ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ

Координаты вектора AB находят, вычитая из координат точки $B(b_x, b_y, b_z)$, являющейся концом вектора, соответствующие координаты точки $A(a_x, a_y, a_z)$, являющейся началом вектора.

$$\overline{AB} = (b_x - a_x, b_y - a_y, b_z - a_z) = (b_x - a_x)\vec{i} + (b_y - a_y)\vec{j} + (b_z - a_z)\vec{k}$$
.

Косинус угла между векторами \overline{AB} и \overline{CD} равен отношению скалярного произведения этих векторов к $\cos\left(\overline{AB}, \widehat{CD}\right) = \frac{\left(AB, CD\right)}{|\overline{AB}||\overline{CD}|}.$ произведению длин этих векторов:

Скалярное произведение двух векторов в ортонормированном (декартовом) базисе равно сумме произведений одноименных координат этих векторов: если $\vec{a}=(a_x,a_y,a_z), \vec{b}=(b_x,b_y,b_z)$, то $(a,b)=(b,a)=a_xb_x+a_yb_y+a_zb_z$.

Длина вектора $|\overline{a}| = \sqrt{(\overline{a},\overline{a})}$ в ортонормированном базисе равна корню квадратному из суммы квадратов

координат этого вектора. Например, если
$$\vec{a}=(a_x,a_y,a_z)$$
, то $\left|\vec{a}\right|=\sqrt{a_x^2+a_y^2+a_z^2}$. $np_{\bar{b}}^{-}a=\frac{(\bar{a},\bar{b})}{\left|\bar{b}\right|}$ —

проекция вектора a на вектор b.

В ортонормированном базисе векторное произведение находят, раскладывая определитель, в первой строке которого – орты \vec{i} , \vec{j} , \vec{k} декартовой системы координат, во второй строке – координаты левого из перемножаемых векторов, а в третьей строке – координаты правого из перемножаемых векторов.

Например, $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3)$, тогда векторное произведение этих векторов в декартовой

системе координат можно найти так:
$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \vec{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \vec{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \cdot \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = -\begin{bmatrix} \vec{b}, \vec{a} \end{bmatrix} \mod \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = |\vec{a}| |\vec{b}| \sin(\vec{a} \wedge \vec{b});$$
 тройка $\vec{a}, \vec{b}, [\vec{a}, \vec{b}] - npasas$.

Геометрический смысл векторного произведения.

Модуль векторного произведения численно равен площади параллелограмма, построенного на перемножаемых векторах как на двух смежных сторонах. Обычно векторы приводят к общему началу.

Половина модуля векторного произведения численно равна площади треугольника, построенного на перемножаемых векторах как на двух смежных сторонах этого треугольника. Обычно векторы приводят к общему началу.

Определение и условие компланарности векторов.

Векторы, лежащие одной или параллельных плоскостях, компланарными.

Смешанное произведение ненулевых компланарных векторов равно нулю.

Смешанное произведение трех векторов получают, умножая векторное произведение двух векторов на третий вектор скалярно.

В ортонормированном базисе смешанное произведение равно определителю, строками или столбцами которого являются координаты перемножаемых векторов. Обычно первой строкой определителя записывают координаты первого вектора, второй строкой - координаты второго вектора, а третьей строкой - координаты третьего вектора, если считать векторы слева направо.

Полезно помнить такие свойства смешанного произведения: 1) при перестановке двух любых соседних векторов смешанное произведение меняет знак на противоположный; 2) при циклической перестановке (последний вектор ставится впереди первого) смешанное произведение не изменяется, поскольку при этом два раза переставляются соседние векторы.

Геометрический смысл смешанного произведения.

Деление отрезка в отношении λ.

Модуль смешанного произведения трех векторов равен объему параллелепипеда, построенного на этих векторах как на ребрах. Обычно векторы приводят к общему началу. Объём пирамиды, построенной на векторах \overline{AB} , \overline{AC} и \overline{AD} , равен одной шестой объёма параллелепипеда, построенного на этих же векторах как на ребрах

$$\lambda = \pm \frac{|\overrightarrow{AK}|}{|\overrightarrow{KB}|}; \qquad x_K = \frac{x_A + \lambda x_B}{1 + \lambda}; y_K = \frac{y_A + \lambda y_B}{1 + \lambda}; z_K = \frac{z_A + \lambda z_B}{1 + \lambda}.$$

ПРОИЗВЕДЕНИЯ ВЕКТОРОВ

Точка $A(x_A, y_A, z_A)$, точка $B(x_B, y_B, z_B)$

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ

Условие **ортогональности** векторов

$$\overline{a}$$
 и \overline{b} $(\overline{a} \perp \overline{b})$: $(\overline{a},\overline{b}) = 0$

 $\left[\bar{a},\bar{b}\right]=\bar{0}$

Вектор $\overline{AB} = (x_B - x_A, y_B - y_A, z_B - z_A)$

Скалярное произведение векторов \bar{a} и \bar{b} – ЧИСЛО (\bar{a},\bar{b}) :

1.
$$(\bar{a}, \bar{b}) = (\bar{b}, \bar{a})$$
;

2.
$$(\alpha \overline{a} + \beta \overline{b}, \overline{c}) = \alpha (\overline{a}, \overline{c}) + \beta (\overline{b}, \overline{c});$$

3.
$$(\bar{a}, \bar{a}) \ge 0$$
;

4.
$$(\bar{a}, \bar{b}) = 0$$
, $(\bar{a} = \bar{0} \cup \bar{b} = \bar{0})$.

Векторное произведение векторов \bar{a} и \bar{b} – ВЕКТОР $\bar{c}=[\bar{a},\bar{b}]$:

1.
$$\bar{c} \perp \bar{a}, \bar{c} \perp \bar{b}$$
;

2.
$$\left| \left[\overline{a}, \overline{b} \right] \right| = \left| \overline{a} \right| \cdot \left| \overline{b} \right| \cdot \sin(\overline{a}, \overline{b});$$

3. Тройка векторов
$$\overline{a}, \overline{b}, \overline{c}$$
 – правая.

1. Длина вектора $\overline{a}:|\overline{a}|=\sqrt{\overline{(a,a)}}$;

2. Проекция вектора \overline{a} на вектор \overline{b} :

$$np_{\overline{b}}\overline{a} = \frac{(\overline{a},\overline{b})}{|\overline{b}|};$$

3. Угол между векторами \overline{a} и \overline{b} :

$$\cos\left(\overline{a}, \overline{b}\right) = \frac{\left(\overline{a}, \overline{b}\right)}{\left|\overline{a}\right| \left|\overline{b}\right|}$$

В ортонормированном базисе (ДСК):

$$(\overline{a}, \overline{b}) = a_x b_x + a_y b_y + a_z b_z,$$

если
$$\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z)$$

Свойства:

1.
$$\left[\bar{a}, \bar{b}\right] = -\left[\bar{b}, \bar{a}\right];$$

2.
$$\left[\begin{array}{cc} \bar{a} + \beta \bar{b}, \bar{c} \end{array}\right] = \alpha \left[\begin{array}{cc} \bar{a}, \bar{c} \end{array}\right] + \beta \left[\begin{array}{cc} \bar{b}, \bar{c} \end{array}\right]$$
.

В ортонормированном базисе (ДСК):

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \vec{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \vec{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix},$$

если
$$\vec{a}=(a_x,a_y,a_z), \vec{b}=(b_x,b_y,b_z), \ \vec{c}=(c_x,c_y,c_z)$$

Условие **компланарности** векторов $\bar{a}, \bar{b}, \bar{c}: (\bar{a}, \bar{b}, \bar{c}) = 0$

Смешанное произведение

векторов
$$\bar{a}, \bar{b}, \bar{c}$$
 – ЧИСЛО

$$(\bar{a},\bar{b},\bar{c})$$
:

$$(\bar{a},\bar{b},\bar{c})=$$

$$=(\left[\begin{array}{cc} \overline{a},\overline{b} \end{array}\right],\overline{c})=(\overline{a},\left[\begin{array}{cc} \overline{b},\overline{c} \end{array}\right])$$

Свойства:

1. Циклическая перестановка векторов

$$(\overline{a},\overline{b},\overline{c})=(\overline{c},\overline{a},\overline{b})=(\overline{b},\overline{c},\overline{a});$$

2. Перестановка двух любых соседних векторов

$$(\overline{a}, \overline{b}, \overline{c}) = -(\overline{b}, \overline{a}, \overline{c}).$$

В ортонормированном базисе (ДСК):

$$(\bar{a}, \bar{b}, \bar{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

ГЕОМЕТРИЯ ПРЯМЫХ И ПЛОСКОСТЕЙ В ТАБЛИЦАХ

ТАБЛИНА 1

		ТАБЛИЦА 1
№	Уравнения прямой L на плоскости (в R_{2})	Рисунки, пояснения
2	$A(x-x_1)+B(y-y_1)=0$ Уравнение прямой L , проходящей через точку $M_1(x_1,y_1)\in L$, перпендикулярно вектору $N=(A,B)$ $Ax+By+D=0$ Общее уравнение прямой L $y=kx+b$ Уравнение прямой L с угловым коэффициентом	$r = (x, y)$ $r_{1} = (x_{1}, y_{1})$ $M_{I}(x_{1}, y_{1}) \in L$ $\forall M(x, y) \in L$ $D = -Ax_{1} - By_{1};$ $N = (A, B) \perp L$ $k = y' = -\frac{A}{B} = tg\delta, \delta = (\bar{l}, \bar{i})$ $b = -\frac{D}{B}$ $\alpha \geq 0$
4	$\frac{\frac{x}{a} + \frac{y}{b} = 1}{$ Уравнение прямой L в отрезках	$y=0 \Rightarrow x=a$ $x=0 \Rightarrow y=b$ $a = -\frac{D}{A};$ $b = -\frac{D}{B}$
5	$\frac{x-x_1}{m} = \frac{y-y_1}{n}$ Уравнение прямой L каноническое	$l=(m, n) \mid L$ $M_1(x_1, y_1) \in L$ $\forall M(x, y) \in L$
6	$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$ Уравнение прямой L , проходящей через две данные точки M_1 и M_2	$I=(m, n) L$ $M_{1}(x_{1}, y_{1}) \in L$ $M_{2}(x_{2}, y_{2}) \in L$ $\forall M(x, y) \in L$ $m=x_{2}-x_{1}, n=y_{2}-y_{1}$
7	$\begin{cases} x = x_1 + mt, \\ y = y_1 + nt. \end{cases}$ Уравнение прямой L параметрическое	$\frac{x-x_1}{m} = \frac{y-y_1}{n} = t, \forall t \in R_1 - \text{параметр}$

		ТАБЛИЦА 2
No	Уравнения плоскости <i>Р</i>	Рисунки, пояснения
1	$A(x-x_1)+B(y-y_1)+C(z-z_1)=0$	Z
	Уравнение плоскости Р,	r = (x, y, z)
	проходящей через данную точку	$r_1 = (x_1, y_1, z_1)$
	M_{1}	$M_1(x_1, y_1, z_1) \in P$
	перпендикулярно данному вектору	y y
	N=(A,B,C)	$\forall M(x, y, z) \in P$
2	Ax + By + Cz + D = 0	$D = -Ax_1 - By_1 - Cz_1$
	Общее уравнение плоскости Р	
3	$\frac{x}{x} + \frac{y}{x} + \frac{z}{z} = 1$	$y=0, z=0 \Rightarrow x=a$
	-+-+-=1 $a b c$	$x=0, z=0 \Rightarrow y=b$
	Уравнение плоскости <i>Р</i> в отрезках	$x=0, y=0 \Rightarrow z=c$
4		
4	$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \end{vmatrix}$	$M_1(x_1, y_1, z_1) \in P$, $M_1M \in P$
	$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix} = 0$	$M_2(x_2, y_2, z_2) \in P, M_2M_1 \in P$
	$\begin{vmatrix} x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix}$	$M_3(x_3, y_3, z_3) \in P, M_3M_1 \in P$
	Уравнение плоскости Р,	$\forall M(x, y, z) \in P$
	проходящей через три данные	
	точки	
	Уравнения прямой <i>L</i>	Рисунки, пояснения
	в трехмерном пространстве (R_{3})	They inch, no menerial
1	$\int A_1 x + B_1 y + C_1 z + D_1 = 0$	$N_1 = (A_1, B_1, C_1)$
1	$\begin{cases} A_{2}x + B_{2}y + C_{2}z + D_{2} = 0. \end{cases}$	$N_2 = (A_2, B_2, C_2)$ $N_1 \bigvee N_2$
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Общее уравнение прямой <i>L</i>	$\begin{bmatrix} L & (1 & 1 & 2) \\ I & I & I = (m, n, n) = [N, N_2] \end{bmatrix}$
	ounce ypublication apartical E	[t+L,t-(m,n,p)-[14],142]
2	x-x, $y-y$, $z-z$.	$l \mid L, l = (m, n, p)$
-	$\frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{n}$	$M_1(x_1, y_1, z_1) \in L$
	$egin{array}{c c} \hline m & n & p \\ \hline \end{array}$ Уравнения прямой L	$\forall M(x, y, z) \in L$ M_2
	канонические	× / L
3		
3	$\frac{x-x_1}{x-x_1} = \frac{y-y_1}{x-x_1} = \frac{z-z_1}{x-x_1}$	$I \mid L$, $I=(m, n, p)$, $It=M_1M_2$
	$x_2 - x_1$ $y_2 - y_1$ $z_2 - z_1$	$m=x_2-x_1, n=y_2-y_1, p=z_2-z_1$ $M_1(x_1, y_1, z_1) \in L$ $M_2(x_2, y_2, z_2) \in L$
	Уравнения прямой L ,	$M_1(X_1, Y_1, Z_1) \in L$
	проходящей через две данные	
	точки M_1 и M_2	$\forall M(x, y, z) \in L$
1	(
4	$x = x_1 + mt$	x x 11 11 7 7
	$\bigg \bigg \bigg \bigg y = y_1 + nt,$	$\frac{x - x_1}{m} = \frac{y - y_1}{n} = \frac{z - z_1}{p} = t,$
	$z = z_1 + pt$	m n p
		$\forall t \in R_1$
	Параметрические уравнения	· · · CILI
	прямой L	

Уравнения плоскости P в трехмерном пространстве R_3 и уравнения прямой L в двухмерном пространстве R_2

ТАБЛИЦА З					
Уравнения плоскости P в R_3 в	Векторная форма уравнений	Уравнения прямой L в R_2 в			
координатной форме	P, L в R_3 и R_2	координатной форме			
	$ extbf{ extit{P}}$ и $ extbf{ extit{L}}$, проходящих через данну				
пер	пендикулярно данному вектор	$\mathbf{y} N$			
N=(A,B,C)	r - $r_1 = M_1 M$	N = (A,B)			
Z ,	$M_1M \perp N(P)$	V.I			
r = (x, y, z)	$M_1M \perp N(L)$	r = (x, y)			
$r_1 = (x_1, y_1, z_1)$		$\mathbf{r_1} = (x_1, y_1)$			
$M_1(x_1, y_1, z_1) \in P$	$(\underline{r-r_1,N})=0$	$M_I(x_1, y_1) \in L$			
$\forall M(x, y, z) \in P$	$(\underline{M_1M_1N}) = 0$	$\forall M(x,y) \in L$			
X Y	Условие	X			
$A(x-x_1)+B(y-y_1)+C(z-z_1)=0$	ортогональности	$A(x-x_1)+B(y-y_1)=0$			
	векторов				
R_3		R_2 II			
R_3	Общие уравнения	R_2 II			
4 + 5 + 6 + 5 + 6		4 . 5 . 5 . 6			
Ax + By + Cz + D = 0	$\underline{(r,N)+D=0}$	Ax + By + D = 0			
D (D = 0	D /	,			
$D = -Ax_1 - By_1 - Cz_1$ III R ₃ Черо	$D = -(r_I, N)$	$D = -Ax_1 - By_1$			
	ез п фиксированных точек М	R_2 III			
n =	= 3 n =	= 2			
$M_1(x_1,y_1,z_1) \in P, M_1M \in P$		$M_1(x_1, y_1) \in L,$			
$M_2(x_2, y_2, z_2) \in P, M_2M_1 \in P$		$M_1(x_1, y_1) \subset L$, $M_2(x_2, y_2) \in L$			
$M_3(x_3, y_3, z_3) \in P, M_3M_1 \in P$	$M_1 \in P, L$	$\forall M_2(x_2, y_2) \in L$ $\forall M(x, y) \in L$			
	$M_2 \in P, L$				
$\forall M(x,y,z) \in P$	$\forall M \in P, L$	$M_1M \mid M_2M_1$			
$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \end{vmatrix}$	-	$ \bar{i} \bar{j} \bar{k} $			
	$M_3 \in P$	$\begin{vmatrix} x - x & y - y & 0 \end{vmatrix} = \overline{0}$			
$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix} = 0$		$\begin{vmatrix} x - x_1 & y - y_1 & 0 \\ x_2 - x_1 & y_2 - y_1 & 0 \end{vmatrix} = \overline{0}$			
$ x_3 - x_1 y_3 - y_1 z_3 - z_1 $		$ x_2 - x_1 y_2 - y_1 0 $			
The state of the s	M M M)=0	14.1			
$ y_2 - y_1 z_2 - z_1 $ Velloppe to	$M_2, M_1 M_3) = 0$ $[M_1 M, M_1]$ Условие колл	-			
**	торов векто	•			
23 21 23 21	Berre	r ·			
$ x_2-x_1 z_2-z_1 $		$A = y_2 - y_1$; $B = -(x_2 - x_1)$,			
$B = \begin{vmatrix} x_2 - x_1 & z_2 - z_1 \\ x_3 - x_1 & z_3 - z_1 \end{vmatrix}$		\Leftrightarrow			
$ x_3-x_1 z_3-z_1 $		$A(x-x_1) + B(y-y_1) = 0$			
		(1. I.)			
$ \mathbf{r} - \mathbf{r} - \mathbf{v} - \mathbf{v} $		` '			
$C = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \end{vmatrix}$ (1. I.)					
$C = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix} $ (1. I.)					
R_3	Уравнения в отрезках	R_2 IV			
113		1,7			
	r = xi + yj + zk				
$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$	$\tau = i/a + j/b + k/c$	$\frac{x}{x} + \frac{y}{x} = 1$			
$a b c^{-1}$	$(\mathbf{r}, \mathbf{\tau}) = 1$	$\frac{x}{a} + \frac{y}{b} = 1$			
$y=0, z=0 \Rightarrow x=a$	$\tau = (1/a, 1/b, 1/c)$	$y=0 \Rightarrow x=a$			
$x=0, z=0 \Rightarrow x=0$ $x=0, z=0 \Rightarrow y=b$	$ r \cos(r,\tau)=1/ \tau $	$x=0 \Rightarrow y=b$			
$x = 0, y = 0 \Rightarrow z = c$, ,				
		I			

Уравнения прямой L в трехмерном пространстве R_3 и в двухмерном пространстве R_2

ТАБЛИНА 4

			ТАБЛИЦА 4	
Уравнения прямой L в R_3 в	Векторная форма		Уравнения прямой L в R_2 в	
координатной форме	уравнений прямо	ой L в R_2 и	координатной форме	
R_3				
I K	I Канонические уравнения пр			
Z_1 $l=(m,n,p)$			l=(m,n)	
M ₁	$r-r_1=M_1M \mid l$ $r_2-r_1=M_1M_2 \mid l$			
			l=(m,n) L	
$M_1(x_1, y_1, z_1) \in L$	7271 1121112	2110	`. ´. きん	
$M_1(x_1, y_1, z_1) \in L$ $M_2(x_2, y_2, z_2) \in L$	$[r-r_1, l]$	-0	$M_1(x_1, y_1) \in L$ $M_2(x_2, y_2) \in L$	
1				
$\forall M(x,y,z) \in L$	$[M_1M, l]$	J=0	$\forall M(x,y) \in L \ \bigcirc $	
$\frac{x - x_1}{x_1} = \frac{y - y_1}{x_1} = \frac{z - z_1}{x_1}$			$\frac{x-x_1}{}=\frac{y-y_1}{}$	
m n p		${m} = {n}$		
II II a	раметрические ур	авнения пі	рямой <i>L</i> II	
		-		
$x-x_1 y-y_1 z-z_1 \forall t \in R_1$	$r-r_1 l, \forall t$	$\in R_1$	$x-x_1-y-y_1 \forall t \in \mathbb{R}.$	
$\frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p} = t, \forall t \in R_1$	M_1M		$\frac{x-x_1}{m} = \frac{y-y_1}{n} = t, \forall t \in R_1$	
(24 - 24 2004				
$x = x_1 + mt$	$r-r_1=M_1M$	I =t l	(r-r+mt)	
$\begin{cases} y = y_1 + nt, \end{cases}$	$r=r_1+ti$		$\begin{cases} x = x_1 + mt, \\ y = y_1 + nt. \end{cases}$	
	$[M_1M, tl]$]=0	$y = y_1 + nt.$	
$z = z_1 + pt$				
III Уравнения прям	юй \pmb{L} , проходящей	і́ через две ,	данные точки M_1 и M_2 III	
$l \mid L, \mathbf{l} = (m, n, p), lt = M_1 M_2$	$M_1M \mid M_1M$	$M_2 l$	$l \mid L, l=(m,n), tl=M_1M_2$	
$m=x_2-x_1, n=y_2-y_1, p=z_2-z_1$	$M_1 \in L$, $M_2 \in L$,	$\forall M \in L$	$m = x_2 - x_1, n = y_2 - y_1$	
x-x, $y-y$, $z-z$.	$[M_1M,M_1M]$	$I_2]=0$	$\frac{x-x_1}{x-x_1} = \frac{y-y_1}{x-x_1}$	
$\frac{x - x_1}{z} = \frac{y - y_1}{z} = \frac{z - z_1}{z}$	• • • • • • • • • • • • • • • • • • • •		$\frac{1}{x_2-x_1}-\frac{1}{y_2-y_1}$	
$x_2 - x_1$ $y_2 - y_1$ $z_2 - z_1$				
IV Общие уравнения прямой д	$L \mathbf{B} \mathbf{R}_3 (P_1 \cap P_2)$	\mathbf{y}	равнение прямой $oldsymbol{L}$ с угловым	
			коэффициентом k в R_2	
			V	
$N_1 = (A_1, B_1, C_1)$		Ax+By+D=	0, <i>B</i> ≠0	
$N_2 = (A_2, B_2, C_2)$ N_1 / N_2		- 11		
	$L=\{P_1 \cap P_2\}$			
	$L=\{P_1 \cap P_2\}$ $C_1 z + D_1 = 0,$	A	D	
A_1x+B_1y+C	$C_1z+D_1=0,$	$y = -\frac{1}{D}x$	- _	
A_2x+B_2v+C	$C_2 z + D_2 = 0$			
		v = kx + h	$k = y' = -\frac{A}{B} = tg\delta$, $\delta = (\overline{l}, \overline{i})$	
		<i>y</i>	$\frac{B-igo}{B}-igo \cdot o - (l, l)$	
Ги	$_{D}$ $_{C}$ \neg		$b = -\frac{D}{\alpha}$ $\alpha \ge 0$	
$N_1 \not N_2 \Leftrightarrow P_1 \cap P_2 \Leftrightarrow Rang \begin{vmatrix} A_1 \\ A_2 \end{vmatrix}$	$D_1 C_1 \mid_{=} \gamma \mid$		$b = -\frac{D}{B} \qquad \alpha \ge 0$	
A_2	B_2 C_2 $\begin{vmatrix} -2 & 1 \end{vmatrix}$		<i>D</i>	
	2 - 2]			

Связь между уравнениями прямой
$$L$$
 в R_3 С общие (2 IV)

$$\begin{bmatrix} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0 \end{bmatrix}$$

$$\begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix} \neq 0 \Rightarrow z_0 = 0$$

$$\begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix} \neq 0 \Rightarrow z_0 = 0$$

$$\begin{bmatrix} A_1 & C_1 \\ A_2 & C_2 \end{bmatrix} \neq 0 \Rightarrow y_1 = 0 \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_1(x_1, 0, z_1) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_2x + B_2y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_1x + B_1y + D_2 = 0 \end{bmatrix} \Rightarrow M_0(x_0, y_0, 0) \in L \end{bmatrix}$$

$$\begin{bmatrix} A_1x + B_1y + D_1 = 0, \\ A_1x + B_1y + D_2 = 0 \Rightarrow x_2 = 0 \Rightarrow M_2(0, y_2, z_2) \in L \end{bmatrix}$$

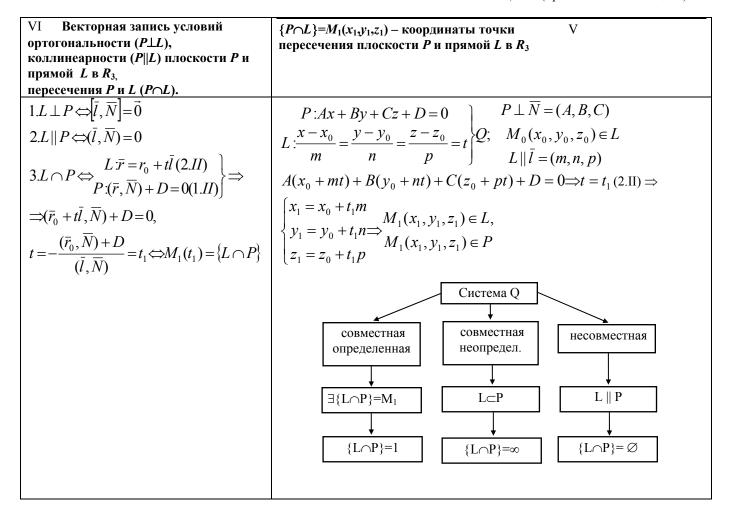
$$\begin{cases} A_1x + B_1y + D_2 = 0, \\ A_1x + A_1x$$

Взаимное расположение плоскостей P в трёхмерном пространстве R_3 и прямых L в двухмерном пространстве R_2

		ТАБЛИЦА 5
I Обозначения, принятые	I	Обозначения, принятые в I
в таблице 2, {P1,P2} в R ₃		таблице 2, {L1,L2} в R ₂
$P1 \cdot A \cdot x + R \cdot y + C \cdot z + D = 0$	$(\vec{N} \ \vec{N})$	$I1 \cdot A \cdot x + R \cdot y + D = 0$
$P1: A_1x + B_1y + C_1z + D_1 = 0$	$R_3 \qquad \cos \varphi = \frac{(N_1, N_2)}{ \vec{N}_1 \vec{N}_2 }$	a) $L1: A_1x + B_1y + D_1 = 0, $ $L2: A_2x + B_2y + D_2 = 0$ \mathcal{X}
$P2: A_2x + B_2y + C_2z + D_2 = 0$	$ N_1 N_2 $	$L2: A_2x + B_2y + D_2 = 0$
	' ' ' '	$N_1=(A_1,B_1); N_2=(A_2,B_2)$
$N_1 = (A_1, B_1, C_1);$	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$(A_1,D_1), A_2 (A_2,D_2)$
$N_1 = (A_1, B_1, C_1),$ $N_2 = (A_2, B_2, C_2)$	-	[
$\begin{bmatrix} A_2 - (A_2, B_2, C_2) \end{bmatrix}$	N_2	$\operatorname{Rang}\begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix} = \operatorname{Rang} A(\chi)$
		$\begin{bmatrix} A_1 & B_2 \end{bmatrix} = \text{Rung} (A_1)$
$\left \text{Rang} \left \begin{array}{ccc} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{array} \right = \text{RangA}(\psi)$	N (4 P G) N (4 P G)	
A_2 B_2 C_2	$N_1 = (A_1, B_1, C_1); N_2 = (A_2, B_2, C_2)$	
	R_2	Rang $\begin{vmatrix} A_1 & B_1 & D_1 \\ A_2 & B_2 & D_2 \end{vmatrix}$ = RangB(χ)
	κ_2	$\begin{bmatrix} A_2 & B_2 & D_2 \end{bmatrix}$
$\left \begin{array}{ccc} \operatorname{Rang} A_{1} & B_{1} & C_{1} & D_{1} \\ A_{2} & B_{2} & C_{2} & D_{2} \end{array} \right = \operatorname{RangB}(\psi)$	У	б) $L1: y=k_1x+b_1$
A_2 B_2 C_2 D_2	/ n	$L2: y = k_2 x + b_2$
→		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	φ	$tg\varphi = \left \frac{k_2 - k_1}{1 + k_1 k_2} \right $
N,		$ 1+k_1k_2 $
		\downarrow
	O' ×	$k_1=tg \alpha_1$; $k_2=tg \alpha_2$
	$N_1 = (A_1, B_1)$	
	$N_2 = (A_2, B_2)$	$tg\phi = tg(\alpha_2 - \alpha_1) = \frac{tg\alpha_2 - tg\alpha_1}{1 + tg\alpha_1 tg\alpha_2},$
	2 (2, 2)	$1 + tg\alpha_1 tg\alpha_2$
II Признаки взаимного	naana zamanna naaanaana (D1 D2	} и прямых {L1, L2}
F	расположения плоскостей {Р1, Р2	
Плоскости {P1, P2} в R _n ;n=3	Как расположены <i>P</i> и <i>L</i>	Прямые $\{L1, L2\}$ в R_n ; $n=2$
$P1 \cap P2$ (пересекаются)	$P1 \cap P2, L1 \cap L2$	L1∩L2 (пересекаются)
$\cos \varphi = \frac{AA_2 + BB_2 + CC_2}{\sqrt{A_1^2 + B_1^2 + C_1^2}} \neq \pm 1$		$A_1A_2+B_1B_2$
$\cos \varphi = \frac{\cos \varphi}{\sqrt{\lambda^2 + \Omega^2 + C^2}} \neq \pm 1$	N_1 / N_2	a) $\cos \varphi = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_2^2}} \neq \pm 1$
$\sqrt{A_1} + D_1 + C_1 \sqrt{A_2} + D_2 + C_2$	$\varphi \neq \pi k$,	V 1 1 V 2 2
$P1\perp P2 \Leftrightarrow \mathbf{N_1}\perp \mathbf{N_2} \Leftrightarrow cos\varphi=0$	k=0, ±1, ±2,	$L1\perp L2 \Leftrightarrow N_1\perp N_2 \Leftrightarrow cos\varphi = 0$
$\{P1 \cap P2\} = L, L \in P1, L \in P2$	$\cos \varphi \neq \pm 1$	$k_2 - k_1$
		$6) tg\phi = \frac{k_2 - k_1}{1 + k_1 k_2} \neq 0$
$Rang A(\psi)=$		1 2
$= Rang B(\psi) = 2 < 3 = n$	<i>→</i>	$1 + k_1 k_2 \neq 0$
совместная неопределенная	N_2	$L1\perp L2 \Leftrightarrow 1+k_1k_2=0 \Leftrightarrow$
система (ψ)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\Leftrightarrow k_2 = -1/k_1$
		$\{L1 \cap L2\} = M, M \in L1, M \in L2$
		$D_{\alpha\alpha\alpha} = A(\alpha\alpha) -$
		Rang $A(\chi)=$
		$= Rang B(\chi) = 2 = n$
		C 3.07
P1 P2 (параллельны)	P1 P2 L1 L2	= $Rang\ B(\chi)$ = 2= n совместная определенная система (χ)
` -	P1 P2, L1 L2	$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2$ (параллельны)
$\frac{A_1}{A_1} = \frac{B_1}{B_1} = \frac{C_1}{A_1} \neq \frac{D_1}{A_1}$		$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2$ (параллельны)
` -	$N_1 = \lambda N_2; D_1 \neq \lambda D_2$	= $Rang\ B(\chi)$ = 2= n совместная определенная система (χ)
$\frac{A_1}{A_1} = \frac{B_1}{B_1} = \frac{C_1}{A_1} \neq \frac{D_1}{A_1}$	$N_1 = \lambda N_2; D_1 \neq \lambda D_2$ $\lambda \in R_1$	$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2$ (параллельны)
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$	$N_1 = \lambda N_2$; $D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang A(\psi, \chi) <$	$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2 \ (\mathbf{параллельны})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$	$N_{1} = \lambda N_{2}; D_{1} \neq \lambda D_{2}$ $\lambda \in R_{1}$ $1 = Rang A(\psi, \chi) < $ $< Rang B(\psi, \chi) = 2$	$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2 \ (\mathbf{параллельны})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos \varphi = \pm 1$
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$	$N_1 = \lambda N_2$; $D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang A(\psi, \chi) <$	$= Rang\ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2$ (параллельны) $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos \varphi = \pm 1$ $6) k_1 = k_2; b_1 \neq b_2$
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$	$N_1 = \lambda N_2$; $D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang \ A(\psi, \chi) <$ $< Rang \ B(\psi, \chi) = 2$ системы $(\psi), (\chi)$ несовместны	$= Rang\ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2$ (параллельны) $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos\phi = \pm 1$ $6)\ k_1 = k_2;\ b_1 \neq b_2$ $tg\phi = 0$
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$ $P1 = P2 \; (\mathbf{cob} \mathbf{падают})$	$N_{1} = \lambda N_{2}; D_{1} \neq \lambda D_{2}$ $\lambda \in R_{1}$ $1 = Rang A(\psi, \chi) < $ $< Rang B(\psi, \chi) = 2$	$= Rang\ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2$ (параллельны) $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos\phi = \pm 1$ $6)\ k_1 = k_2;\ b_1 \neq b_2$ $tg\phi = 0$ $L1 \equiv L2$ (совпадают)
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$ $P1 = P2 \; (\mathbf{cob} \mathbf{падают})$	$N_1 = \lambda N_2$; $D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang\ A(\psi, \chi) < $ $< Rang\ B(\psi, \chi) = 2$ системы $(\psi), (\chi)$ несовместны $P1 \equiv P2, L1 \equiv L2$	$= Rang\ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2$ (параллельны) $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos\phi = \pm 1$ $6)\ k_1 = k_2;\ b_1 \neq b_2$ $tg\phi = 0$ $L1 \equiv L2$ (совпадают)
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$	$N_1 = \lambda N_2$; $D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang \ A(\psi, \chi) <$ $< Rang \ B(\psi, \chi) = 2$ системы $(\psi), (\chi)$ несовместны	$= Rang\ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2$ (параллельны) $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos\phi = \pm 1$ $6)\ k_1 = k_2;\ b_1 \neq b_2$ $tg\phi = 0$
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$ $P1 = P2 \text{ (совпадают)}$ $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2} = \lambda \in R_1$	$N_1 = \lambda N_2$; $D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang\ A(\psi, \chi) < $ $< Rang\ B(\psi, \chi) = 2$ системы $(\psi), (\chi)$ несовместны $P1 \equiv P2, L1 \equiv L2$	$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2 \ (\mathbf{параллельны})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos\phi = \pm 1$ $6) \ k_1 = k_2; \ b_1 \neq b_2$ $tg\phi = 0$ $L1 \equiv L2 \ (\mathbf{совпадают})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{D_1}{D_2} = \lambda \in R_1$
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$ $P1 = P2 \; (\mathbf{cob} \mathbf{падают})$	$N_1 = \lambda N_2; D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang \ A(\psi, \chi) < < Rang \ B(\psi, \chi) = 2$ системы $(\psi), (\chi)$ несовместны $P1 \equiv P2, L1 \equiv L2$ $N_1 = \lambda N_2; D_1 = \lambda D_2; \ \lambda \in R_1$	$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2 \ (\mathbf{параллельны})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos\phi = \pm 1$ $6) \ k_1 = k_2; \ b_1 \neq b_2$ $tg\phi = 0$ $L1 \equiv L2 \ (\mathbf{совпадают})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{D_1}{D_2} = \lambda \in R_1$ $cos\phi = \pm 1$
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$ $P1 = P2 \text{ (совпадают)}$ $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2} = \lambda \in R_1$	$N_1 = \lambda N_2$; $D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang \ A(\psi, \chi) <$ $< Rang \ B(\psi, \chi) = 2$ системы $(\psi), (\chi)$ несовместны $P1 \equiv P2, L1 \equiv L2$ $N_1 = \lambda N_2; D_1 = \lambda D_2; \ \lambda \in R_1$ $Rang \ A(\psi, \chi) =$ $= Rang \ B(\psi, \chi) = 1$	$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2 \ (\mathbf{параллельны})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$ $6) \ k_1 = k_2; \ b_1 \neq b_2$ $tg \varphi = 0$ $L1 \equiv L2 \ (\mathbf{совпадают})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{D_1}{D_2} = \lambda \in R_1$ $\cos \varphi = \pm 1$ $6) \ k_1 = k_2, \ b_1 = b_2$
$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$ $\cos \varphi = \pm 1$ $P1 = P2 \text{ (совпадают)}$ $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2} = \lambda \in R_1$	$N_1 = \lambda N_2; D_1 \neq \lambda D_2$ $\lambda \in R_1$ $1 = Rang \ A(\psi, \chi) < $ $< Rang \ B(\psi, \chi) = 2$ системы $(\psi), (\chi)$ несовместны $P1 \equiv P2, L1 \equiv L2$ $N_1 = \lambda N_2; D_1 = \lambda D_2; \ \lambda \in R_1$ $Rang \ A(\psi, \chi) =$	$= Rang \ B(\chi) = 2 = n$ совместная определенная система (χ) $L1 \mid L2 \ (\mathbf{параллельны})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{D_1}{D_2}$ $cos\phi = \pm 1$ $6) \ k_1 = k_2; \ b_1 \neq b_2$ $tg\phi = 0$ $L1 \equiv L2 \ (\mathbf{совпадают})$ $a) \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{D_1}{D_2} = \lambda \in R_1$ $cos\phi = \pm 1$

Расстояния d(P1,P2) между плоскостями P1 и P2 и d(L1,L2) между прямыми L1 и L2 в R_3 , пересечение $\{P\cap L\}$ плоскости P и прямой L в R_3

I P1 P2, L1 L2 в R ₃	P1 P2, L1 L2	$\overline{\mathbf{Q}}, \ \overline{N}_1 \parallel \overline{N}_2, \overline{l}_1 \parallel \overline{l}_2$	<i>L</i> 1 <i>L</i> 2 в <i>R</i> ₂ II
координатная форма		ая форма	координатная форма
P1: $Ax+By+Cz+D_1=0$	$\overline{N} = (A, B, C)$	$\bar{l} = (m, n, p)$	L1 $Ax+By+D_1=0$
P2: $Ax + By + Cz + D_2 = 0$, $D_1 \neq D_2$	d(P1, P2) =	$d(M_1, P2) =$	$L2 \qquad \underbrace{Ax+By+D_2=0}$
$\overline{N}_1 = \overline{\overline{N}}_2 = \overline{\overline{N}} = (A, B, C) \perp P1, P2$	$d(M_2, P1) =$	d(L1,L2) =	$\overline{N}_1 = \overline{N}_2 = \overline{N} = (AB) \perp L1 \perp L2$
←		$=d(M_2,L1)=$	\Rightarrow
$d(P1, P2) = d(M_1, P2) = d(M_2, P1) =$	1	$(\overrightarrow{M_1M_2}, \overline{N})$	$d(L1, L2) = d(M_1, L2) = d(M_2, L1) =$
$ A(x_2-x_1)+B(y_2-y_1)+C(z_2-z_1) $	$= np_{\overline{N}} M_1 M $	$_{2} =\frac{1}{ \overline{N} }$	$d(L1, L2) = d(M_1, L2) = d(M_2, L1) =$ $= \frac{ A(x_2 - x_1) + B(y_2 - y_1) }{\sqrt{A^2 + B^2}}$
$= \frac{\left A(x_2 - x_1) + B(y_2 - y_1) + C(z_2 - z_1) \right }{\sqrt{A^2 + B^2 + C^2}}$		1 1	
$M_1(x_1, y_1, z_1) \in P1, M_2(x_2, y_2, z_2) \in P2$			$M_1(x_1, y_1) \in L1, M_2(x_2, y_2) \in L2$
$I1: \frac{x-x_1}{1} = \frac{y-y_1}{1} = \frac{z-z_1}{1} \bar{l}_1 = \bar{l}_2 = \bar{l} = (m, n, p)$	$Z M M_1$	7	$x_1 \cdot \frac{x - x_1}{1 - y - y_1}$
$\frac{11 1}{m} - \frac{1}{n} - \frac{1}{p} $	1	P_3	$L1: \frac{x-x_1}{m} = \frac{y-y_1}{n}$
$ \frac{m}{12} \frac{n}{m} \frac{p}{M_1(x_1, y_1, z_1) \in L1} \\ \underline{L2: \frac{x - x_2}{m} = \frac{y - y_2}{n} = \frac{z - z_2}{p} M_2(x_2, y_2, x_2) \in L2} $		2	$L2: \frac{x-x_2}{} = \frac{y-y_2}{}$
$D: \frac{1}{m} = \frac{1}{n} = \frac{1}{n} M_2(x_2, y_2, x_2) \in L2$		V	m n
P)	$\bar{l}_1 = \bar{l}_2 = \bar{l} = (m, n, 0)$
			$M_l(x_l, y_l) \in Ll$
			$M_2(x_2, y_2) \in L2$
$d(L1, L2) = d(M_1, L2) = d(M_2, L1) =$	-	$M_1, L2) = d(M_2, L1)$	
$ \ \ ar{i} \ \ \ ar{j} \ \ \ ar{k} \ $	[<u>Ā</u>	$\overrightarrow{I_1M_2}, \overline{l}$	$d(L1, L2) = d(M_1, L2) = d(M_2, L1) =$
$\mod x_2 - x_1 y_2 - y_1 z_2 - z_1 \qquad \Leftarrow$	$=h_{\stackrel{\longrightarrow}{\Delta M_1M_2}_2,\bar{l}}=\overline{}$	$\frac{1}{ \bar{I} }$	$ \bar{i} \bar{j} k $
$\begin{bmatrix} m & n & p \end{bmatrix}$	h – высота треу	[*] гольника	$\mod x_2 - x_1 y_2 - y_1 0$
$= \frac{ \left \begin{array}{cccc} \bar{i} & \bar{j} & \bar{k} \\ mod & x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m & n & p \end{array} \right }{\sqrt{m^2 + n^2 + p^2}} \iff$			_ m n 0
VIII I P			$-\frac{\sqrt{m^2+n^2}}{\sqrt{m^2+n^2}}$
III Прямые L1 и L2 скрещиваются в R ₃		-	екость P пересекаются в R_3 IV
P1 P2 (L1⊂P1, L2⊂P2)		$\{P \cap L\} = M_1$	- + D = 0
$L1: \qquad \frac{x-x_1}{m} = \frac{y-y_1}{n}$		$P: \underline{Ax + Bx + C}$ $P \perp \overline{N} = (A,$	
$I1 \parallel \bar{I} - (m + n + m) M$	$(x, y, z) \in I1$	$I \perp N - (A,$ $x - x_0, v - (A,$	$D, C \rightarrow I$ $V_{0} = Z - Z_{0}$
$L1 t_1 - (m_1, n_1, p_1), m_1 - (m_1, n_$	$z - z_{\circ}$	$L: \frac{m}{m} = \frac{y}{n}$	$\frac{\sqrt{p}}{p} = \frac{1}{p}$
$L1 \parallel \bar{l}_1 = (m_1, n_1, p_1), M_1$ $L2: \frac{x - x_2}{m_2} = \frac{y - y_2}{n_2}$	$=\frac{-\frac{2}{p_2}}{p_2}$	$L \parallel \overline{l} = (n$	$\overline{n,n,p}$
$L2 \parallel \bar{l}_2 = (m_2, n_2, p_2), M_2$	$(x_2, y_2, z_3) \in L2$	$M_0(x_0,y_0,z_0)\in L$	
$d(L1, L2) = d(M_{1}, L2) = d(M_{2}, L1) = h_{\Pi(\overline{M})}$		$\cos(\overline{N}, \overline{l}) = \cos(\frac{p}{2})$	$-\varphi$) = $\sin \varphi$
$=\frac{V_{\Pi(\overline{M_1}\overline{M_2},\overline{l_1}\overline{l_2})}}{S_{\Pi\overline{l_1},\overline{l_2}}}=\frac{\left (M_{1}M_{2},\overline{l_1},\overline{l_2})\right }{\left \left[\overline{l_1},\overline{l_2}\right]\right }=$		$\sin \alpha - \cos(\overline{N} \ \overline{1}) =$	$(\overline{N},\overline{l})$
N 17 2		$\sin \varphi = \cos(\overline{N}, \overline{l}) =$	$ \overline{\mathbf{N}}\ \overline{\mathbf{I}} $
	$=\frac{Am + I}{\sqrt{2m^2 + 1}}$	$\frac{Bn + Cp}{\sqrt{m^2 + n^2 + p^2}} \neq \pm 1$	
$= \frac{\begin{array}{c cccccccccccccccccccccccccccccccccc$			$\sqrt{m^2 + n^2 + p^2}$
$-\frac{ \bar{i} \bar{j} \bar{k} }{ \bar{k} }$		$\sin \varphi = \pm 1$	I) (I D)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\cos \varphi = 0$ $P \parallel$	$L) \cup (L \subset P)$
$ \text{m}_{2} \text{ m}_{2} \text{ p}_{2} $ $(\text{d}(L1,L2)=0 \Leftrightarrow L1 \cap L2); \Pi(\textbf{\textit{M}}_{1}\textbf{\textit{M}}_{2},\textbf{\textit{l}}_{1},\textbf{\textit{l}}_{2})$ –параллел	епипел	$(\overline{N},\overline{l}) = 0$	
построенный на векторах M_1M_2 , I_1,I_2 , h — его		$\sin \varphi = 0 \Leftrightarrow L \perp P$, <i>t</i> <i>N</i>



κ -мерная плоскость P_{κ} в точечно-векторном евклидовом n-мерном пространстве R_{n}

$$B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} A = \begin{bmatrix} a_1 a_{12} . a_{1n} \\ a_2 a_{22} . a_{2n} \\ \vdots \\ a_{ml} a_{m2} . . a_{mn} \end{bmatrix} X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$X = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + ... + a_{1n} = b_1, \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n} = b_2, \\ \vdots \\ a_{m1}x_1 + a_{2m}x_2 + ... + a_{mn}x_n = b_m \\ \sum_{j=1}^n a_{ij} x_j = b_i, i = 1,..., m$$

			j = 1		
	Система m линейных уравнений с n неизвестными				
r=1		$\kappa = 1$	к-мерная плоскость $P_{\kappa 0}$ в $R_{\rm n}$, проходящая через		Общее решение произвольной
ГИП	ерплоскость	прямая в R_{r+1}	начало координат $B=0$ (СОЛУ) – система		системы линейных уравнений $B \neq 0$
	$\kappa = n-1$	n-r=1	однородных линейных уравнений		(ОРСЛУ)
матричная форма	координатная форма		матричная форма	координатная форма	
	$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$	$A = \begin{bmatrix} a_{11}a_{12}a_{1r}a_{1r+1} \\ a_{21}a_{22}a_{2r}a_{2r+1} \\ \\ a_{r1}a_{r2}a_{rr}a_{rr+1} \end{bmatrix};$	$B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, A_{m \times n}, X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$		$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r = b_1 - a_{1r+1}x_{r+1} - \dots - a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2r}x_r = b_2 - a_{2r+1}x_{r+1} - \dots - a_{2n}x_n \\ & \dots \dots \dots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rr}x_r = b_r - a_{rr+1}x_{r+1} - \dots - a_{rn}x_n \end{cases}$
	скость в <i>R</i> ₃ <i>n</i> =3				
$A=[a_1a_2a_3],$ $X=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},$ $B=[b]$	$a_1x_1 + a_2x_2 + +a_3x_3 = b$ $\overline{N} = (a_1, a_2, a_3)$ $\frac{x}{\binom{b}{a_1}} + \frac{y}{\binom{b}{a_2}} + \frac{z}{\binom{b}{a_3}} = 1$ Уравнение плоскости в отрезках;	$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_r \\ x_{r+1} \end{bmatrix}; B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_r \end{bmatrix}$ $Rang A = r = n-1$ $n = r+1$	AX =0 $rang A = r$, $x_1, x_2,, x_r$ — базисные неизвестные. Число базисных неизвестных равно r .	$x_{r+1}, x_{r+2},,x_n$ — свободные неизвестные Число свободных неизвестных равно $k=n$ — r	Отбросить строки, не вошедшие в базисный минор, перенести свободные неизвестные в правые части уравнений, а дальше следует применить метод Гаусса, Крамера или матричный.
AX=B		AX=B			

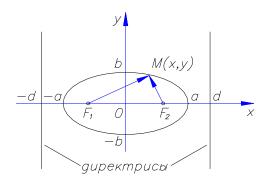
-	ямая в <i>R</i> ₃ , <i>r</i> =2, <i>к</i> =1	Фундаментальная система частных решений СОЛУ (ФСЧР)		Частное решение произвольной СЛУ (ЧРСЛУ)	
матричная Общие ур форма	авнения координатная форма	Свободным неизвестным придать последовательно значения строк единичной матрицы Е		$x_{r+1} = x_{r+2} = \dots = x_n = 0$	
$A = \begin{bmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \end{bmatrix}; X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ $B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}; AX = B$	$\begin{cases} a_{11}X_1 + a_{12}X_2 + a_{13}X_3 = b_1 \\ a_{21}X_1 + a_{22}X_2 + a_{23}X_3 = b_2 \end{cases}$ $\overline{N}_1 = (a_{11}, a_{12}, a_{13})$ $\overline{N}_2 = (a_{21}, a_{22}, a_{23})$ $\overline{I} = [\overline{N}_1, \overline{N}_2], I \parallel L$	$X_{1} = \begin{bmatrix} C_{11} \\ C_{21} \\ \vdots \\ C_{n1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}; X_{2} = \begin{bmatrix} C_{12} \\ C_{22} \\ \vdots \\ C_{n^{2}} \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix},, X_{k} = \begin{bmatrix} C_{11} \\ C_{21} \\ \vdots \\ C_{n^{2}} \\ 0 \\ 0 \end{bmatrix}$ $AX_{1} = 0 AX_{2} = 0 AX_{K} = 0,$	$\left[egin{array}{cccc} \mathbf{C} & \mathbf{C} &$	$C = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_r \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ $AC=B$	
Прямая в R_2	2 n = 2, r = 1, k = 1	Общее решение системы однородных линейных уравнений AX_0 =0		О. Р. произвольной системы	
матричная форма	координатная форма	матричная форма	координатная форма	линейных уравнений (ОРСЛУ) $AX=B$	
		$X_{0} = \begin{bmatrix} x_{10} \\ x_{20} \\ \vdots \\ x_{n0} \end{bmatrix} = \alpha_{1} \begin{bmatrix} C_{11} \\ C_{12} \\ C_{12} \\ \vdots \\ C_{r1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \alpha_{2} \begin{bmatrix} C_{12} \\ C_{22} \\ \vdots \\ C_{r2} \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + \alpha_{k} \begin{bmatrix} C_{1k} \\ C_{2k} \\ \vdots \\ C_{rk} \\ 0 \\ \vdots \\ 1 \end{bmatrix} = \alpha_{1} X_{1} + \alpha_{2} X_{2} + \dots + \alpha_{k} X_{k}$	$x_{10} = \alpha_1 C_{11} + \alpha_2 C_{12} + \dots + \alpha_k C_{1k}$ $x_{20} = \alpha_1 C_{21} + \alpha_2 C_{22} + \dots + \alpha_k C_{2k}$ $x_{r0} = \alpha_1 C_{r1} + \alpha_2 C_{r2} + \dots + \alpha_k C_{rk}$ $x_{r+10} = \alpha_1$ $x_{r+20} = \alpha_2$ $x_{n0} = \alpha_k, n = r + k$		
Прямая в $R_n = R_{r+1}$ $n = r+1$, $k = 1$					

$=R_{r+1}$ $n=r+1, k=1$	<u> </u>
координатная форма	матричная форма
$x_1 = \alpha_1 C_{11} + C_1$ $x_2 = \alpha_1 C_{21} + C_2$ $x_n = \alpha_1 C_{n1} + C_n$ Тараметрические	$X = X_{0} + C = \delta_{1} \begin{bmatrix} C_{11} \\ C_{21} \\ \vdots \\ C_{r1} \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} C_{1} \\ C_{2} \\ \vdots \\ C_{r} \\ 0 \\ \vdots \end{bmatrix}$
уравнения,	
α_1 – параметр, свободная неизвестная	
$\alpha_1 = \frac{x_1 - C_1}{C_{11}} = \frac{x_2 - C_2}{C_{21}} = \dots =$	$\frac{x_{r+1} - C_{r+1}}{C_{r+1,1}}$ — канонические уравнения

КРИВЫЕ ВТОРОГО ПОРЯДКА

Определение эллипса.

Эллипсом называется множество всех точек плоскости, для которых *сумма расстояний* от двух данных точек этой плоскости, называемых фокусами эллипса, есть величина постоянная, большая расстояния между фокусами и равная *2a*.



a — большая полуось эллипса;

b — малая полуось эллипса;

 $F_1(-c,0)$ и $F_2(c,0)$ – фокусы эллипса;

 $c^2 = a^2 - b^2$, c – фокусное расстояние эллипса;

$$\varepsilon = \frac{c}{a} < 1$$
, ε – эксцентриситет эллипса;

 $\overrightarrow{r_1} = \overrightarrow{F_1M}, \quad \overrightarrow{r_2} = \overrightarrow{F_2M} -$ фокальные радиусы-векторы;

по определению $r_1 + r_2 = 2a$.

Прямые $x = \pm \frac{a}{\varepsilon} = \pm d$ называются директрисами эллипса.

Каноническое уравнение эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Строят эллипс, вписывая его в прямоугольник со сторонами длиной 2a и 2b и с центром симметрии в начале координат.

Уравнение эллипса со смещенным при помощи параллельного переноса в точку $M_0(x_0, y_0)$ центром имеет вид

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1.$$

Чтобы привести общее уравнение эллипса

$$a_{11}x^2 + a_{10}x + a_{22}y^2 + a_{01}y + a_{00} = 0$$
, где коэффициенты a_{11} и a_{22}

должны иметь одинаковые знаки, **к каноническому виду**, нужно *выделить полные* κ вадраты по переменным x и y.

Например, приведем уравнение кривой

$$x^2 - 2x + y^2 + 6y + 6 = 0$$

к каноническому виду:

$$x^{2}-2x+y^{2}+6y+6=(x^{2}-2x+1)-1+(y^{2}+6y+9)-9+6=0 \Leftrightarrow (x-1)^{2}+(y+3)^{2}=4$$
.

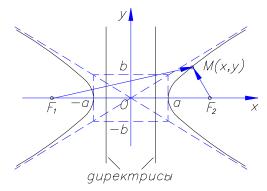
Полученное уравнение является каноническим уравнением окружности, радиус которой равен 2, а центр находится в точке M(1,-3).

Признак уравнения окружности:

- 1. коэффициенты при квадратах переменных одинаковые;
- 2. отсутствует произведение переменных.

Определение гиперболы.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами и равная 2а.



a — действительная полуось гиперболы;

b — мнимая полуось гиперболы;

 $F_1(-c,0)$ и $F_2(c,0)$ – фокусы гиперболы; $c^2 = a^2 + b^2$, c – фокусное расстояние гиперболы;

 $\varepsilon = \frac{c}{c} > 1$, ε – эксцентриситет гиперболы;

 $\overrightarrow{r_1} = \overrightarrow{F_1M}, \quad \overrightarrow{r_2} = \overrightarrow{F_2M} -$ фокальные радиусы-векторы;

по определению $|r_1 - r_2| = 2a$. Прямые $x = \pm \frac{a}{s} = \pm d$ называются директрисами гиперболы.

Уравнения асимптот гиперболы имеют вид $y = \pm \frac{b}{a}x$.

Каноническое уравнение гиперболы $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Строят гиперболу, изобразив предварительно прямоугольник со сторонами длиной 2a и 2bи с центром симметрии в начале координат, а затем вписывают ветви гиперболы в углы между асимптотами гиперболы (прямыми, на которых лежат диагонали прямоугольника), помещая вершины гиперболы в точки с координатами (-a, 0), (a, 0).

Уравнение гиперболы со смещенным при помощи параллельного переноса в точку $M_0(x_0, y_0)$ центром имеет вид

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1.$$

Чтобы привести общее уравнение гиперболы

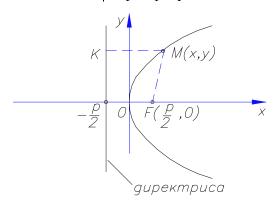
 $a_{11}x^2 + a_{10}x + a_{22}y^2 + a_{01}y + a_{00} = 0$, где коэффициенты a_{11} и a_{22} должны иметь противоположные знаки, **к каноническому виду**, нужно *выделить полные квадраты* по переменным x и y.

 $\frac{y^2}{h^2} - \frac{x^2}{a^2} = 1$, называется сопряженной по отношению к Гипербола, уравнение которой

гиперболе, имеющей уравнение $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Фокусы сопряженной гиперболы расположены на мнимой оси.

Определение параболы.

Параболой называется множество всех точек плоскости, каждая из которых находится на *одинаковом расстоянии* от данной *точки*, называемой фокусом, и от данной *прямой*, называемой директрисой и не проходящей через фокус.



Каноническое уравнение параболы: $y^2 = 2px$.

Строят параболу, откладывая одинаковые отрезки от точек параболы до фокуса с координатами $F(\frac{p}{2},0)$ и до директрисы, уравнение которой $x = -\frac{p}{2}$. Вершина параболы находится в точке O(0,0).

Уравнение параболы со смещенной при помощи параллельного переноса в точку $M_0(x_0, y_0)$ вершиной имеет вид $(y-y_0)^2 = 2p(x-x_0)$.

Чтобы привести **общее** уравнение параболы $a_{10}x + a_{22}y^2 + a_{01}y + a_{00} = 0$ к **каноническому виду**, нужно *выделить полный квадрат* по переменной y и удвоенный параметр p по переменной x.

Парабола, уравнение которой $x^2 = 2py$, называется **сопряженной** по отношению к параболе, имеющей уравнение $y^2 = 2px$. Фокус сопряженной параболы расположен в точке $F(0,\frac{p}{2})$, а ее директриса имеет уравнение $y = -\frac{p}{2}$.

Полярная система координат

Полярная система координат состоит из некоторой точки O, называемой **полюсом**, и исходящего из нее луча OE, называемого **полярной осью**. Кроме этого задается единица масштаба для измерения длин отрезков.

 ρ – это расстояние от точки M до полюса O,

 φ – угол, на который нужно повернуть против часовой стрелки полярную ось для совмещения с лучом OM.

Полярные и декартовы координаты точки связаны соотношениями:

$$\rho = \sqrt{x^2 + y^2}, \quad \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}, \quad \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}, \quad tg\varphi = \frac{y}{x}.$$

Чтобы получить изображение кривой в полярной системе координат, постройте лучи, выходящие из полюса 0 под углами φ к полярной оси. На каждом луче отложите длину вычисленного Вами полярного радиуса φ . Если φ – отрицательное число, то для построения соответствующей точки нужно отложить модуль φ на луче, повёрнутом на 180° вокруг полярной оси, то есть отложить от полярной оси угол $(\varphi+180^\circ)$. Соедините построенные Вами точки плавной линией.

Кривые, уравнения которых в полярной системе координат имеют вид $\rho = a \sin k \varphi$, $\rho = a \cos k \varphi$, называют розами. Причем, если k — четное, то лепестков у розы 2k, а если число k — нечетное, то у розы k лепестков.