therefore,
the main function of median filters is to force points with distinct intensity levels to
be more like their neighbors.
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â

q–1

q–2

â
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As similarly discussed in Sect. 5.1.3, the original image is first translated by
one unit in eight directions (up, down, left, right, up-left, up-right, down-left,
and down-right). Then, for the nine images (the original image |I 〉 and the
transposed eight images |I1〉 ∼ |I8〉), nine pixels with the same position (e.g., |cyx〉,
|cy1x1=yx〉, |cy2x2=yx〉, |cy3x3=yx〉, |cy4x4=yx〉, |cy5x5=yx〉, |cy6x6=yx〉, |cy7x7=yx〉, and
|cy8x8=yx〉) are exactly the same as nine pixels encompassed by a 3 × 3 filtering
mask in the original image (i.e., |cyx〉, |c(y−1)x〉, |c(y+1)x〉, |cy(x−1)〉, |cy(x+1)〉,
|c(y−1)(x−1)〉, |c(y−1)(x+1)〉, |c(y+1)(x−1)〉, and |c(y+1)(x+1)〉). Therefore, the median
of nine pixels from the same position of the nine images is the grayscale value of
the corresponding position of the filtered image [8].

5.2.2.2 Quantum Median Filtering Circuits

The complete quantum circuits of the quantum image median filtering method
are shown in Fig. 5.6. This comprises three types of modules: 12 cycle-shift, 16
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comparator (shortened to “COMP” in the figure), and one median calculation
module [8].

The procedure of quantum median filtering circuits is detailed as follows. The
input is nine identical quantum images, including the original image as

|I 〉 = 1

2n

2n−1∑
y=0

2n−1∑
x=0

|cyx〉|y〉|x〉, (5.12)

and eight to be transposed images as

|Ii〉 = 1

2n

2n−1∑
yi=0

2n−1∑
xi=0

|cyixi
〉|yi〉|xi〉, (5.13)

where if yixi = yx then cyixi
= cyx , i = 1, 2,. . ., 8. That is to say, these nine

quantum images are exactly the same.
First, with |I 〉 kept constant, a total of 12 cycle-shift modules are applied to

execute cycle-shift operations on the other eight images (|I1〉 ∼ |I8〉) to obtain nine
images (one original image and eight shifted images), some of which are shown as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sy−|I1〉 = 1

2n

2n−1∑
y1=0

2n−1∑
x1=0

|cy1x1〉Sy−|y1〉|x1〉

= 1

2n

2n−1∑
y1=0

2n−1∑
x1=0

|cy1x1〉|(y1 − 1) mod 2n〉|x1〉

= 1

2n

2n−1∑
ŷ1=0

2n−1∑
x̂1=0

|cŷ1x̂1〉|ŷ1〉|x̂1〉

...

Sy+Sx+|I8〉 = 1

2n

2n−1∑
y8=0

2n−1∑
x8=0

|cy8x8〉Sy+|y8〉Sx+|x8〉

= 1

2n

2n−1∑
y8=0

2n−1∑
x8=0

|cy8x8〉|(y8 + 1) mod 2n〉|(x8 + 1) mod 2n〉

= 1

2n

2n−1∑
ŷ8=0

2n−1∑
x̂8=0

|cŷ8x̂8〉|ŷ8〉|x̂8〉.

.

(5.14)
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Following completion of the image cyclic shift, another 16 comparator modules
are invoked to compare the positions with the aim of finding the pixels with the same
position in the nine images. Taking Eq. (5.14) as an example, if y = ŷ1 = · · · = ŷ8
and x = x̂1 = · · · = x̂8, then cyx , cŷ1x̂1 ,. . ., cŷ8x̂8 are the grayscale values of the
nine pixels with the same position. Then, using the output of the 16 comparators as a
control condition (as shown in Fig. 5.6), a median calculation module is executed to
produce the median grayscale value of the nine pixels (ĉyx) with the same position.
Therefore, by referring to Eq. (5.12), the median filtered quantum image (|Î 〉 =
1
2n

∑2n−1
y=0

∑2n−1
x=0 |ĉyx〉|y〉|x〉) is obtained.

5.2.3 Example of Quantum Image Filtering

By use of the NEQR model in Sect. 2.4.1, a 4×4 quantum image (shown in Fig. 5.7a)
is used to illustrate a specific median filtering process [8], which is presented as

|I 〉 =1

4
(|111〉|0, 0〉 + |130〉|0, 1〉 + |172〉|0, 2〉 + |159〉|0, 3〉
+ |107〉|1, 0〉 + |243〉|1, 1〉 + |68〉|1, 2〉 + |92〉|1, 3〉
+ |73〉|2, 0〉 + |35〉|2, 1〉 + |145〉|2, 2〉 + |138〉|2, 3〉
+ |233〉|3, 0〉 + |69〉|3, 1〉 + |121〉|3, 2〉 + |176〉|3, 3〉).

(5.15)

Corresponding to the quantum circuit in Fig. 5.6 and Eq. (5.14), the whole
median filtering process of the NEQR image |I 〉 is presented in Fig. 5.7b–i, and
Fig. 5.7j shows the final median filtered quantum image |Î 〉.

Fig. 5.7 Median filtering process for a 4 × 4 NEQR image; (a) |I 〉; (b) Sy−|I 〉; (c) Sy+|I 〉;
(d) Sx−|I 〉; (e) Sx+|I 〉; (f) Sx−Sy−|I 〉; (g) Sx+Sy−|I 〉; (h) Sx−Sy+|I 〉; (i) Sx+Sy+|I 〉; and (j) |Î 〉
(reprinted from ref. [8], with permission of Springer)
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To summarize, a quantum median filtering method was introduced in this section.
Classical median filtering is achieved by sliding the filtering mask over the entire
image, while in the presented method the original image is first translated by
one unit in eight directions, after which, for nine images (the original image and
eight transposed images), the median of nine pixels with the same position is
calculated. This median is that of the corresponding pixels in the filtered image.
Using the parallelism of quantum computing allows all the median calculations to
be performed simultaneously, so the operation can be completed more quickly than
its classical counterpart.

5.3 Threshold-Based Quantum Image Segmentation

The image segmentation process separates the foreground of one or more objects
in a digital image from the background [6]. In the QIMP field, in 2014, Caraiman
et al. proposed a quantum algorithm for threshold estimation and a segmentation
algorithm based on iterative thresholding [3]. Both algorithms exhibit significant
increases in speed compared to the analogous classical procedures because they
exploit the quantum mechanism of amplitude amplification and the QFT. In 2015,
Caraiman et al. proposed another threshold-based segmentation method, one that
applies a quantum oracle in a single computational step [4]. This method enables
accurate retrieval of the segmented image using a finite number of quantum
measurement operations. This segmentation method is introduced in this section.

5.3.1 CQIR Representation and Initialization

Similar to NEQR representation in that a qubit sequence is used to encode the
color information in quantum images [19], Caraiman et al. proposed an approach
designated CQIR that facilitates histogram equalization of a quantum image that
is particularly useful for improved processing in operations such as computing
negatives, binarization, and histograms [1]. The CQIR representation is expressed
as

|I 〉 = 1

2n

22n−1∑
i=0

2m−1∑
j=0

αij |j 〉|i〉, (5.16)

where pixel positions are encoded in a register using 2n qubits, while each pixel’s
color information is represented using m = �log2 L qubits encoding the L gray-
level colors. Coefficients αij , with

∑2m−1
j=0 |αij |2 = 1 for all 0 ≤ i ≤ 22n − 1, are

used to express the color of a pixel with position i via a superposition of all the
possible colors. For a given pixel i, coefficient αij will have a value of 1 if the color
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Fig. 5.8 A 2 × 2 CQIR image and its quantum state (reprinted from ref. [4], with permission of
Springer)

of the pixel is j, and 0 otherwise [2]. This is shown in Fig. 5.8 by a simple example
of a 2×2 image with four colors, in which two qubits are used to represent the color
information and two qubits to encode the position of each pixel.

The initialization of CQIR and some possible transformations were discussed in
[1]. Also see Sect. 2.1 for a discussion of the similarities and differences between
CQIR and other available image representations.

5.3.2 Circuit Implementation of Segmentation Operation

Image segmentation operation partitions the image into a set of nonoverlapping
regions covering it and these regions correspond to one or more objects of interest
and the background. Thresholding relies on color similarity of pixels belonging to
different regions in an image, which makes it more simple and convenient among
various segmentation methods [6].

The quantum procedure for threshold-based image segmentation uses the
principles of quantum parallelism by applying a thresholding function f :
{0, 1, . . . , 2m+2n − 1} → {0, 1} in the form of an oracle operator Uf on the
state |I 〉 ⊗ |0〉, where |I 〉 is the quantum image represented in Eq. (5.16). The
operator Uf is built using the function:

f (z) =
{

0, if z� 2n < T

1, if z� 2n ≥ T
, (5.17)

where z in binary representation is z = cm−1cm−2 · · · c0p2n−1p2n−2 · · ·p0, where
qubits cm−1cm−2 · · · c0 code the color, qubits p2n−1p2n−2 · · ·p0 code pixel posi-
tions, “�” is the bitwise right-shift operator, and T is the segmentation threshold
[4].

The quantum circuit (in Fig. 5.9) carries out a threshold-based segmentation of
a CQIR image |Iin〉. The thresholding function is implemented using the oracle
operator Uf in Eq. (5.17). The output image is represented by the quantum state
|Iout 〉, where pixels with intensities below the threshold T are black and others are
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Fig. 5.9 Quantum circuit that performs threshold-based segmentation of a quantum image
(reprinted from ref. [4], with permission of Springer)

white. This procedure is now analyzed and the state at each step of the quantum
image segmentation circuit described [4].

In Fig. 5.9, the input state |ϕ0〉 mainly consists of the segmentation threshold |T 〉
with m qubits, input image |Iin〉with m+2n qubits, and control qubit |0〉 as follows:

|ϕ0〉 = |1〉⊗m|0〉⊗m|T 〉m|Iin〉m+2n|0〉. (5.18)

Further, the input image |Iin〉 can be interpreted as a superposition of two states: a
state, |I bg

in 〉, corresponding to background pixels having a gray level less than the

threshold, and one, |I obj
in 〉, corresponding to object pixels with a gray level greater

than or equal to the threshold:

|Iin〉 =
√

22n − t

2n

∣∣I bg
in

〉+
√

t

2n

∣∣I obj
in

〉
, (5.19)

where

∣∣I bg
in

〉 = 1√
22n − t

2n−1∑
y=0

2n−1∑
x=0

T−1∑
j=0

αyxj |j 〉|y〉|x〉, (5.20)

∣∣I obj
in

〉 = 1√
t

2n−1∑
y=0

2n−1∑
x=0

2m−1∑
j=T

αyxj |j 〉|y〉|x〉, (5.21)

and t is the number of object pixels. Using the oracle operator Uf on this
superposition state produces:

|ϕ1〉 = |1〉⊗m|0〉⊗mUf (|T 〉|Iin〉|0〉)
= |1〉⊗m|0〉⊗m|T 〉

(∣∣I bg
in

〉|0〉 + ∣∣I obj
in

〉|1〉).
(5.22)
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Thus far, the control qubit has distinguished between the two quantum states
|I bg

in 〉 and |I obj
in 〉. This is used next to assign different gray levels to the image pixels

relying on whether they belong to the background or to the objects of interest [4].
The final image will contain black pixels (the background) and white pixels (the
segmented objects), which can be achieved using controlled-swap (also known as
Fredkin) gates.

Two Fredkin gates are employed in the quantum circuit in Fig. 5.9 to set the state
of the color register |cobj 〉 to |1〉⊗m (white pixels) and |cbg〉 to |0〉m (black pixels)
when the control qubit is |1〉 and |0〉, respectively. Consequently,

|ϕ2〉 =
√

22n − t

2n
|1〉⊗m|0〉⊗m|T 〉∣∣I bg

in

〉|0〉 +
√

t

2n
|cobj 〉|0〉⊗m|T 〉∣∣I obj

out

〉|1〉, (5.23)

|ϕ3〉 =
√

22n − t

2n
|1〉⊗m|cbg〉|T 〉

∣∣I bg
out

〉|0〉 +
√

t

2n
|cobj 〉|0〉⊗m|T 〉∣∣I obj

out

〉|1〉, (5.24)

where

∣∣I bg
out

〉 = 1√
22n − t

2n−1∑
y=0

2n−1∑
x=0

|0〉⊗m|y〉|x〉, (5.25)

∣∣I obj
out

〉 = 1√
t

2n−1∑
y=0

2n−1∑
x=0

|1〉⊗m|y〉|x〉, (5.26)

are the background pixels and object pixels in the output image |Iout 〉.

5.3.3 Example of Quantum Image Segmentation

To illustrate the above quantum segmentation algorithm, a simple example of a 2×2
CQIR image with four possible colors (n = 1, m = 2 in Eq. (5.16)) is explored,
and the state of the quantum system at each step mathematically described [4].
The image presented in Fig. 5.8 is considered, and the value T = 2 used for the
segmentation threshold. Hence, the input state is

|ϕ0〉 = |11〉|00〉|10〉1
2
(|0100〉 + |0001〉 + |1110〉 + |1011〉)|0〉. (5.27)

The quantum circuit that implements the comparison operator Ucmp can be
realized using the approach of Oliveira et al. [11] (an earlier version of the quantum
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Fig. 5.10 Quantum circuit that implements (a) the comparison operator Ucmp and (b) the oracle
operator Uf built atop Ucmp (reprinted from ref. [4], with permission of Springer)

comparator introduced in Sect. 4.4.2.1). The comparison of two quantum states |a〉
and |b〉 can be implemented by

Ucmp|a〉|b〉|0〉⊗p|0〉|0〉 = |a〉|b〉|ψ〉|e1〉|e0〉, (5.28)

where p + 2 ancilla qubits are involved in the input states, and |e1〉 and |e0〉
encode the comparison result at the output. To satisfy the function in Eq. (5.17),
it is concluded if e0 = 0, then a ≥ b; otherwise, a < b. The quantum circuits
that implement this comparison operator Ucmp and the oracle operator Uf that
flips the control qubit if c ≥ T , where |c〉 = |c1〉|c0〉 encodes the gray level and
|T 〉 = |T1〉|T0〉 indicates the threshold, are shown in Fig. 5.10.

Application of Uf on the input image state to transform |ϕ0〉 to

|ϕ1〉 = |11〉|00〉|10〉1
2
(|0100〉|0〉 + |0001〉|0〉 + |1110〉|1〉 + |1011〉|1〉)

= 1

2
|11〉|00〉|10〉|0100〉|0〉 + 1

2
|11〉|00〉|10〉|0001〉|0〉

+ 1

2
|11〉|00〉|10〉|1110〉|1〉 + 1

2
|11〉|00〉|10〉|1011〉|1〉.

(5.29)

The two Fredkin gates swap the color sub-states first with |11〉 when the control
qubit is |1〉, and then with |00〉 when the control qubit is |0〉, which are shown as

|ϕ2〉 = 1

2
|11〉|00〉|10〉|0100〉|0〉 + 1

2
|11〉|00〉|0001〉|0〉

+ 1

2
|11〉|00〉|10〉|1110〉|1〉 + 1

2
|10〉|00〉|10〉|1111〉|1〉.

(5.30)
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Fig. 5.11 Quantum segmentation result of the CQIR image in Fig. 5.8

|ϕ3〉 = 1

2
|11〉|01〉|10〉|0000〉|0〉 + 1

2
|11〉|00〉|0001〉|0〉

+ 1

2
|11〉|00〉|10〉|1110〉|1〉 + 1

2
|10〉|00〉|10〉|1111〉|1〉.

(5.31)

Figure 5.11 depicts the state of the output quantum image. The pixels with a gray
level less than the threshold (|T 〉 = |10〉) in the original image are colored with the
minimum gray level of zero, while the others are colored with the maximum gray
level of 3.

To summarize, a quantum circuit to carry out threshold-based image segmenta-
tion can be built using a quantum oracle that implements the thresholding function.
The circuit implementation of the oracle operator was discussed and examples
of segmenting synthetic images provided. The superiority of the quantum image
segmentation over its classical counterpart is its increased speed owing to the
inherent computational parallelism in quantum information processing.

In this chapter, by referring to the classical image understanding techniques,
quantum image filtering, feature extraction, and segmentation algorithms are intro-
duced. In such algorithms, to interpret and describe the images, thresholding and
sampling must always be taken into account, and quantum computing modules
for image translation, addition, and comparison always employed. Although image
understanding is a broad area, QIMP research in this field is still restricted to several
limited topics. To enhance understanding of these algorithms, an example and a
corresponding circuit implementation for each technique have been provided.
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Chapter 6
Quantum Multimedia Techniques

Although QIMP is still in its infancy, researchers could not wait to tackle other
multimedia techniques, such as movies and audio. Although research of these two
techniques is proceeding slowly, some advances have been made. In this chapter,
the chromatic framework of quantum movies [21] and the flexible representation of
quantum audio signals [20] are introduced. In addition, some typical operations and
applications of these quantum multimedia techniques are discussed.

6.1 Chromatic Framework for Quantum Movies
and Applications

Motivated by the dominance of TV and movies and advances in the QIMP
subdiscipline, in 2011, Iliyasu et al. explored a conceptual scheme to represent
and produce movies on quantum computers [7]. Relying somewhat on classical
technical jargon, Iliyasu’s quantum movie scheme (QMS) is introduced as a prelude
to a discussion on the development of quantum movies.

6.1.1 Grayscale Quantum Movie Scheme

Classically, a movie comprises a sequence of multiple images, and every movie was
at some stage a script, i.e., a collection of predetermined dialogues and instructions
required to convey a storyline to the audience [6]. Four levels of detail are required

© Portions of this chapter are reprinted from Refs. [21] and [20], with permission, respectively, of
Springer and Elsevier.
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to convey this larger narrative of a movie [4]. At the lowest level, a movie consists
of a set of almost identical images called frames, which at the next level are grouped
into shots. Each shot is delineated by two or more key frames that bear little
resemblance to each other. Consecutive shots are aggregated into scenes based on
their pertinence. A scene could have a single shot, and usually all of the shots in a
single scene have a common background. A sequence of all of the scenes together
composes a movie [7].

This classical terminology and these roles are extended to the representation and
production of movies on quantum computers. In QMS, a key frame is defined as
an FRQI image, shown in Eq. (2.1), that captures the broad content from which the
additional information required to convey a single shot (or a part of it) in a movie is
obtained [7]. When one or more key frames are set, the motion dictated by the movie
script generates the in-between content called viewing frames, resulting in a smooth
change of the content over time. When a scene cannot be adequately conveyed by
transforming a preceding key frame, a third type of frame, the makeup frame, is
included in the movie sequence. The main difference between a key frame and a
makeup frame is that viewing frames cannot be realized from makeup frames [7].
The key, makeup, and viewing frames, which are all FRQI quantum states as defined
in Eq. (2.1), are encoded in a collection of 2m-ending frames as required to capture
the information necessary to represent the shots and scenes of a quantum movie.

Several conceptual devices, i.e., quantum CD, quantum player, and movie reader,
were proposed by Iliyasu et al. to achieve the preparation, manipulation, and
measurement of the QMS [7]. Quantum CD prepares, initializes, and stores as many
key frames and their ancillary information conveying the movie script; quantum
player manipulates the contents of the key frames in order to interpolate the missing
viewing frames to depict the shots and scenes of the movie; and movie reader
measures the contents of the sequence of key, viewing, and makeup frames to
retrieve their classical versions. At appropriate frame transition rates, this sequence
creates the impression of continuity as in a movie. The trio of the quantum CD,
player, and movie reader combine to produce the QMS on quantum computers.
Furthermore, a simple motion operation is applied to the key frames to effectively
convey two-dimensional movement of every point in the frame and the movie
enhancement stage of the movie reader demonstrates the need to enhance the content
of each frame before being viewed by the audience [7].

In QMS, multiple FRQI images are stacked and encoded as frames of a movie
strip. While conceived with sensitivity to the intricacies of quantum computing,
QMS resembles early movie production, with two limitations on its use [21]. First,
disregarding decoherence and measurement issues in recovering movie content, the
entire movie is encoded in grayscale, hence the result will be monochrome. Second,
QMS makes no provision for storing audio information, which limits it to silent
movies. These concepts are discussed below.
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6.1.2 Chromatic Framework for Quantum Movies

To enhance the visual cum esthetic perception of Iliyasu’s QMS [7], a chromatic
framework for quantum movies (CFQM) that integrates chromatic descriptions of
individual frames and merges them with the time information that tags each frame
and binds them into a quantum register (i.e., a movie strip) is discussed [21].

6.1.2.1 CFQM Framework Based on MCQI Images

As noted earlier, Yan et al. replaced the FRQI format used to encode movie frames
in QMS with MCQI images. The resulting movie strip comprising 2m frames is
then bound to the time tag associated with each frame in the quantum register, and
subsequently evolves into a CFQM framework, which is formulated as

|M(m, n)〉 = 1

2
m
2

2m−1∑
t=0

|Ft(n)〉 ⊗ |t〉, (6.1)

where |t〉, t = 0, 1, . . . , 2m − 1, are 2m-dimensional quantum basis states to
represent the time information in the entire movie and |Ft(n)〉 is the movie frame at
time |t〉 which is presented as an MCQI image (defined in Sect. 2.3) in the form:

|Ft(n)〉 = 1

2n+1

22n−1∑
i=0

|ct,i〉 ⊗ |i〉, (6.2)

where |ct,i〉 encodes the color information of the image in R, G, B, and α channels,
and is defined as

|ct,i〉 = cos θR
t,i |000〉 + cos θG

t,i |001〉 + cos θB
t,i |010〉 + cos θα

t,i |011〉
+ sin θR

t,i |100〉 + sin θG
t,i |101〉 + sin θB

t,i |110〉 + sin θα
t,i |111〉,

(6.3)

where {θR
t,i , θ

G
t,i , θ

B
t,i , θ

α
t,i} ∈ {0, π/2} are four angles encoding the colors of the R,

G, B, and α channels, respectively, of the i-th pixel. A simple four-frame movie
framework (each frame is a 2 × 2 MCQI image) as well as its quantum state is
shown in Fig. 6.1.
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Fig. 6.1 A four-frame
CFQM framework and its
quantum state
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6.1.2.2 Initialization of the CFQM Framework

The preparation procedure to transform a quantum computer from its initialized
state (usually a sequence of basis states |0〉) to a desired quantum state is the first
step in quantum movie representation and production [7, 10].

To initialize a CFQM framework, m + 2n + 3 basis states |0〉 (denoted by
|0〉⊗m+2n+3) are employed, where m is the number of qubits that will be used to
encode the temporal (time) information depicting the time lapse in the entire movie,
2n qubits will be used to encode the spatial (position) information of each frame,
which is essentially a 2n×2n MCQI image, and the remaining three qubits are used
to store the chromatic (color) information in the movie framework. The preparation
procedure for the CFQM framework consists of the following three steps [21]:

Step 1: Apply the transformation G = I ⊗ H⊗m+2n+2 on the initialized state
|0〉⊗m+2n+3 to generate an intermediate state |K〉, as follows:

G(|0〉m+2n+3) = |0〉 ⊗ (H⊗2|0〉⊗2)⊗ (H⊗2n|0〉2n)⊗ (H⊗m|0〉⊗m)

= |0〉 ⊗ 1

2

3∑
c=0

|c〉 ⊗ 1

2n

22n−1∑
i=0

|i〉 ⊗ 1

2
m
2

2m−1∑
t=0

|t〉

= |K〉,

(6.4)

where two kinds of unitary matrices, i.e., a two-dimensional identity matrix I
and Hadamard matrix H, are used. In addition, H⊗m+2n+2 indicates the tensor
product of m+ 2n+ 2 Hadamard matrices, as used in Sect. 2.2.1.

Step 2: Initialize the movie frame, i.e., the MCQI image, at time |t〉. Rotation
matrices are utilized in the operation, which is formalized as

Ry(2θ) =
(

cos θ −sin θ

sin θ cos θ

)
, θ ∈ {

θR
t,i , θ

G
t,i , θ

B
t,i

}
. (6.5)
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Based on the transform in Eq. (6.5), three 8×8 controlled-rotation operations,
RR

t,i , RG
t,i , and RB

t,i , are required to initialize the color information in the R, G, and
B channels at the position of |i〉, as follows:

RR
t,i = I ⊗

3∑
c=1

|c〉〈c| + R
(
2θR

t,i

)⊗ |0〉〈0|,

RG
t,i = I ⊗

3∑
c=0,c �=1

|c〉〈c| + R
(
2θG

t,i

)⊗ |1〉〈1|,

RB
t,i = I ⊗

3∑
c=0,c �=2

|c〉〈c| + R
(
2θB

t,i

)⊗ |2〉〈2|.

(6.6)

Figure 6.2 shows that each of the RR
t,i , RG

t,i , and RB
t,i operations in Eq. (6.6) is

a three-qubit gate. In addition, the C2(Ry(2θ)) operation can be constructed from
elementary gates, as shown in Fig. 6.2d. When these three rotations are considered
as a whole, the RGB information of a pixel |i〉 in a frame can be initialized by

Rt,i = I⊗3 ⊗
22n−1∑

j=0,j �=i

|j 〉〈j | + (RR
t,iR

G
t,iR

B
t,i)⊗ |i〉〈i|. (6.7)

Fig. 6.2 Controlled-rotation operations: (a) RR
t,i ; (b) RG

t,i ; (c) RB
t,i ; and (d) their implementa-

tions [21]
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An MCQI image contains 2n× 2n pixels; therefore, to execute the operation Rt,i

in Eq. (6.7) requires the traversal of all 22n pixels in the image. The entire operation
can be generalized in the form:

�t =
22n−1∏
i=0

Rt,i . (6.8)

Based on the operation �t in Eq. (6.8), in the CFQM framework, a frame tagged
at time |t〉 in the strip can be initialized as

Ht = I⊗2n+3 ⊗
2m−1∑

s=0,s �=t

|s〉〈s| + �t ⊗ |t〉〈t |, (6.9)

where Ht is a unitary matrix, implying that HtH
†
t = I⊗m+2n+3. Specifically, when

the p-th frame is initialized in the CFQM framework, an operation Hp is applied on
the intermediate state |K〉 in Eq. (6.4) to obtain:

Hp(|K〉) = Hp

⎛
⎝|0〉 ⊗ 1

2

3∑
c=0

|c〉 ⊗ 1

2n

22n−1∑
i=0

|i〉 ⊗ 1

2
m
2

2m−1∑
t=0

|t〉
⎞
⎠

= 1

2
m
2 +n+1

⎡
⎣|0〉 ⊗

3∑
c=0

|c〉 ⊗
22n−1∑
i=0

|i〉 ⊗
2m−1∑

t=0,t �=p

|t〉

+�p

⎛
⎝|0〉 ⊗

3∑
c=0

|c〉 ⊗
22n−1∑
i=0

|i〉
⎞
⎠⊗ |p〉

⎤
⎦

= 1

2
m
2 +n+1

⎡
⎣|0〉 ⊗

3∑
c=0

|c〉 ⊗
22n−1∑
i=0

|i〉 ⊗
2m−1∑

t=0,t �=p

|t〉

+
22n−1∏
i=0

Rp,i

⎛
⎝|0〉 ⊗

3∑
c=0

|c〉 ⊗
22n−1∑
i=0

|i〉
⎞
⎠⊗ |p〉

⎤
⎦ . (6.10)

So far, in the strip of the entire CFQM framework, the p-th frame has been
initialized while the other frames remain vacant, i.e., up to this stage, the other
frames contain position and time information, with no color content.
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Step 3: A CFQM framework is composed of 2m MCQI images, hence the
preparation of a CFQM framework can be divided into 2m sub-operations, and
each MCQI image is prepared in each sub-operation. Analogous to the operation
in Eq. (6.10), when one continues to initialize the second, i.e., the q-th, frame
in the CFQM framework, an operation Hq is applied on the quantum states in
Eq. (6.10), resulting in

HqHp|K〉 = Hq(Hp|K〉)

= 1

2
m
2 +n+1

⎡
⎢⎢⎣|0〉 ⊗

3∑
c=0

|c〉 ⊗
22n−1∑
i=0

|i〉 ⊗
2m−1∑
t=0,

t �=q,t �=p

|t〉

+ �q

⎛
⎝|0〉 ⊗

3∑
c=0

|c〉 ⊗
22n−1∑
i=0

|i〉
⎞
⎠⊗ |q〉

+�p

⎛
⎝|0〉 ⊗

3∑
c=0

|c〉 ⊗
22n−1∑
i=0

|i〉
⎞
⎠⊗ |p〉

⎤
⎦ .

(6.11)

Consequently, the procedure to transform the quantum computer from the
initialized state |0〉⊗m+2n+3 to the desired state |M(m, n)〉 is generalized as

2m−1∏
t=0

HtG
(|0〉⊗m+2n+3) = 1

2
m
2

2m−1∑
t=0

|Ft(n)〉 ⊗ |t〉

= |M(m, n)〉.
(6.12)

Following initialization, the retrieval steps must be undertaken in quantum movie
production [7]. In the CFQM framework, the color information of each frame is
encoded in a three-qubit entangled state |c3c2c1〉, as shown in Eq. (6.3). Therefore,
similar to the retrieval of the MCQI state in Sect. 2.3.2, any attempt to retrieve it
(i.e., the eight coefficients of |c3c2c1〉) requires multiple measurements on these
three qubits to reveal the probability for each state [21]. Specifically, as shown in
Fig. 6.2, the angle θX

t,i encodes the grayscale value in the X channel and is controlled
by c2 and c1 when they are in the state |00〉, |01〉, and |10〉 (where X can be R, G,
or B). Multiple measurements on the state of c3 retrieve an outcome of either 0 with
probability cos2 θX

t,i or 1 with probability sin2 θX
t,i . Based on the probability, one

can retrieve the grayscale value of the color information in the X channel, and by
performing this operation iteratively, all of the quantum information in the CFQM
framework can be retrieved.
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6.1.3 Quantum Operations to Achieve Montages

The word “montage” originates from the French word “monter,” which translates
to “to mount” or “to cut.” In this application, it is a movie editing technique where
short clips (shots) are edited into a sequence. By cutting and assembling the shots in
the movie, montages condense space, time, and information [8, 11]. This subsection
will introduce the implementation of quantum movie montages using innovative
transformations such as frame-to-frame (FTF), color of concern (COC), and sub-
block swapping (SBS) operations [21].

6.1.3.1 FTF Operation to Achieve Psychological Montages

As presented in Sect. 6.1.2, a unique time tag is integrated into each frame of the
CFQM framework to determine the playing order (time lapse) of a movie clip.
By altering the time tag of a frame (or group of frames), the playing order of a
movie’s content can be manipulated to realize essential operations such as deletion,
playback, and extraction [21]. Based on the formulation of the CFQM framework in
Eq. (6.1), the FTFc operator that is used to transit the t-th frame |Ft(n)〉 to (t± c)-th
frame |Ft±c(n)〉 is defined as

FTFc|M(m, n)〉 = 1

2
m
2

2m−1∑
t=0

|Ft(n)〉 ⊗ FTFc|t〉

= 1

2
m
2

2m−1∑
t=0

|Ft±c(n)〉 ⊗ |t ± c mod 2m〉,
(6.13)

where |t〉 represents the time information tagging each frame to the CFQM
framework, and c ∈ {0, 1, . . . , 2m − 1} indicates the number of shift steps that
move from the t-th frame to the (t ± c)-th frame in the CFQM framework.

It should be clarified that in an actual movie the script comes to life as time
elapses. Thus, the storyline is developed and with it, the causality and depiction
of the plots and relations between the main characters in the movie become more
complicated. A lengthy shot is insufficient to convey the ideas of the director, so it
is necessary to play several shots alternately (e.g., with interludes after each shot)
to capture the transition between shots. The FTF operation facilitates abridgment in
the content, connects shots, and replays certain frames. To use such an operation
in a flexible and purposeful manner can realize some useful content that otherwise
may not be conveyed.

A possible application of the FTF operation is the psychological montage. The
FTF operation can be used to repeat one or more frames at different instances to
convey the inner world, reminiscences, and cogitations of a character. The FTF
operation can eliminate the need to duplicate a frame when it is required elsewhere



6.1 Chromatic Framework for Quantum Movies and Applications 133

Fig. 6.3 FTF operation to realize psychological montages [21]

in a movie. A simple example of such a use of the FTF operation is presented in
Fig. 6.3.

As shown in Seq. (1) in Fig. 6.3, the FTF operation makes it easy to return to or
playback an earlier action, say from frame B1 to A1. The movie will replay from
frame A1 until A3, then play from frame A3 to B2, and continue to play the other
frames in the order shown in Seq. (1). This is akin to inserting frames A1, A2, and A3
between frames B1 and B2 in Seq. (1). The arrows and their annotations indicate the
playing order after the FTF operation, while the final movie sequence is presented
in Seq. (2).

6.1.3.2 COC Operation to Achieve Comparative Montages

The COC operation, which focuses mainly on manipulating the color of some spe-
cific channel (R, G, or B), has been successfully implemented in many MCQI-based
QIMP applications. Since the 2m-ending movie strip is composed of MCQI images,
it is expedient to consider utilizing the COC operation in some advanced MCQI-
based quantum movie (i.e., CFQM) applications that are based on manipulations to
the chromatic content, such as the color conversion of an image (or parts of it) by
manipulating its RGB channel [21]. The COCX operator shifts the grayscale value
of a preselected R, G, or B channel as defined below:

COCX = I⊗2n+3 ⊗
2m−1∑

t=0,t �=k

|t〉〈t | + COIX ⊗ |k〉〈k|, (6.14)
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where COIX is realized by using the UX = C2Ry(2θ) gate, as discussed in
Sect. 2.3.3.1. Applying the COCX operator to the CFQM framework in Eq. (6.1)
would yield

COCX|M(m, n)〉 = 1

2
m
2

2m−1∑
t=0,t �=k

|Ft(n)〉 ⊗ |t〉 + 1

2
m
2

COIX|Fk(n)〉 ⊗ |k〉

= 1

2
m
2

2m−1∑
t=0,t �=k

|Ft(n)〉 ⊗ |t〉

+ 1

2
m
2

(
UX ⊗ I⊗2n

) ⎛
⎝ 1

2n+1

22n−1∑
i=0

|ct,i〉 ⊗ |i〉
⎞
⎠⊗ |k〉

= 1

2
m
2

2m−1∑
t=0,t �=k

|Ft(n)〉⊗|t〉 + 1

2
m
2

⎛
⎝ 1

2n+1

22n−1∑
i=0

|cX
t,i〉⊗|i〉

⎞
⎠⊗|k〉

= 1

2
m
2

2m−1∑
t=0,t �=k

|Ft(n)〉 ⊗ |t〉 + 1

2
m
2
|F ′k(n)〉 ⊗ |k〉,

(6.15)

where the |ct,i〉 state encodes the RGB information as defined in Eq. (6.3), and |cX
t,i〉

is the color state after applying the COCX operator, which is defined as

|cR
t,i〉 = cos(θR

t,i − θ)|000〉 + cos θG
t,i |001〉 + cos θB

t,i |010〉 + cos θα
t,i |011〉

+ sin(θR
t,i − θ)|100〉 + sin θG

t,i |101〉 + sin θB
t,i |110〉 + sin θα

t,i |111〉,
|cG

t,i〉 = cos θR
t,i |000〉 + cos

(
θG
t,i − θ

)|001〉 + cos θB
t,i |010〉 + cos θα

t,i |011〉
+ sin θR

t,i |100〉 + sin
(
θG
t,i − θ

)|101〉 + sin θB
t,i |110〉 + sin θα

t,i |111〉,
|cB

t,i〉 = cos θR
t,i |000〉 + cos θG

t,i |001〉 + cos(θB
t,i − θ)|010〉 + cos θα

t,i |011〉
+ sin θR

t,i |100〉 + sin θG
t,i |101〉 + sin(θB

t,i − θ)|110〉 + sin θα
t,i |111〉.

(6.16)

It should be noted that the frame |F ′k(n)〉 in Eq. (6.15) is the frame at time |k〉,
whose colors all come from the original frame |Fk(n)〉 by shifting the angle θ on
the R, G, or B channel.

Color is an important element that is extensively manipulated for various
reasons, such as to reflect the theme and allure of a movie. Due to the established
physiological adaptation of the human visual system to color, varying colors at
different stages in a movie can convey artistic effects to the audience. Various hues
are typically used to produce strong contrast during some frolicsome scenes in a



6.1 Chromatic Framework for Quantum Movies and Applications 135

Fig. 6.4 COC operation to realize comparative montages [21]

movie, and warm colors are always used in this case. Certain hues will dampen the
color contrast in quiet and elegant scenes, and cool colors are often used in these
instances. Comparative montages are often used to set off each other in contrast to
exhibit contrastive effects.

In the CFQM framework, the COC operation is used to manipulate all or part
of the color information of a movie so as to realize a good distribution of light
and shade. Seq. (1) in Fig. 6.4 depicts the original sequence of a two-shot movie
consisting of Shot A and Shot B. To generate different results, two kinds of COC
operations are applied separately on Shots A and B. As shown in Seq. (2), Shot A is
transformed to a much warmer color, and Shot B to a much cooler color. Different
color tones will generate a comparative effect so that prominence is to some extent
given to the theme of the movie scene.

6.1.3.3 SBS Operation to Achieve Parallel or Cross Montages

The SBS operation is a geometric transformation that targets the position infor-
mation of sub-blocks in the frames of a CFQM framework [21]. This operation
interchanges sub-blocks in two frames from different instances of time within the
CFQM framework to manipulate a scene. Mathematically, the SBSti ,tj operator is
defined as

SBSti ,tj = I⊗3 ⊗ |B〉〈B| ⊗ I⊗m + I⊗3 ⊗ |B ′〉〈B ′| ⊗ SW ti ,tj , (6.17)

where SW ti ,tj is a sub-operation that is used to exchange the time information ti and
tj of the two sub-blocks being swapped, and is defined as

SW ti ,tj = |ti〉〈tj | + |tj 〉〈ti | +
2m−1∑
k=0,

k �=ti ,k �=tj

|k〉〈k|. (6.18)
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Fig. 6.5 SBS operation to realize parallel or cross montages [21]

Applying the operation SBSti ,tj on the CFQM framework in Eq. (6.1) would yield

SBSti ,tj |M(m, n)〉 = 1

2
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2

2m−1∑
t=0

|FB
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2
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2
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2
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2
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= 1

2
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2

2m−1∑
t=0

(
|FB

t (n)〉 + |FB ′
t (n)〉

)
⊗ |t〉.

(6.19)

In conveying a storyline, a good movie should be capable of captivating its
audience. Where the acting or script falls short, graphics and montages can be
effective in conveying certain minutiae and emotions. However, this often requires
advanced redesign of the montage operations.

In parallel or cross montages, the presentation of two or more storylines is
required in parallel or crosswise, after which they are integrated into the plot to
present a unified theme. Therefore, to clip two shots and combine different parts
into one unit can allow two storylines to evolve together. In this manner, the movie
will present a clear plot that cannot be realized in a single shot. Based on the SBS
operation, the content of some frames can be manipulated to realize these advanced
montage operations.

As mentioned earlier, one can use the SBS operation to integrate specific content
or storylines by clipping and merging different shots in parallel. In Fig. 6.5, Seq.
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(1) consists of Shots A and B, each having four frames. This illustrates how
parallel or crosswise montages can be realized using the SBS operation. Using the
SBS operation, the contents of Shots A and B can be manipulated, in this case
clipping each frame into its left and right parts and connecting the left half of each
frame in Shot A (A1L,A2L,A3L,A4L) with the corresponding right half in Shot B
(B1R,B2R,B3R,B4R). The remaining left halves of Shot B are similarly stitched to
the remaining right halves of Shot A. Seq. (2) shows the sequence resulting from
the SBS operation.

Finally, in Fig. 6.6, an outline showing the CFQM framework and the require-
ments for its initialization and transformation to implement a given montage
application based on the CFQM framework is presented [21]. In the quantum circuit
model of quantum computation, algorithms are implemented by using a sequence
of basic gates, such as the NOT, Hadamard, and Toffoli gates, acting on one or
more qubits to simultaneously affect each element and perform massive parallel data
processing [12]. Then, as shown in Fig. 6.6 (and explained earlier in this section),
the CFQM framework is prepared via a series of quantum basis states on which the
quantum operations are applied to facilitate the transformations for various montage
applications. The equation numbers at the bottom of Fig. 6.6 provide references to
the equations that formalize each operation.

To summarize, CFQM improves on an FRQI-based grayscale movie scheme
by integrating color into the representation, transformation, and recovery of the

Fig. 6.6 Circuit network for the CFQM framework: showing requirements for its initialization as
well as transformations to manipulate its temporal, spatial, and chromatic contents using quantum
operations [21]
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elements of a movie. Additionally, an assemblage of transformations was used to
tailor the implementation of the new framework toward rapid editing of movie
content, and special effects to present compressed narrations of a movie, i.e.,
montages. Specifically, a set of carefully formulated transformations was presented,
including the FTF, COC, and SBS operations, to facilitate implementation of
psychological, comparative, and parallel (or cross) montage applications that are
essential to convey various dialogues in a movie. Other applications, such as for
video encryption [13, 17], moving target detection [18], and image stabilization
[19], have also been developed.

6.2 Flexible Representation and Manipulation of Quantum
Audio Signals

Classical audio processing may arise in either the digital or analog domain.
However, most modern audio systems use digital representations because of the
power and efficiency of digital signal processing techniques [23]. Focusing on
amplitude transformations required to process audio signals on quantum computers,
in this section, a flexible representation of quantum audio (FRQA) signals [20] is
described.

6.2.1 Quantum Representation for Digital Audio

In electrical engineering and computer science, an analog audio signal is a repre-
sentation of a sound or longitudinal wave whose core components are frequency,
amplitude, wavelength, and phase [9]. Such waves are often simplified to descrip-
tions in terms of sinusoidal plane waves, expressed as

y(t) = A sin(2πf t + ϕ), (6.20)

where A is the amplitude (the peak deviation of the function from zero); f is the
frequency (the number of oscillations, or cycles, that occur per second of time);
ω = 2πf is the angular frequency (the rate of change of the function argument in
radians per second); and ϕ is the phase, which specifies (in radians) the position of
the oscillation in its cycle at t = 0. Furthermore,

f = ω

2π
, λ = v

f
, (6.21)

where λ is the wavelength and v is the speed of the wave. When ϕ in Eq. (6.20) is
nonzero, the entire waveform appears to be shifted in time by an amount of ϕ/ω

seconds. A negative value represents a delay, while a positive shift represents an
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advance. Conversely, when ϕ is zero, the equation reduces to y(t) = A sin ωt ,
which simply shows that the waveform depends on frequency, amplitude, and time
components.

Moreover, by considering an audio signal as a voltage that varies over time,
an analog-to-digital converter (ADC) can be used to discretely take samples from
the analog signals at a given frequency (i.e., sampling rate) [9]. According to a
given binary sequence length (i.e., resolution), each sampled value is converted to
a number based on its voltage level. In this manner, digital audio is produced and
represented as a sequence of numbers that express instantaneous amplitudes of a
sampled audio signal. A digital audio signal A can generally be expressed in the
form:

A = [a0, a1, . . . , aL−1], (6.22)

where L is the size of the audio signal, L ∈ N; at ∈ {−2q−1, . . . ,−1, 0, 1, . . . , 2q−1

− 1}, q ∈ N, t = 0, 1, . . . , L− 1. Figure 6.7 shows an example of ADC (including
the sampling and quantization procedures), where the sampling rate is 7 Hz, with
4-bit quantization [16]. An array A = [0, 3, 5, 7, 7, 5, 3, 0,−3,−5,−7,−7,−5,

−3, 0] is used to represent the digital audio.
Building on the digital interpretations in Eq. (6.22) and considering the amplitude

component of an L-sized audio signal as a string of nonnegative integers at ∈
{0, 1, . . . , 2q − 1}, where q is the length of the binary sequence used to store each
element, a quantum representation for digital audio (QRDA) signals was postulated
in [16].

The precept in QRDA representation, and more generally the outcomes from
[16], show a first attempt to facilitate audio signal representation and manipulation
in the quantum computing domain. Notwithstanding its innovation, the tightly
bounded unipolar encoding strategy used in QRDA may hinder accurate compu-

Fig. 6.7 An example of the ADC procedure (reprinted from ref. [16], with permission of Springer)
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tation and processing operations in quantum audio processing, for the following
reasons [20]:

(1) In QRDA representation, the amplitude values at can only represent nonnega-
tive numbers. Hence, some arithmetic operations pertaining to amplitude values
are prone to errors. For instance, when there are two amplitude values am and
an (such that am < an), it is virtually impossible to obtain a result from the
operation am − an.

(2) As a unipolar representation, QRDA is not formulated to display or determine
the midrange of a waveform in processing operations. Therefore, it is difficult to
execute some operations because all of the amplitude values are positive (e.g.,
addition of opposite amplitude values in two waveforms will accumulate to a
higher amplitude rather than offsetting each other).

Among other reasons, filling in these lapses in the QRDA representation and
further facilitating more basic operations in quantum audio processing are two major
objectives of the FRQA representation.

6.2.2 Flexible Representation of Quantum Audio Signals

Different from the QRDA representation stated above, FRQA representation
encodes the amplitude values in quantum audio in a bipolar (both nonnegative
and negative) manner, i.e., st ∈ {−2q−1, . . . ,−1, 0, 1, . . . , 2q−1 − 1}. In this
fashion, the formalism of binary logic arithmetic provides the tools needed for
effective quantum audio processing. Equation (6.23) describes the stipulation in the
form:

St = S0
t S1

t . . . S
q−1
t , Si

t ∈ {0, 1}, i = 0, 1, . . . , q − 1, (6.23)

where t = 0, 1, . . . , 2l − 1 denotes the time information of a 2l-sized quantum
audio signal, and St = S0

t S1
t . . . S

q−1
t is the binary sequence encoding the two’s

complement notation of the amplitude value. Two cases of the binary sequence St

are as follows:

(1) If the amplitude value is nonnegative, then S0
t = 0 and St are simply represented

as a binary sequence of the value itself.
(2) If the amplitude value is negative, then S0

t = 1 and St are represented by the
two’s complement mode of its absolute value.

Although one-dimensional, an FRQA signal is described in terms of its amplitude
and time components, and is written as

|A〉 = 1

2l/2

2l−1∑
t=0

|St 〉 ⊗ |t〉, (6.24)
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where |St 〉 = |S0
t S1

t . . . S
q−1
t 〉 is the two’s complement representation of each

amplitude value, and |t〉 = |t0t1 . . . tl−1〉, ti ∈ {0, 1}, is the corresponding time
information, and the state |A〉 is normalized, i.e., ‖|A〉‖ = 1. It is trivial that, as
formalized in Eq. (6.24), FRQA representation requires q + l qubits to represent a
quantum audio with 2l samples [20].

For an L-sized FRQA audio (L cannot be represented by 2l), to employ l qubits
to represent the time information will produce 2l − L audio redundancies [16].
Figure 6.8 shows a segment of an audio signal and its representative expression
using FRQA representation. The size of the audio is 13, and l = �log2 13 = 4.
Hence, three redundancies are generated and the amplitude values of them are set
as |000〉.

Compared with the only known effort to perform audio signal processing on
quantum computers (i.e., QRDA), FRQA audio facilitates the effective realization
of basic processing operations: (1) FRQA audio allows two sample values to be
accurately added (or mixed, in audio parlance), and facilitates the use of quantum
circuit elements to handle overflow and warp-around situations that are encountered
when the size of a result is greater than the capacity of the register allocated for
its storage; and (2) FRQA audio permits signal subtraction using simple logical
addition operations on an augend and addend, one of them inverted (negated). In
this manner, the FRQA state offers considerable saving in hardware complexity,

Fig. 6.8 A segment of an FRQA audio signal and its representation (blue points are the
redundancies) [20]



142 6 Quantum Multimedia Techniques

since the more tedious “borrow” mechanism associated with subtraction is replaced
by a “carry” procedure in the addition operation.

6.2.2.1 Initialization of the FRQA Signals

As stated earlier, in digital audio, the value of each sampled point is stored in an
assigned q-length binary sequence, B0

t B1
t . . . B

q−1
t , Bi

t ∈ {0, 1}, which indicates
that the sequence is capable of holding the amplitude values from 0 to 2q − 1. To
quantize the amplitude value Bt and convert it to the two’s complement system
|St 〉, one must perform the value-setting operation Ωt , which consists of two sub-
operations [20]:

(1) Quantization: Using the classical binary representation of Bt as the reference,
the initialized states on quantum computer can be transformed to their desired
quantum states. The means to accomplish this has been widely discussed in the
literature [10, 15].

(2) Conversion: To convert the quantum state in (1) to its two’s complement
equivalent, the CNOT gate operation is applied on the most significant qubit
(MSQb) of the qubit sequence (the leftmost qubit in the sequence encoding the
audio sample) to produce the desired quantum amplitude state |St 〉.

Similar to the ADC, these steps are assumed to be the basic requirements for a
possible future quantum computing device, a digital-to-quantum converter (DQC)
[20]. To illustrate this procedure, consider the conversion of a three-qubit resolution
to the amplitude information in quantum audio, as presented in Table 6.1. The
resolution values, ranging from 0 to 7, are held in a three-qubit sequence. These
values are then binarized and subsequently quantized in two’s complement notation
for further computation by other quantum audio processing units.

Table 6.1 Conversion of three-qubit resolution to the amplitude information in quantum audio
[20]

Resolution Binary sequence Two’s complement Amplitude

7 111 | 011 〉 3

6 110 | 010 〉 2

5 101 | 001 〉 1

4 100 | 000 〉 0

3 011 | 111 〉 −1

2 010 | 110 〉 −2

1 001 | 101 〉 −3

0 000 | 100 〉 −4
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As outlined in this example, the value-setting operation Ωt can be defined as

Ωt =
q−1⊗
i=0

Ωi
t , (6.25)

Ωi
t (|0〉) =

{
|0⊕ Bi

t 〉, i = 0
|0⊕ Bi

t 〉, i �= 0
, (6.26)

where ⊕ is the XOR operation. It is trivial that the operation Ωi
t works by means

of an additional CNOT gate to negate the MSQb only when Bi
t = 1; otherwise, it

remains unchanged. The amplitude value for each sample is then set as

Ωt |0〉⊗q = |0⊕ B0
t 〉 ⊗

(
q−1⊗
i=1
|0⊕ Bi

t 〉
)

= q−1⊗
i=0
|Si

t 〉 = |St 〉.
(6.27)

In this manner, a unitary transform that encodes the amplitude information by
means of two’s complement arithmetic is available during FRQA preparation. The
procedure for FRQA preparation is accomplished in the following two steps [20],
parts of which are akin to those in FRQI initialization in Sect. 2.2.1:

Step 1: Denoting the tensor products of q two-dimensional identity matrices and
l Hadamard matrices by I⊗q and H⊗l , respectively, the transform H = I⊗q ⊗
H⊗l on the initial state |0〉⊗q+l is applied to obtain the intermediate state |H 〉 in
the form:

|H 〉 =H
(
|0〉⊗q+l

)
= 1√

2
l

2l−1∑
t=0

|0〉⊗q |t〉. (6.28)

Thus far, the time component of the FRQA model has been initialized; therefore,
the intermediate state |H 〉 can be regarded as the superposition of all of the
samples of an empty digital audio, i.e., with all of the amplitude values set to
|0〉.

Step 2: The value-setting operation Ωt is used to generate the amplitude infor-
mation for each sample. Since Ωt can only handle one sample at a time,
considering a 2l-sized quantum audio, 2l sub-operations are needed to execute
this transformation. Rt is considered an l-controlled Ωt operation to integrate the
amplitude values into each instant of time. For a given sample k, Rk is defined as

Rk =
⎛
⎝I ⊗

2l−1∑
t=0,t �=k

|t〉〈t |
⎞
⎠+Ωk ⊗ |k〉〈k|. (6.29)
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Applying Rk on the intermediate state |H 〉 gives

Rk (|H 〉) = Rk

⎛
⎝ 1√

2
l

2l−1∑
t=0

|0〉⊗q |t〉
⎞
⎠

= 1√
2
l
Rk

⎛
⎝ 2l−1∑

t=0,t �=k

|0〉⊗q |t〉 + |0〉⊗q |k〉
⎞
⎠

= 1√
2
l

⎛
⎝ 2l−1∑

t=0,t �=k

|0〉⊗q |t〉 +Ωk|0〉⊗q |k〉
⎞
⎠

= 1√
2
l

⎛
⎝ 2l−1∑

t=0,t �=k

|0〉⊗q |t〉 + |Sk〉|k〉
⎞
⎠ .

(6.30)

From Eq. (6.30), it is apparent that for all sub-operations Rt , one has

R|H 〉 =
⎛
⎝ 2l∏

t=0

Rt

⎞
⎠ |H 〉 = 1

2l/2

2l−1∑
t=0

|St 〉 ⊗ |t〉 = |A〉. (6.31)

After the two steps above, the initialized state |0〉⊗q+l is transformed to the
desired FRQA state by applying the unitary transform RH . Subsequently, the
complexity of the preparation procedure is the object of focus.

Complexity theory on quantum computation has been studied as regards trans-
formations from the basic gates, hence, the complexity of quantum algorithms is
usually computed in terms of quantum gates [1]. Indeed, the circuit complexity
depends largely on the strategy employed for circuit decomposition and the basic
operation unit [14]. The discussion is confined to the CNOT gate, since it is
considered a relatively “expensive” elementary gate that is easily utilized to simulate
more complicated gates. The decomposition of complicated circuits into simpler
circuit networks composed entirely of basic or elementary quantum gates, i.e., NOT,
CNOT, and Toffoli gates, is illustrated in [12]. For instance, an l-controlled NOT
gate can be decomposed into 2(l − 1) Toffoli gates as well as one CNOT gate, and
one Toffoli gate can be approximately simulated by six CNOT gates [20].

Based on the above, it is clear that the implementation of transform H in Step
1 requires l Hadamard gates. In addition, transform R in Step 2 can be divided
into 2l sub-operations (i.e., Rt ) to store the amplitude information for each sample.
Therefore, with enough ancillary qubits, each sub-operation Rt can be directly
implemented using 2 (l − 1) Toffoli gates and no more than q CNOT gates. Hence,
the complexity of preparing a 2l-sized FRQA state is

2l × [2(l − 1)× 6+ q] = (12l + q − 12) · 2l , (6.32)
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Fig. 6.9 Network to implement the operation R6 to prepare the sample at |0110〉 of FRQA audio
signal in Fig. 6.8 [20]

which indicates the efficiency of the preparation process [20]. As a further example
of the complexity of constructing an FRQA audio, the initialization of the sample is
selected at |0110〉 in Fig. 6.8. The circuit network to implement the operation, i.e.,
R6 (when k = 6 in Eq. (6.29)), is presented in Fig. 6.9.

6.2.2.2 Retrieval of FRQA Signals

Similar to previous discussions, quantum measurement is a unique tool used to
recover classical information from a quantum system. To retrieve the amplitude
information of each audio sample, two quantum measurements Γ and M are used:

Γ =
2l−1∑
t=0

I⊗q ⊗ |t〉〈t |, (6.33)

M =
2q−1∑
m=0

m|m〉〈m|. (6.34)

First, executing the measurement operation Γ on the time components of the
audio content extracts the corresponding information of sample t as |Pt 〉,

|Pt 〉 = |St 〉|t〉, (6.35)
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and then the measurement operation M is used to recover the amplitude value from
the quantum state:

〈St |M|St 〉 = 〈St |
⎛
⎝2q−1∑

m=0

m|m〉〈m|
⎞
⎠ |St 〉

=
2q−1∑
m=0

m〈St ||m〉〈m||St 〉 = St .

(6.36)

It is apparent that these measurement operations enable the amplitude value of
sample k to be recovered. This means that all of the samples in a quantum audio
signal can be recovered in the same way, so the original digital audio can be retrieved
from the FRQA state.

6.2.3 Quantum Operations to Manipulate Audio Signals

Basic signal operations that propagate more sophisticated applications are the
foundations of digital audio processing. The ability to extend similar operations
to quantum audio processing is essential to validating the utility of this emerging
sub-field of quantum information processing. In this subsection, based on the
FRQA representation, a few basic audio signal operations, including signal addition,
inversion, delay, and reversal, are presented [20].

6.2.3.1 Signal Addition

Signal addition is among the fundamental operations in audio signal processing.
This operation involves the addition of amplitudes of two or more signals at each
instant of time. By means of this operation, a series of audio signal processing
applications, such as echo, reverb addition, and active noise reduction, can be
implemented. Representing the amplitude values in the two’s complement system
in FRQA audio facilitates the determination of the results of arithmetic operations,
and the depiction of the resulting waveforms with respect to the midrange. This
arithmetic advantage is exploited to craft the definition of the signal addition
operation [20].

Assuming that |Ax〉 and |Ay〉 are two 2l-sized audio segments, which are
presented as

|Ax〉 = 1

2l/2

2l−1∑
x=0

|Sx〉 ⊗ |tx〉, (6.37)
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where

|tx〉 =
∣∣t0

x t1
x . . . t l−1

x

〉
, t ix ∈ {0, 1}, (6.38)

|Sx〉 =
∣∣S0

xS1
x . . . S

q−1
x

〉
, Si

x ∈ {0, 1}, (6.39)

and

|Ay〉 = 1

2l/2

2l−1∑
y=0

|Sy〉 ⊗ |ty〉, (6.40)

where

|ty〉 =
∣∣t0

y t1
y . . . t l−1

y

〉
, t iy ∈ {0, 1}, (6.41)

|Sy〉 =
∣∣S0

yS1
y . . . S

q−1
y

〉
, Si

y ∈ {0, 1}, (6.42)

so the signal addition operation produces the output |Az〉:

|Az〉 = 1

2l/2

2l−1∑
z=0

|Sz〉 ⊗ |tz〉, (6.43)

where

|tz〉 =
∣∣t0

z t1
z . . . t l−1

z

〉
, t iz ∈ {0, 1}, (6.44)

|Sz〉 =
∣∣S0

z S1
z . . . S

q
z

〉 = |Sx + Sy〉, Si
z ∈ {0, 1}, (6.45)

tz = tx = ty . (6.46)

To construct a quantum circuit to execute the signal addition operation, two
commonly used quantum modules are first introduced. Together with additional
control conditions, use of the adder module (in Sect. 3.3.2.1, where the inputs are
two q-qubit binary sequences) arises when the addition of amplitude values in
two segments of quantum audio at any instant of time is required. The quantum
comparator module (in Sect. 4.4.2.1, where the inputs are two l-qubit binary
sequences) guarantees that the two operands in the addition are the amplitude values
of the two audio segments at the same instant of time.

To formalize, the operation of an FRQA-based signal addition operation UA can
be written in the form:

UA : |Sx〉|Sy〉 → |Sx〉|Sx + Sy〉. (6.47)
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Fig. 6.10 Circuit construction to execute the quantum audio signal addition operation [20]

The quantum circuit to realize the operation UA is depicted in Fig. 6.10a, where
the adder operation is applied to the amplitude component and the comparator
operation is applied to the time component. Additionally, to avoid possible overflow
arising from the two’s complement addition, a sign-extension module is introduced
(EXT in Fig. 6.10b, whose truth table is shown in Fig. 6.10c), which stretches the
size of the register (the binary sequence to store the result) while preserving the
sign of the operation in the adder module. To conclude the discussion of the signal
addition operation, an example of the case when l = 2 and q = 2 is presented in
Fig. 6.11, where the quantum circuit (a) is implemented to add the augend (b) to the
addend (c) to produce the output (d).

6.2.3.2 Signal Inversion

Inverting a signal is common and important in signal processing operations. A
meaningful use of inversion is to transform signal subtraction to signal addition by
means of inverted inputs (audio cancellation is realized as such). In audio signal
processing, signal inversion is realized by inverting all of the amplitude values
of an audio signal. When amplitude values are represented by bipolar values, the
operation essentially reduces to alterations of positive and negative signs of the
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signals. In this subsection, the FRQA-based signal inversion operation is formalized
[20].

Assuming that |A〉 is an FRQA audio sample in the form presented in Eq. (6.24),
the signal inversion operation UI applied on |A〉 will produce the output |AI 〉 in the
form:

|AI 〉 = 1

2l/2

2l−1∑
t=0

|SI 〉 ⊗ |t〉,

where

|t〉 = |t0t1 . . . tl−1〉, ti ∈ {0, 1},

|SI 〉 =
∣∣− S0

t S1
t . . . S

q−1
t

〉 = | − St 〉, Si
t ∈ {0, 1}. (6.48)

Like two’s complement arithmetic, an effective way to negate a number is to
invert all of the qubits and add “1.” In quantum audio processing, this procedure can
be explained as follows:

Step 1: Invert all of the qubits in |St 〉 by performing operation U 1
I :

U 1
I (|A〉) = 1

2l/2
U 1

I

⎛
⎝2l−1∑

t=0

|St 〉
⎞
⎠⊗ |t〉

= 1

2l/2

2l−1∑
t=0

|St 〉 ⊗ |t〉,

where

|St 〉 =
∣∣S0

t S1
t . . . S

q−1
t

〉
, Si

t ∈ {0, 1},

|St 〉 =
∣∣S0

t S1
t . . . S

q−1
t

〉
, Si

t ∈ {0, 1}. (6.49)

Step 2: Add “1” to the inverted result |St 〉 and neglect the overflow by applying
operation U 2

I :

U 2
I : |St 〉 → |SI 〉,

where

|St 〉 = |S0
t S1

t . . . S
q−1
t 〉,

∣∣∣(S0
t S1

t . . . S
q−1
t + 1

)
mod 2q

〉
= |SI 〉. (6.50)
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It should be noted that, as is obtained in (classical) digital audio signal process-
ing, a slight skewing of the data range is unavoidable, as the inverted counterpart
of | − 2q−1〉 cannot be found in the sampled amplitude values st . To overcome this,
the discussion is confined to amplitude values within the range from | − 2q−1 + 1〉
to |2q−1 − 1〉. The quantum circuit to invert an FRQA audio signal is shown in
Fig. 6.12, where the operation U 1

I (in Step 1) can be directly implemented using q

NOT gates, and in the operation U 2
I (in Step 2), q − 1 Toffoli gates and q CNOT

gates are required [20].
A simple example to illustrate how a quantum audio signal is inverted will

demonstrate the execution of the signal inversion operation. Using the FRQA audio
signal |Az〉 in Fig. 6.11d as input, the signal inversion circuit in Fig. 6.13a produces
the inverted signal |AI 〉 in Fig. 6.13b.

Fig. 6.12 Circuit construction to execute the quantum audio signal inversion operation [20]

Fig. 6.13 Example of the quantum audio signal inversion operation [20]
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6.2.3.3 Signal Delay

Signal delay is an operation that records an input signal and then plays it back after
an interval in time. This is a common audio effect that is used to create the sound
of a repeating and decaying echo. In this subsection, the FRQA-based signal delay
operation is formalized [20].

Assuming A(t) is the original audio signal, then audio signal B(t) is regarded as
a delayed version of audio A(t) if

A(t) = B(t ′), t ′ = t +�t, (6.51)

where t denotes the time information of amplitude values, and �t is a fixed interval
that specifies the desired delay of the system. The signal delay operation UD can be
described using:

UD : A(t)→ B(t ′), t ′ = t +�t, (6.52)

B(t ′) =
{

0, 0 ≤ t ′ ≤ �t − 1
A(t), �t ≤ t ′ ≤ 2l − 1

. (6.53)

The time information t and t ′ of the original and delayed audio signals,
respectively, is confined to the range [0, 2l − 1], where �t ≤ t ′ = t + �t ≤
2l +�t − 1 is apparently outside the interval. Therefore, for the current discussion,
the time information is separated into two parts, i.e., [�t, 2l−1] and [2l , 2l+�t−1].

As shown in Eq. (6.53), when t ′ ∈ [�t, 2l − 1], B(t ′) = A(t), in which case, the
time information t ′ can be obtained directly by means of the adder module on the
time component. However, when t ′ ∈ [2l , 2l + �t − 1], one needs to employ the
carry qubit of the adder module to achieve the interval shift [2l , 2l +�t − 1]− 2l =
[0,�t − 1] and set the amplitudes St = 0 as the delay period.

The general circuit for the quantum audio signal delay operation is presented
in Fig. 6.14, which consists of one adder module (applied on the time component)
and 2q Toffoli gates. In addition, Fig. 6.15 presents a simple example of an FRQA-
based signal delay operation, where Fig. 6.15a shows the input audio signal (l = 3
and q = 3 in Eq. (6.24)) and Fig. 6.15b shows the signal that is delayed by two time
units. The quantum circuit for this operation is presented in Fig. 6.16.

6.2.3.4 Signal Reversal

Signal reversal is the process of reversing a selected audio signal such that the end
of the signal is heard first and the beginning last. This operation can be used to
create interesting sound effects or make small portions of inappropriate language
unintelligible. Based on the FRQA state, one can define the signal reversal operation
on quantum computers and construct the quantum circuit to accomplish it [20].
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Fig. 6.14 Circuit construction to execute the quantum audio signal delay operation [20]

Fig. 6.15 (a) Input quantum audio signal and (b) the signal delayed by two time units [20]

Assuming that |A〉 is an FRQA audio signal in the form presented in Eq. (6.24),
the signal reversal operation UR applied on |A〉 produces an output of the form:

|AR〉 = 1

2l/2

2l−1∑
t=0

|St 〉 ⊗ |t〉,
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Fig. 6.16 Circuit construction to execute the quantum audio signal delay operation in Fig. 6.15
[20]

where

|t〉 = |t0t1 . . . tl−1〉, ti ∈ {0, 1}. (6.54)

Hence the signal reversal operation UR can be defined as

UR(|A〉) = 1

2l/2

2l−1∑
t=0

|St 〉 ⊗UR(|t〉)

= 1

2l/2

2l−1∑
t=0

|St 〉 ⊗ |t〉.
(6.55)

The general circuit to execute the signal reversal operation is presented in
Fig. 6.17a. Although this operation can obviously be implemented directly using
l NOT gates, to further demonstrate its realization, the quantum audio signal in
Fig. 6.15a is used as an input signal, the output of which is presented in Fig. 6.17b.
As seen, the result shows that all of the time points are played in a reversed order.

Some control conditions on the time component will allow to confine the
execution of the reversal operation UR to a desired period. For example, in
Fig. 6.18a, the time wire t0 is employed as the control wire to confine the reversal
operation to the last half of the audio signal. As seen from the result in Fig. 6.18b,



6.2 Flexible Representation and Manipulation of Quantum Audio Signals 155

Fig. 6.17 (a) Circuit construction to execute the quantum audio signal reversal operation and (b)
a simple example of this operation [20]

Fig. 6.18 (a) Circuit construction to execute the restricted quantum audio signal reversal operation
and (b) a simple example of this operation [20]

only the last four time points (from the original input sample in Fig. 6.15a) are
reversed, while the others are retained as in the input signal.

To summarize, as an alternative to QRDA representation, FRQA provides a
more intuitive, unrestricted model to accurately represent audio content in the
quantum computing domain. The FRQA protocol encodes amplitude values in two’s
complement notation so that one can exploit its arithmetic advantages to facilitate
the construction of quantum circuits for amplitude transformations on audio content.
This allows various operations that facilitate advanced audio processing applica-
tions. Applications based on the FRQA quantum audio signals, such as quantum
audio steganography and watermarking, can be found in [2] and [3].

In this chapter, inspired by QIMP, a timeline of the progress in its two emerging
sub-topics, i.e., quantum movie and audio signals, is presented. The formulation,
requirements, and applications of both types of media are discussed, leading to the
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conclusion that they both have potential roles in quantum computation. Learning
from experience with digital movies and the quest for talking color quantum movies,
the requirements, limitations, and likely impediments to the realization of sound
movies in the quantum computing paradigm [5, 22] are assessed.
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Chapter 7
Summary and Discussion

7.1 Concluding Remarks

The notion of quantum computation and quantum information holds expectations
of fast and secure computing technologies. Perhaps this is attributable to the
parallelism and entanglement properties inherent to information processing on
these paradigms. Therefore, extending digital image processing to the quantum
computing realm, i.e., QIMP, conjures similar expectations [21].

In earlier chapters, the recent advances in QIMP, including image represen-
tations, algorithms required to operate and manipulate the images, and likely
applications emanating from them, were highlighted. Notably, the FRQI represen-
tation of Le et al. [10] is credited with awakening interest in studies of QIMP,
leading to the intensified efforts that have been witnessed recently. Proposed in
2010 and revised a year later [12], this study formulated a universally acceptable
formulation to represent an image on a quantum computer. The FRQI representation
integrates the spatial and chromatic information required to encode an image in a
single formula. In this manner, separate or combined transformations to manipulate
the content of such images are easily executable.

Following the successful interpretation of a quantum image, there have been
many attempts to utilize (for example, Le et al.’s geometric transformation [9] and
color transformation [11]); extend (for example, Sun et al.’s MCQI representation
[17] and Zhang et al.’s NEQR representation [22]); and modify (for example, Iliyasu
et al.’s quantum movie representation [6] and Wang’s quantum audio representation
[18]) the FRQI representation for different intents and purposes. Similarly, these
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advances have led to many applications in the areas including quantum image
security and understanding, and they form the core technologies highlighted in this
book.

A search on the Web of Science on the keywords “quantum image processing”
shows an obvious increase in papers published since 2010. New research groups and
individuals are showing interest in the emerging subdiscipline of QIMP. Research
activity is increasing in China, Japan, Mexico, and the USA, while work is
emerging from Saudi Arabia, India, Iran, and the UK. These efforts are focused on
expanding the applicability of QIMP to realize more classical-like image processing
algorithms; propose technologies to physically realize the QIMP hardware; or note
challenges that could impede the realization of some QIMP protocols [21].

Inspired by the growing interest in QIMP, efforts to improve on the available
literature should be intensified, and similar work in different quantum computing
technologies is required. All of these efforts are essential for the realization of
smooth, effective, and secure QIMP technologies, to unleash the immense potential
of quantum information processing.

7.2 Open Questions and Future Directions

The objectives of the following discussions are twofold. First, targeting researchers
already in the area, a few of the open questions emanating from the published
literature are identified. The second objective focuses mainly on up and coming
researchers who may wish to pursue advanced research in the area. In this regard,
several considerations to guide these pursuits have been enumerated. It is hoped that
this compendium will invigorate research in the area.

There are several open questions and areas requiring improvement or expansion
in QIMP. These include the following [20, 21].

1. In addition to new solutions to pertinent problems, there are untouched areas
in which state-of-the-art image-based applications exist in the classical realm.
Besides enhancing the algorithmic advantages of existing QIMP protocols,
exploration must be intensified to realize applications, such as image registration,
mosaic, super-resolution, semantic analysis, reconstruction, enhancement, and
fusion, and to solve open problems in science and engineering, such as computer
vision, astrophysics, and medicine. Furthermore, advanced toolkits are required
to develop quantum algorithms in these fields. These toolkits should include
quantum routines for performing basic QIMP tasks.

2. Considering the incipient status of the QIMP subdiscipline, its protocols, and its
applications, benchmarks are required to gauge the performance of algorithmic
frameworks realizable in the quantum computing realm. For instance, the QIMP
algorithms and protocols highlighted in this book rely on the traditional PSNR
image quality measure to assess similarity or likeness between images in various
applications. As argued in Sect. 4.2.3, given the quantumness inherent to QIMP,
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the PSNR image quality is the ill-suited tool to quantify fidelity between quantum
images. The QIFM provides the essence for quantum image fidelity assessments.
However, similar to advances in digital PSNR, more work is required to improve
and concretize its formulation, including experimental validations for its use as
an image quality metric on quantum computers.

3. Quantum error correction (QEC) protects quantum information from errors due
to decoherence and other quantum noise [16]. QEC is essential in achieving
fault-tolerant quantum computation that can deal not only with noise in stored
quantum information but also with faults in quantum gates, preparation, and
measurements. Most current research on QIMP focuses on image manipulation,
with scant attention paid to the physical preparation and retrieval steps of QIMP.
These are stages where QEC could make or negate the gains made in the area. It
is therefore necessary to consider frameworks for integrating QEC into existing
and future QIMP protocols.

4. On digital computers, images and image processing underpinned advanced
applications in videos and movies. The quantum movie framework provides a
platform to ponder quantum movie representation and production, and it still
requires refinement and expansion. Also, text, image, and audio are the main
signals humans use in day-to-day interactions. While QIMP has seen tremendous
interest and growth, text and audio have received less attention [13]. Recently,
however, Wang and Yan separately proposed the quantum representation of
digital audio signals. These encouraging efforts, like QIMP, must be scrutinized
and enhanced if quantum audio processing is to flourish.

5. QIMP is essentially a strategy for the use of quantum mechanics to store
image information. Indeed, one could store any information using a similar
strategy. Besides text, audio, and movies, one can study the representation
and manipulation of information in quantum machine learning, quantum neural
networks, quantum cognition, and quantum cellular automata (as introduced in
Sect. 1.2.1). Further, when considered in a more practical manner, research on
quantum radar, sensors, robots, and nanoscale materials deserves more attention.

In the hope of stimulating interest in advanced research in QIMP, the following
recommendations are made [20, 21]:

1. In this book, several protocols devoted to storing, processing, and retrieving
visual information using quantum mechanical systems have been described.
Some computational advantages and disadvantages of those protocols arise upon
comparison (e.g., the number of qubits used to store images). However, a com-
prehensive comparative analysis has not yet been produced to clearly exhibit the
value and usefulness of those quantum protocols in both theoretical and applied
computer science, as well as in engineering applications. For each existing
QIMP protocol, one must compute accurate formulae for the computational
complexity of algorithms used for storing and retrieving images, as well as
the physical resources (both quantum and classical) employed for those tasks.
This is crucial for two reasons. First is that the complexity of QIMP algorithms
is usually computed in terms of quantum gates, while classical complexity is
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usually measured by running time. Second is that quantum hardware designers
must clearly identify the amount of classical and quantum resources needed to
implement a given QIMP protocol.

2. While advanced classical-like QIMP technologies are desirable, one must be
mindful of the contrariety that permeates digital and quantum information
processing. The very properties often credited for the power of quantum com-
putation forestall the realization of some classical operations. Consequently, in
future research, the temptation to realize the quantum version of every digital
image processing application must be resisted. Efforts should focus on areas
and applications where the gains of quantum computation can be exploited.
Additionally, since QIMP is still in its infancy, it would enhance the literature
to identify traditional image processing tasks that cannot be accomplished on the
quantum computing paradigm because they violate important postulates.

3. Quantum algorithms can be used to solve problems in the realms of classical
or quantum information. Published results in the field have so far focused on
processing images in quantum mechanical systems by referring to their classical
counterparts. Of course, this work has been of paramount importance to build the
foundations of the field and attract the attention of applied computer scientists
and engineers who work in related areas. Algorithms developed to process and
visualize quantum information can become the building blocks of new methods
to present complex data to both experts and the general public [1]. Scrutinizing
models and understanding results via data visualization is a fruitful approach
for efficient problem solving. First, visualization of experimental results is of
great value in many scientific disciplines (e.g., astrophysics, bioinformatics,
and nanotechnology). Second, engineering solutions focus on performance and
accuracy, either as a result of market demands or as a key technical requirement
within a given domain of application (for example, digital processing of medical
images [3]). In both contexts, researchers working on QIMP can exploit the
physical and mathematical properties of quantum computing (e.g., entanglement
and parallelism) and propose novel uses of existing quantum algorithms and
protocols (e.g., quantum teleportation [2]) to devise innovative solutions.

4. One of the main goals in quantum computing is to design algorithms that are
more efficient (i.e., faster) than their classical counterparts. This usually rests
on the implicit assumption that both quantum and classical algorithms are to be
executed on general-purpose and universal computers. Unfortunately, the quest
for quantum algorithms that run on universal computers has retarded the devel-
opment of advanced quantum algorithms for specific architectures. No matter
how advanced a protocol, it will be less meaningful without physical hardware
to utilize it. Although interest in quantum hardware design is growing—both
Intel and IBM are working on quantum chip technologies [4, 8]—exploration
of quantum computation to support the realization of QIMP-specific hardware
remains insufficient to experimentally validate QIMP technologies [7]. The
experimental validation of QIMP protocols by improving the synergy between
researchers of quantum computation in physics, optics, computer science, and
engineering must be encouraged. In our opinion, specific-purpose hardware is
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a blue-sky arena for the development of QIMP algorithms as well as to attract
funding from industrial partners (for example, QIMP algorithms to run on
specific-purpose devices like advanced digital cameras or next-generation TV
technology) [15].

5. So far, all of the so-called experimental implementation of QIMP protocols
has been restricted to classical computing resources and MATLAB simulations
based on linear algebra, with complex vectors as quantum states and unitary
matrices as unitary transforms. These offer a rather restrictive implementation
of the expected power of quantum computation. Therefore, as efforts to improve
and expand QIMP technologies are intensified, it is important to identify the
role of quantum computing software in implementing various algorithms so that
they can complement the hardware. Although many efforts have been made,
e.g., the IBM QISKIT quantum toolkit [5] and other quantum software [19] and
simulators [14], much is still required before robust quantum software that can
match the advances in digital image processing is realized. In terms of QIMP,
insights from computer science and physics must be combined to determine
which environment is better suited to certain algorithms.

In conclusion, quantum image processing (QIMP) is an emerging area focused
on extending conventional image processing tasks and applications to the quantum
computing framework. While increasing numbers of researchers are working in
the QIMP field, some fundamental problems remain unsolved. It is hoped that the
systematic introduction, open questions, and future directions identified in this book
will arouse the interest of more researchers and accelerate efforts toward realizing
more sophisticated QIMP-based technologies.
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Appendix

The key to understanding the properties of quantum computation is to have
a profound knowledge of the mathematical disciplines involved in describing
quantum phenomena, namely linear algebra and probability theory. These two fields
of mathematics are used to describe the basic behavior of closed quantum systems
in the postulates of quantum mechanics.

This appendix is devoted to providing a succinct introduction to the mathematical
foundation required in quantum image processing. Quantum computation makes
extensive use of complex numbers, the basic operations of which are defined first.

Definition A.1 (The Set of Complex Numbers C) Let a, b ∈ R and i = √−1.
Then, any number of the form z = a + bi is known as a complex number, where
a and b are the real and imaginary parts of z, respectively. The set of all complex
numbers is denoted by C.

Definition A.2 (Addition and Multiplication in C) Let z1, z2 ∈ C, where z1 =
a + bi and z2 = c + di. The following operations are defined.

1. Addition: z1 + z2 = (a + bi)+ (c + di) = (a + c)+ (b + d)i.
2. Multiplication: z1z2 = (a + bi)(c + di) = (ac − bd)+ (bc + ad)i.

Definition A.3 (Conjugation and Norm in C) Let z ∈ C, where z = a + bi. The
following operations are defined.

1. Conjugation: z̄ = a − bi.
2. Norm: |z| = √a2 + b2.

The set C is an example of a fundamental algebraic structure in mathematics
noted as a field, which is defined as follows.

Definition A.4 (Field) A field (F,+, ·) is a set F with two operations known as
addition (+) and multiplication (·) that satisfies the following properties.
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1. Closure under addition: ∀ x, y ∈ F ⇒ x + y ∈ F.
2. Commutativity of addition: ∀ x, y ∈ F ⇒ x + y = y + x.
3. Associativity of addition: ∀ x, y, z ∈ F ⇒ x + (y + z) = (x + y)+ z.
4. Additive identity: ∃ 0 ∈ F such that ∀ x ∈ F ⇒ x + 0 = 0+ x = x.
5. Additive inverses: For each x ∈ F, ∃−x ∈ F such that x+(−x) = −x+x = 0.
6. Closure under multiplication: ∀ x, y ∈ F ⇒ xy ∈ F.
7. Commutativity of multiplication: ∀ x, y ∈ F ⇒ xy = yx.
8. Associativity of multiplication: ∀ x, y, z ∈ F ⇒ x(yz) = (xy)z.
9. Multiplicative identity: ∃ 1 ∈ F such that ∀ x ∈ F ⇒ x1 = 1x = x.

10. Multiplicative inverses: For each x ∈ F, ∃ x−1 ∈ F such that xx−1 = x−1x

= 1.
11. Distributivity of multiplication over addition: ∀ x, y, z ∈ F ⇒ x(y + z) =

xy + xz.

Furthermore, the concept of R2, the visual representation of which is described
as the Cartesian plane, is defined as

R
2(R) =

{ (
a

b

) ∣∣∣∣ a, b ∈ R and scalars α ∈ R

}
.

The set R2 is an example of a vector space under the typical operations of vector
addition and scalar multiplication.

Definition A.5 (Vector Space) A set V, together with a field F and the operations
known as vector addition and scalar multiplication, is defined as a vector space if it
satisfies the following axioms.

1. ∀ x, y ∈ V⇒ x + y ∈ V.
2. ∀ x, y ∈ V⇒ x + y = y + x.
3. ∀ x, y, z ∈ V⇒ x + (y + z) = (x + y)+ z.
4. ∃!0 ∈ V such that ∀x ∈ V⇒ x + 0 = 0+ x = x.
5. For each x ∈ V, ∃! − x ∈ V such that x + (−x) = −x + x = 0.
6. ∀ x ∈ V, α ∈ F ⇒ αx ∈ V.
7. ∀ x ∈ V⇒ 1x = x, where 1 is the multiplicative identity of F.
8. ∀ x ∈ V⇒ 0x = 0, where 0 is the additive identity of F.
9. ∀ x ∈ V, α, β ∈ F⇒ (α + β)x = αx + βx.

10. ∀ x ∈ V, α, β ∈ F⇒ α(βx) = (αβ)x.
11. ∀ x, y ∈ V, α ∈ F⇒ α(x + y) = αx + αy.

In addition to vector addition and scalar multiplication, the dot product in R
2 is

always an essential operation.

Definition A.6 (Dot Product in R
2) Let x, y ∈ R

2, and then

x · y =
(

x1

x2

)
·
(

y1

y2

)
= x1y1 + x2y2.
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The set C2, i.e., the set of ordered pairs with complex entries defined over the set
of complex numbers, is defined as

C
2(C) =

{ (
a

b

) ∣∣∣∣ a, b ∈ C and scalars α ∈ C

}
,

which is also a vector space under the operations of vector addition and scalar
multiplication as defined in the following:

1. Vector addition:

(
a1

b1

)
+

(
a2

b2

)
=

(
a1 + a2

b1 + b2

)
.

2. Scalar multiplication: α

(
a

b

)
=

(
αa

αb

)
.

Definition A.7 (Dot Product in C
2) Let w, z ∈ C

2, and then

w · z =
(

w1

w2

)
·
(

z1

z2

)
= (

w̄1, w̄2
) (

z1

z2

)
= w̄1z1 + w̄2y2.

The dot product of two vectors w and z in C
2 is the usual row-column matrix

multiplication, where the entries of the row vector are the complex conjugates of
the entries of w (note that w · z �= z · w, in general). It can be straightforwardly
generalized to C

n, which is defined as follows.

Definition A.8 (Dot Product in C
n) Let w, z ∈ C

n, and then

w · z =

⎛
⎜⎜⎜⎝

w1

w2
...

wn

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

z1

z2
...

zn

⎞
⎟⎟⎟⎠ =

(
w̄1, w̄2, . . . , w̄n

)
⎛
⎜⎜⎜⎝

z1

z2
...

zn

⎞
⎟⎟⎟⎠ =

n∑
i=1

w̄izi .

The dot product is a particular case of a more general concept noted as the inner
product, which is presented below.

Definition A.9 (Inner Product) Let V(C) denote a vector space V defined over
the set of complex numbers C and a, b ∈ V(C). Then, the inner product function
( , ) is defined as

( , ) : V× V→ C,

with the following properties:

1. ∀a ∈ V⇒ (a, a) ≥ 0 and (a, a) = 0⇔ a = 0.
2. ∀a, b ∈ V⇒ (a, b) = (b, a)∗.
3. ∀a, bi ∈ V, αi ∈ C, i ∈ N⇒ (a,

∑
i αibi) =∑

i αi(a, bi).
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Definition A.10 (Hilbert Space) A Hilbert space H is an inner product vector
space defined over the complex number system. An example of a Hilbert space
is C

2(C), i.e., the complex bi-dimensional vector space defined over the field of
complex numbers with an inner product.

Using the standard notation in algebra, an element x ∈ R
2 may be written as

x = aî + bĵ ,

where

î =
(

1
0

)
and ĵ =

(
0
1

)
,

are the canonical bases of R2.
In quantum mechanics and, as a heritage, in quantum computation, Dirac

notation is a most convenient notation with which to write elements of vector spaces
and consequently write quantum bits.

The symbol “| 〉” is known as a ket (always a column vector) and the symbol “〈 |”
is known as a bra (always a row vector). Therefore, x = aî + bĵ would be written
in Dirac notation as

|x〉 = a|i〉 + b|j 〉 = a

(
1
0

)
+ b

(
0
1

)
.

Definition A.11 (Ket and Bra–Dirac Notation) Let H be a Hilbert space, and
then the ket and bra in H are defined as follows.

1. A vector ψ ∈ H is denoted by |ψ〉 and is referred to as a ket. The elements
|ψ〉 of H are represented as column vectors by choosing a basis for H . For
example, let H = C

2 and choose the vector basis {|0〉, |1〉}, where

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
.

Then, every element |ψ〉 ∈H can be written as

|ψ〉 = α|0〉 + β|1〉 = α

(
1
0

)
+ β

(
0
1

)
, α, β ∈ C.

2. Let |ψ〉 = α|0〉 + β|1〉. The bra 〈ψ | is defined as

〈ψ | = α∗〈0| + β∗〈1|,
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where α∗, β∗ ∈ C, 〈0| = (1, 0), and 〈1| = (0, 1). In other words, 〈ψ | ↔ |ψ〉
corresponds to transposition and conjugation. For example, let

|ψ〉 = i√
2
|0〉 + 1√

2
|1〉 = i√

2

(
1
0

)
+ 1√

2

(
0
1

)
=

(
i√
2

1√
2

)
,

and then

〈ψ | = −i√
2
〈0| + 1√

2
〈1| = −i√

2
(1, 0)+ 1√

2
(0, 1) =

(−i√
2
,

1√
2

)
.

Definition A.12 (Dot Product in C
2 Using Dirac Notation) Let |w〉, |z〉 ∈ C

2

with |w〉 =
(

w1

w2

)
and |z〉 =

(
z1

z2

)
. The inner product of |w〉 and |z〉 is defined as

(|w〉, |z〉) = 〈w||z〉 = 〈w|z〉 = (
w̄1, w̄2

) (
z1

z2

)
= w̄1z1 + w̄2y2.

Definition A.13 (Dot Product in C
n Using Dirac Notation) Let |w〉, |z〉 ∈ C

n,
and then

(|w〉, |z〉) = (
w̄1, w̄2, . . . , w̄n

)
⎛
⎜⎜⎜⎝

z1

z2
...

zn

⎞
⎟⎟⎟⎠ =

n∑
i=1

w̄izi .

Furthermore, the linear operator, a mathematical entity that will be used in
quantum computation to design quantum gates and quantum circuits, is defined.

Definition A.14 (Linear Operator) A linear operator between Hilbert spaces H1
and H2 is defined as any function Â :H1 →H2 that is linear in its inputs,

Â

(∑
i

αi |ψi〉
)
=

∑
i

αiÂ|ψi〉.

Definition A.15 Let |ψ〉, |a〉 ∈H1 and |φ〉 ∈H2, and then the outer product is the
linear operator from H1 to H2 defined by

(|φ〉〈ψ |)|a〉 ≡ (〈ψ |a〉)|φ〉.

Note that a summation of outer products is also a linear operator.
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To exemplify how linear transformations written as summations of outer products
interact with kets, the Hadamard operator is defined as

Ĥ = 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|).

The action of Ĥ on ket |0〉 is given by

Ĥ |0〉 =
(

1√
2
|0〉〈0| + 1√

2
|0〉〈1| + 1√

2
|1〉〈0| − 1√

2
|1〉〈1|

)
|0〉

= 〈0|0〉√
2
|0〉 + 〈1|0〉√

2
|0〉 + 〈0|0〉√

2
|1〉 − 〈1|0〉√

2
|1〉

= 1√
2
|0〉 + 1√

2
|1〉.

Finally, the tensor product, a method used to build vector spaces from other
vector spaces, is defined, which is crucial to representing multiparticle quantum
systems.

Definition A.16 (Tensor Product) Let V and W be vector spaces (over a field F)
of dimension m and n, respectively, and X be the tensor product of V and W, i.e.,
X = V⊗W. The elements of X are linear combinations of vectors |a〉 ⊗ |b〉, where
|a〉 ∈ V and |b〉 ∈ W. Let Â, B̂ be linear operators on V and W, respectively, and
α ∈ F. Then,

1. α(|a1〉 ⊗ |b1〉) = (α|a1〉)⊗ |b1〉 = |a1〉 ⊗ (α|b1〉).
2. (|a1〉 + |a2〉)⊗ |b1〉 = |a1〉 ⊗ |b1〉 + |a2〉 ⊗ |b1〉.
3. |a1〉 ⊗ (|b1〉 + |b2〉) = |a1〉 ⊗ |b1〉 + |a1〉 ⊗ |b2〉.
4. Â⊗ B̂(|a1〉 ⊗ |b1〉) = Â|a1〉 ⊗ B̂|b1〉.

Shorthand notation for |a〉 ⊗ |b〉 is simply |ab〉 or |a, b〉. In addition, the tensor
product of |a〉 with itself n times |a〉 ⊗ |a〉 ⊗ . . . ⊗ |a〉 can also be conveniently
written as |a〉⊗n.

A handy and simple matrix representation of the tensor product is the Kronecker
product. Let A = (aij ) and B = (bij ) be two matrices of order m × n and p × q,
respectively. Then, A⊗ B is of order mp × nq, which is given by

A⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
...

...

am1B am2B . . . amnB

⎞
⎟⎟⎟⎠ .

In this appendix, several important notions of linear algebra are introduced. For
comprehensive introductions to the scientific, engineering, and physical disciplines
that constitute quantum computation (and thereby quantum image processing),
readers may refer to [1–4].
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