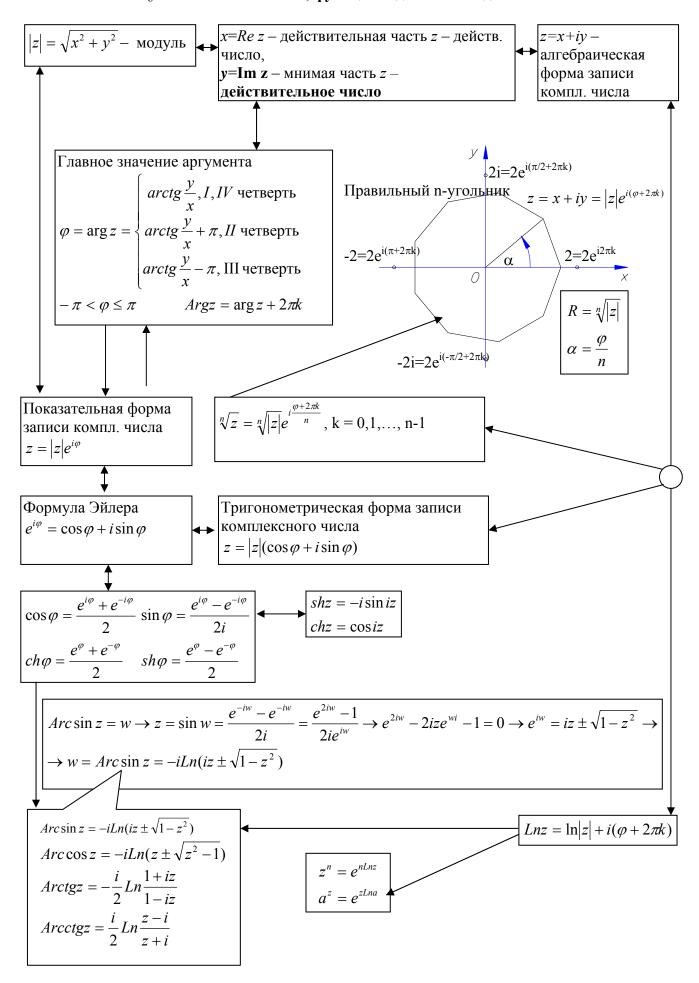
§ Комплексные числа, функции и действия над ними



<u>Глава 2. Преобразование Лапласа.</u> Операторный метод решения дифференциальных уравнений

§ Основные понятия и определения преобразования Лапласа

Определение	Преобразованием (интегралом) Лапласа функции $f(t), t \in R$,
преобразования	которая может принимать и комплексные значения, называется
Лапласа	функция $F(P)$ комплексной переменной $P = \sigma + i\omega$, определяемая
	следующим равенством: $F(P) = \int_{0}^{\infty} f(t)e^{-pt}dt$

Определение	Если функция $f(t)$ ($t \in R$) удовлетворяет следующим условиям:		
оригинала	$1.f(t)$ интегрируема $\forall t \in (0,\infty);$		
	$2. f(t) = 0, \forall t < 0;$		
	$3. f(t) \le Me^{\sigma_0 t}, M = const, \sigma_0 = const,$		
	то функция $f(t)$ ($t \in R$) называется оригиналом , а интеграл Лапласа		
	$F(P) = \int_{0}^{\infty} f(t)e^{-pt}dt$ сходится абсолютно и равномерно во всей		
	полуплоскости $\operatorname{Re} P \geq \sigma > \sigma_0$.		

Определение		Функцию	F(P)	называ	ют и	зображ	ением	для	оригина	ала
изображения	ПО	$f(t) (t \in R)$. Обоз	начают	соотв	етствие	между	ори	гиналом	И
Лапласу		изображени	ем	одним	ИЗ	c CJ	педующ и	IX	способ	OB:
		$f(t) \to F(P)$	P), $F(P)$	=L[f(t)]	F(P)	f(t).	_			

Определение	Единичной	функцией	Хевисайда	называется	функция
единичной	1()	1 $npu \ t \ge 0$,			
функции Хевисайда	$1(t) = \eta(t) = \left\{$	0 $npu \ t < 0.$			

§ Основные свойства преобразования Лапласа

Пусть функции $f_k(t),\ k=1,2,\ldots,n,$ являются оригиналами, причём $f_k(t)\to F_k(P)$ для $\mathrm{Re}\ P>\sigma_k$. Тогда имеют место следующие свойства (теоремы):

1. Свойство линейности	Для любых постоянных C_k , $k=1,2,,n$
	$\sum_{k=1}^{n} C_k f_k(t) \to \sum_{k=1}^{n} C_k F_k(P), \text{Re } P > \max\{\sigma_1, \sigma_2, \dots, \sigma_n\}$

2. Теорема	Для любой постоянной $\omega > 0$
подобия	

$f(\omega t) \to \frac{1}{\omega} F(\frac{P}{\omega}), \text{Re } P > \omega \sigma_0.$	
--	--

3. Теорема смещения в области оригиналов (запаздывания)

Запаздыванию оригинала на τ соответствует умножение изображения на $e^{-P\tau}$:

 $f(t-\tau) \to e^{-P\tau} F(P)$, Re $P > \sigma_0$.

4. Теорема смещения в области изображений Умножению оригинала на e^{P_0t} соответствует запаздывание изображения на P_0 :

 $F(P-P_0) \leftarrow e^{P_0 t} f(t)$, Re $(P-P_0) > \sigma_0$.

5. Теорема дифференцирования оригинала Если f(t) и её производные $f^{(n)}(t)$, n=1,2,..., являются оригиналами, то для любого n=1,2,... имеют место соответствия:

$$f'(t) \to PF(P) - f(0);$$

 $f''(t) \to P^2F(P) - Pf(0) - f'(0);$
 $f^{(n)}(t) \to P^nF(P) - P^{n-1}f(0) - P^{n-2}f'(0) - \dots - f^{(n-1)}(0).$

6. Теорема дифференцирования изображения Умножению оригинала f(t) на множитель (-t) соответствует дифференцирование изображения F(P) по его аргументу P:

 $F'(P) \leftarrow -tf(t);$

 $F^{(n)}(P) \leftarrow (-1)^n t^n f(t).$

7. Теорема интегрирования оригинала Интегрирование оригинала f(t) по промежутку (0; t) приводит к делению изображения подынтегральной функции F(P) на P:

$$\int_{0}^{t} f(\tau)d\tau \to \frac{F(P)}{P}, \quad \text{Re } P > \sigma_{0}.$$

8. Теорема интегрирования изображения

Если $\frac{f(t)}{t}$ является оригиналом, то:

$$\int_{-\infty}^{\infty} F(P)dP \leftarrow \frac{f(t)}{t}.$$

То есть, интегрирование изображения F(P) по промежутку

(P,∞) приводит к делен	ию на <i>t</i>	оригинала	f(t) подынтегральной
функции.			

9. Теорема об	Если $f_0(t) \to F_0(P)$, где
изображении	
периодического оригинала	$f_0(t) = \begin{cases} 0, & t < 0, \\ f(t), & 0 \le t < T, \\ 0, & t > T, \end{cases}$
	причём функция $f(t)$ при $t > T$ периодическая с периодом T , то
	$f(t) \to \frac{F_0(P)}{1 - e^{-TP}}.$

10. Дифференцирование и интегрирование по параметру
$$\begin{array}{c} \textbf{Если} \ f(t,\alpha) \to F(P,\alpha) \,, \, \textbf{и} \ \text{функции} \ \frac{\partial f(t,\alpha)}{\partial \alpha} \ \textbf{u} \ \int\limits_{\alpha_1}^{\alpha_2} f(t,\alpha) d\alpha \\ \textbf{как} \ \text{функции} \ \text{аргумента} \ t \ \text{являются} \ \text{оригиналами,} \ \textbf{то} \\ \frac{\partial f(t,\alpha)}{\partial \alpha} \to \frac{\partial F(P,\alpha)}{\partial \alpha} \\ \textbf{u} \ \int\limits_{\alpha_1}^{\alpha_2} f(t,\alpha) d\alpha \to \int\limits_{\alpha_1}^{\alpha_2} F(P,\alpha) d\alpha \,. \end{array}$$

 11. Теоремы о связи начальных и конечных значений оригинала и изображения
 Если $f(t) \rightarrow F(P)$, то

 а) $f(0) = \lim_{P \rightarrow \infty} PF(P)$

 и (если существует конечный предел $\lim_{t \rightarrow +\infty} f(t) = f(+\infty)$)

 б) $f(+\infty) = \lim_{P \rightarrow 0} PF(P)$.

§ Таблица основных изображений

№	$f(t) \to F(P)$	№	$f(t) \to F(P)$
1	$1 \rightarrow \frac{1}{P}$	7	$e^{\alpha t}\cos\omega t \to \frac{P-\alpha}{(P-\alpha)^2+\omega^2}$
2	$e^{\alpha t} \to \frac{1}{P - \alpha}$	8	$e^{\alpha t} \sin \omega t \to \frac{\omega}{(P-\alpha)^2 + \omega^2}$
3	$\sin \omega t \to \frac{\omega}{P^2 + \omega^2}$	9	$sh\omega t \to \frac{\omega}{P^2 - \omega^2}$
4	$\cos \omega t \to \frac{P}{P^2 + \omega^2};$	10	$ch\omega t \to \frac{P}{P^2 - \omega^2}$
5	$t^n \to \frac{n!}{P^{n+1}}$	11	$\frac{t^n}{n!}e^{\alpha t} \to \frac{1}{(P-\alpha)^{n+1}}$

§ Отыскание оригинала по изображению

Первый способ. Разложение дроби, соответствующей изображению, на сумму простых дробей и использование свойств оригиналов, изображений и таблицы основных изображений.

Второй способ. По формулам обращения.

второй спосоо. 110 с	рормулам обращения.
Первая теорема	Если изображение $F(P)$ является аналитической функцией в
разложения	некоторой окрестности бесконечно удалённой точки, и её
	разложение в ряд по степеням $\frac{1}{P}$ имеет вид: $F(P) = \sum_{n=0}^{\infty} \frac{a_n}{P^{n+1}}$, то
	функция $f(t) = \sum_{n=0}^{\infty} a_n \frac{t^n}{n!}$, $t > 0$ $(f(t) = 0 \text{ npu } t < 0)$ является
	оригиналом, имеющим изображение $F(P)$, то есть справедлива
	формула обращения:
	$F(P) = \sum_{n=0}^{\infty} \frac{a_n}{P^{n+1}} \blacktriangleleft f(t) = \sum_{n=0}^{\infty} a_n \frac{t^n}{n!}, t > 0 (f(t) = 0 \text{ npu } t < 0).$

Вторая теорема	Если изображение $F(P)$ является однозначной функцией и имеет
разложения	лишь конечное число изолированных особых точек P_1, P_2, \dots, P_k ,
	лежащих в конечной части плоскости, то имеет место формула
	обращения: $f(t) = \sum_{k} \underset{P=P_k}{res} F(P) e^{Pt}$,
	то есть оригинал равен сумме вычетов функции $F(P)e^{Pt}$ во всех её
	изолированных особых точках P_1, P_2, \dots, P_k .

Формула обращения						
$f(t) = \sum_{k} \underset{P=P_k}{res} F(P) e^{Pt}$						
Тип изолированной особой точки	Формула вычисления вычета $\underset{P=P_k}{res} F(P)e^{Pt}$					
Простой полюс P_{κ} : $\lim_{P \to P_{k}} F(P)(P - P_{k}) = const \neq 0$	1. $\underset{P=P_k}{res} F(P)e^{Pt} = \lim_{P \to P_k} F(P)e^{Pt}(P - P_k);$ 2. $\underset{P=P_k}{res} \frac{\varphi(P)e^{Pt}}{\psi(P)} = \frac{\varphi(P_k)e^{P_k t}}{\psi'(P_k)}$					
m -кратный полюс P_{κ} : $\lim_{P \to P_k} F(P)(P - P_k)^m = const \neq 0$	$\mathop{res}_{P=P_k} F(P)e^{Pt} = \frac{1}{(m-1)!} \lim_{P \to P_k} \frac{d^{m-1}}{dP^{m-1}} (F(P)e^{Pt}(P-P_k)^m)$					

Замечание. Тип изолированной особой точки легко определить по степени m скобки $(P-P_k)^m$ в представлении знаменателя функции F(P) в виде произведения линейных сомножителей: если m=1, то полюс P_k – первого порядка (простой полюс), если m>1, то полюс P_k является $m-\kappa pamhыm$.

Вторая теорема	Если изображение $F(P)$ является правильной несократимой
разложения (другая формулировка)	рациональной дробью, т.е. $F(P) = \frac{A_w(P)}{B_n(P)}$, $w < n$, и если
4°PJ	знаменатель дроби имеет корни $P_1, P_2,, P_s$ соответственно
	кратности $m_1, m_2, \dots m_s$ $(m_1 + m_2 + \dots + m_s = n)$, то оригинал
	f(t) определяется по формуле:
	$f(t) = \sum_{k=1}^{s} \frac{1}{(m_k - 1)!} \lim_{P \to P_k} \frac{d^{m_k - 1}}{dP^{m_k - 1}} \left(\frac{A_w(P)}{B_n(P)} e^{P_t} (P - P_k)^{m_k}\right) .$

§ Свёртка оригиналов. Интеграл Дюамеля

Теорема	Произведению изображений соответствует свёртка их оригиналов:
умножения	
изображений	t t
(Бореля)	$F_1(P)F_2(P) \leftarrow \int f_1(\tau)f_2(t-\tau)d\tau = \int f_1(t-\tau)f_2(\tau)d\tau = f_1(t) * f_2(t)$
(о свёртке	0 0
оригиналов)	где интегралы $\int_0^t f_1(\tau) f_2(t-\tau) d\tau = \int_0^t f_1(t-\tau) f_2(\tau) d\tau$
	0 0
	называют свёрткой оригиналов, которую обозначают:
	$f_1(t) * f_2(t)$

Интеграл	Если	$f(t) \to F(P)$	И	$g(t) \to G(P)$,	то
Дюамеля	PF(P)G	$(P) \leftarrow f(0)g(t) + f(0$	$g_t^{r/} * g = g(0)f(t)$	$)+g_t^{\prime}*f.$	

§ Применение операционного исчисления к решению линейных дифференциальных уравнений с постоянными коэффициентами

1. Правые части ДУ — произвольного вида, начальные условия — нулевые: Интегрирование линейных дифференциальных уравнений формулами Дюамеля $a_0x^{(n)}(t) + a_1x^{(n-1)}(t) + ...a_nx(t) = f(t); \quad x(0) = x^{/}(0) = ... = x^{(n-1)}(0) = 0.$ $a) a_0x^{(n)}(t) + a_1x^{(n-1)}(t) + ...a_nx(t) = 1 \implies x_1(t);$ $\delta) x(t) = \int_0^t x_1^{/}(\tau)f(t-\tau)d\tau, \quad unu \quad x(t) = \int_0^t x_1^{/}(t-\tau)f(\tau)d\tau, \quad unu$ $x(t) = f(0)x_1(t) + \int_0^t f^{/}(\tau)x_1(t-\tau)d\tau, \quad unu \quad x(t) = f(0)x_1(t) + \int_0^t f^{/}(t-\tau)x_1(\tau)d\tau$

2. Правые части ДУ – табличные, начальные условия – произвольные:
$$a_0 x^{(n)}(t) + a_1 x^{(n-1)}(t) + ... a_n x(t) = f(t); \quad x(0) = x_0, \quad x'(0) = x_1, \quad x^{(n-1)}(0) = x_{n-1}.$$

$$F(P)(a_0P^n+a_1P^{n-1}+\ldots+a_n)=\Phi(P)+a_0(P^{n-1}x_0+P^{n-2}x_1+\ldots+x_{n-1})+a_1(P^{n-2}x_0+\ldots+x_{n-2})+\ldots+a_{n-1}x_0.$$
 Откуда
$$F(P)=\frac{\Phi(P)}{\varphi_n(P)}+\frac{\Psi_{n-1}(P)}{\varphi_n(P)}\,,$$
 где
$$x(t)\to F(P); \qquad \varphi_n(P)=(a_0P^n+a_1P^{n-1}+\ldots a_n); \qquad f(t)\to \Phi(P);$$

$$\Psi_{n-1}(P)=a_0(P^{n-1}x_0+P^{n-2}x_1+\ldots+x_{n-1})+a_1(P^{n-2}x_0+\ldots+x_{n-2})+\ldots+a_{n-1}x_0.$$