

Дисциплина Дифференциальное Исчисление (ДИ)

(Консультация по выполнению ИДЗ 1, 2, 3)

Кафедра высшей математики ТПУ <u>Лектор:</u> доцент **Тарбокова Татьяна Васильевна**

Предел и непрерывность функции одного аргумента

Определение понятия функции одного аргумента Если каждому элементу x из множества X ($X \in X$) поставлен в соответствие определенный элемент y из

множества $Y \in Y$), то говорят, что на множестве X

задана функция y = f(x) со значениями во множестве Y.

Элементы $x \in X$ называют значениями аргумента, а

элементы $y \in Y$ – значениями функции.

Множество X называется областью определения функции, а множество всех значений функции — областью значений функции.

В случаях, когда множества X и Y – числовые множества, соответствующие функции, называют числовыми функциями.

Cтепенная $y = x^n$

Показательная $y = a^x$,

Логарифмическая $y = \log_a x$,

Тригонометрические

 $y = \sin x$, $y = \cos x$, y = tgx, y = ctgx

Обратные тригонометрические

 $y = \arcsin x$, $y = \arccos x$, y = arctgx, y = arcc

 $_{\text{постоянная}} y = c$

Определение элементарных функций

Основные

элементарн

ые функции

Элементарными называют функции, которые получаются из основных элементарных функций в результате применения к ним конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции (суперпозиции) функций.

Определен ие предела функции f(x) в точке x = a.

Число A называется пределом функции f(x) при x, стремящемся к a $(X \longrightarrow a)$, если для любого сколь угодно малого положительного числа \mathcal{E} ($\forall \mathcal{E} > 0$) существует такое положительное число δ , зависящее от $\mathcal{E}\ (\exists\,\delta(\varepsilon)>0)$, что для всех значений x из области определения функции, удовлетворяющих неравенству $0<|x-a|<\delta$, следует выполнение неравенства $|f(x) - A| < \varepsilon$

Используя логические символы, можно записать:

$$\lim_{x \to a} f(x) = A$$

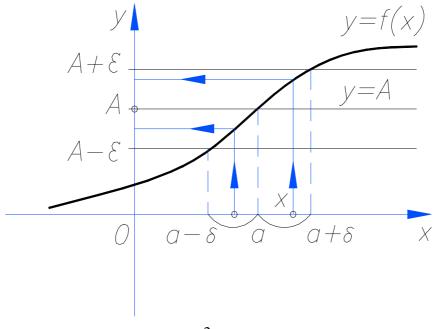
$$\updownarrow$$

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in X, 0 < |x - a| < \delta) \Rightarrow |f(x) - a|$$

Геометрический смысл этого определения заключается в следующем.

Какую бы узенькую полоску шириной 2 ${\cal E}$, параллельную оси абсцисс и содержащую прямую y = A посередине (\mathcal{E} – окрестность точки y = A: $U_{\mathcal{E}}(A)$), мы ни выделили, всегда существует такой симметричный интервал длиной 2 δ с центром в точке $x=a, \ \mathcal{X} \neq a$ (проколотая δ – окрестность точки x=a: U_{δ}^{\bullet} (a)), что для всех x из проколотой δ – окрестности точки x=a значения функции f(x) попадают в \mathcal{E} – окрестность точки y = A:

$$\lim_{x \to a} f(x) = A \Longleftrightarrow (\forall U_e(A))(\exists U_o(a))(\forall x \in U_o(a), \ x \in X) \Longrightarrow f(x) \in U_e(A)$$



Для любого ипсилон больше нуля положительное дельта найдется, Такое, что если x из проколотой дельта — окрестности точки a любой берется, Значение функции f(x) в ипсилон — окрестность точки A попадется.

Определе ние предела функции при $x \to \infty$

Число A называется пределом функции y = f(x) при стремлении x к бесконечности, если для любого положительного сколь угодно малого числа \mathcal{E} существует сколь угодно большое положительное число M, что для всех x из области определения функции из выполнения неравенства |x| > M следует выполнение неравенства $|f(x) - A| < \varepsilon$. То есть $\lim_{x \to \infty} f(x) = A \Longleftrightarrow (\forall \varepsilon > 0) (\exists M(\varepsilon) > 0) (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall \varepsilon > 0) (\exists M(\varepsilon) > 0) (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall \varepsilon > 0) (\exists M(\varepsilon) > 0) (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall \varepsilon > 0) (\exists M(\varepsilon) > 0) (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall \varepsilon > 0) (\exists M(\varepsilon) > 0) (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall \varepsilon > 0) (\exists M(\varepsilon) > 0) (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall \varepsilon > 0) (\exists M(\varepsilon) > 0) (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall \varepsilon > 0) (\exists M(\varepsilon) > 0) (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M) \Longrightarrow |f(x) = A \Longleftrightarrow (\forall x \in X, |x| > M)$

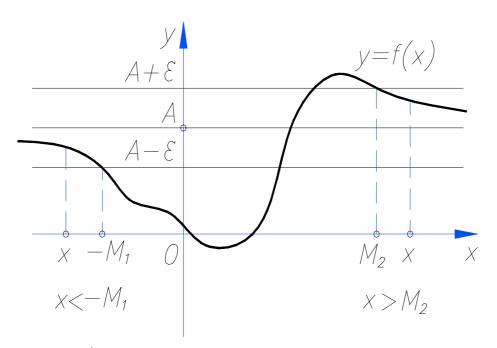
В частности, если $x \to +\infty$, то

$$\lim_{x \to +\infty} f(x) = A \Leftrightarrow (\forall \varepsilon > 0) (\exists M > 0) (\forall x \in X, x > M) \Rightarrow |f(x) - A| < \varepsilon;$$

 $_{\rm если\ же}\ x \longrightarrow -\infty$, тогда

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow (\forall \varepsilon > 0)(\exists M > 0)(\forall x \in X, x < -M) \Rightarrow |f(x) - A| < \varepsilon;$$

Неравенство
$$|x| > M_{-3}$$
 квивалентно системе двух неравенств: $\begin{cases} x > M, \\ x < -M. \end{cases}$



Определение непрерывной в точке $x = x_0$ функции

Функция f(x) называется непрерывной в точке

 $x_0 \in X$, если предел функции в точке $x = x_0$ равен значению функции в этой точке:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

1.6.

Три условия для непрерывной в точке $x = x_0$ функции

- 1. Функция f(x) определена в точке $x = x_0$.
- 2. Существует предел функции f(x) при $x \to x_0$.
- 3. Предел функции f(x) в точке $x = x_0$ совпадает со значением функции f(x) в этой точке.

1.7.

Теорема о непрерывности элементарных функций

Все элементарные функции непрерывны во всех точках области определения этих функций. Для элементарных функций предел функции в точке равен значению этой функции в данной точке.

Раскрытие неопределённости вида $\left\{ \frac{0}{0} \right\}$

	(0)				
	$f(x) = \left\{ \frac{0}{0} \right\}, \ x \to \infty$	$a, a < \infty$	$c = \text{const} \neq 0,$ $b = \text{const} \neq 0$		
№ n/n	Вид функции $f(x)$	Какие преобразования нужно сделать	Результат преобразован ий		
1	$f(x) = \frac{P_n(x)}{Q_m(x)} =$ $= \frac{a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + b_2 x^{m-2} + \dots + b_m}.$ $P_n(a) = Q_m(a) = 0$	Разделить многочлены $P_n(x)$ и $Q_m(x)$ на разность $(x-a)$, сократить $f(x)$ на эту разность $(x-a)$ и подставить вместо x значение $x=a$.	$\left\{ \frac{0}{c} \right\} = 0; \left\{ \frac{\infty}{c} \right\} = 0$ $\left\{ \frac{c}{0} \right\} = \infty; \left\{ \frac{c}{\infty} \right\}$ $\lim_{x \to a} \frac{\varphi(x)}{\psi(x)} = \frac{d}{b}$ $d = const;$ $\left\{ \frac{0}{0} \right\} - $ повторить приём		
2	Функция $f(x)$ содержит иррациональность вида $\sqrt{u_1(x)} - \sqrt{u_2(x)}$	Умножить и разделить функцию $f(x)$ на сопряженное иррациональное выражение $\left(\sqrt{u_1(x)} + \sqrt{u_2(x)}\right)$, использовать формулу сокращенного умножения $(A-B)(A+B)=A^2-B^2$ и сократить $f(x)$ на разность $(x-a)$.	//		

3	Функция $f(x)$ содержит иррациональность вида $\sqrt[3]{u_1(x)} - \sqrt[3]{u_2(x)}$ или $\sqrt[3]{u_1(x)} + \sqrt[3]{u_2(x)}$	квадрат суммы, а сумму кубических корней – на неполный квадрат разности, воспользоваться формулами сокращенного умножения: $(A-B)(A^2+AB+B^2)=A^3-B^3$	$\left\{ \frac{0}{c} \right\} = 0; \left\{ \frac{\infty}{c} \right\} = 0$ $\left\{ \frac{c}{0} \right\} = \infty; \left\{ \frac{c}{\infty} \right\}$ $\lim_{x \to a} \frac{\varphi(x)}{\psi(x)} = \frac{d}{b}$ $d = const;$
			$\left\{ \begin{array}{l} 0 \\ 0 \end{array} \right\}$ — повторить приём

Замечание.

При делении многочлена $P_n(x)$ или $Q_m(x)$ на разность (x-a) опираются на **теорему Безу**: если число x=a является корнем многочлена (при x=a многочлен равен нулю), то этот многочлен делится на разность (x-a) без остатка.

Деление многочлена на разность (x-a) осуществляется по тем же правилам, по которым делятся столбиком числа:

Обратите внимание на то, что индекс в обозначении многочлена соответствует старшей степени x этого многочлена.

В результате деления получим представление многочлена $P_n\left(x\right)$ в виде произведения многочлена

 $P_{n-1}(x)$ на разность (x-a):

$$P_{n}(x) = (x - a) P_{n-1}(x).$$

Предел дробно-рациональной функции

$$f(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + b_2 x^{m-2} + \dots + b_m}, \qquad x \to \infty$$

1) $m > n \ge 0$, $\lim_{x \to \infty} f(x) = 0$;

2)
$$n = m \ge 0$$
, $\lim_{x \to \infty} f(x) = \frac{a_0}{b_0}$;

3)
$$n > m \ge 0$$
, $\lim_{x \to \infty} f(x) = \infty$.

Более того, если функция f(x) представляет собой отношение линейных комбинаций степенных функций, показатели которых неотрицательны (то есть m и n не обязательно целые, но обязательно неотрицательные), то при $x \to \infty$ можно оставить в числителе и в знаменателе только слагаемые наибольших степеней x, а

остальными пренебречь. Предел функции при $x \to \infty$ из-за отбрасывания слагаемых, содержащих меньшие степени x (в том числе и $x^0 = 1$), не изменяется, то есть

$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n_1} + \dots + a_k x^0}{b_0 x^m + b_1 x^{m_1} + \dots + b_I x^0} = \lim_{x \to \infty} \frac{a_0 x^n}{b_0 x^m},$$

где $n > n_1 > n_2 > ... \ge 0$, $m > m_1 > m_2 > ... \ge 0$ (слагаемые записываются в порядке убывания степеней x).

Предел функции
$$f(x) = \frac{a_0 x^n}{b_0 x^m}$$
 при $x \to \infty$

1)
$$n > m \ge 0 \implies \lim_{x \to \infty} \frac{a_0 x^n}{b_0 x^m} = \infty;$$

2)
$$n=m \ge 0 \implies \lim_{x \to \infty} \frac{a_0 x^n}{b_0 x^m} = \frac{a_0}{b_0};$$

3)
$$m > n \ge 0 \implies \lim_{x \to \infty} \frac{a_0 x^n}{b_0 x^m} = 0.$$

Пусть
$$f(x) = q^x$$
, $q = \text{const.}$

Предел функции $f(x) = q^x$, q = const, если

1)
$$|q| < 1 \implies \lim_{x \to \infty} q^x = 0;$$

2)
$$q=1 \implies \lim_{x\to\infty} q^x = 1;$$

3)
$$1 < q < \infty \implies \lim_{x \to \infty} q^x = \infty$$
;

4)
$$-\infty < q \le -1 \implies \lim_{x \to \infty} q^x - \text{ не существует.}$$

Сравнение бесконечно малых функций

Определение бесконечно малой функции Функция $\alpha(x)$ называется бесконечно малой при $x \to a$, если **предел** этой функции равен **нулю** при $x \to a$:

$$\lim_{x \to a} \alpha(x) = 0$$

Пусть $\alpha(x)$ и $\beta(x)$ – бесконечно малые функции (б. м. ф.)

при
$$x \to a$$
, то есть $\lim_{x \to a} \alpha(x) = \lim_{x \to a} \beta(x) = 0$, тогда:

1) $\alpha(x) - 6$. м. ф. более высокого порядка малости по сравнению с $\beta(x)$ – б. м. ф.

при $x \to a$, если

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 0 \Leftrightarrow \alpha(x) = o(\beta(x));$$

2) $\alpha(x) - \delta$. м. ф. **более низкого порядка** малости по сравнению с $\beta(x) - \delta$. м. ф.

при $x \to a$, если

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \infty \iff \beta(x) = o(\alpha(x));$$

3) $\alpha(x)$ и $\beta(x)$ – б. м. ф. **одинакового порядка** малости при $x \to a$, если

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = c \neq 0 \iff \alpha(x) = c (\beta(x));$$

4) $\alpha(x)$ и $\beta(x)$ – б. м. ф., эквивалентные при $x \to a$, если

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 1 \iff \alpha(x) \sim \beta(x);$$

5) $\alpha(x)$ – б. м. ф. **к-го порядка** малости по сравнению с $\beta(x)$ – б. м. ф. при $x \to a$, если

$$\lim_{x \to a} \frac{\alpha(x)}{(\beta(x))^k} = c \neq 0 \iff \alpha(x) = c \ (\beta^k(x)).$$

Теорема о первом замечательном пределе.

Предел функции $f(x) = \frac{\sin x}{x}$ при $x \to 0$ существует и равен единице: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Теорема о втором замечательном пределе.

Предел функции $f(x) = (1+x)^{\frac{1}{x}}$, если $x \to 0$, и функции $f(x) = (1+\frac{1}{x})^x$, если $x \to \infty$, существует и равен числу $e \approx 2,718281828459045$...:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} (1+\frac{1}{x})^x = e.$$

Применение первого и второго замечательных пределов позволяет доказать справедливость формул в **таблице эквивалентных** бесконечно малых функций при $x \to a$.

	$\alpha(x) \to 0$ при $x \to a$				
1	$\sin \alpha(x) \sim \alpha(x)$	6	$\log_{a} (1 + \alpha(x)) \sim \frac{\alpha(x)}{\ln a}$		
2	$tg\alpha(x)\sim\alpha(x)$	6a	$\ln(1+\alpha(x)) \sim \alpha(x)$		
3	$\arcsin \alpha(x) \sim \alpha(x)$	7	$a^{\alpha(x)} - 1 \sim \alpha(x) \ln a$		
4	$arctg \alpha(x) \sim \alpha(x)$	7a	$e^{\alpha(x)}-1\sim\alpha(x)$		
5	$1 - \cos \alpha(x) \sim \frac{(\alpha(x))^2}{2}$	8	$(1 + \alpha(x))^{\mu} - 1 \sim$ $\sim \mu \alpha(x)$		

Замечание. В случаях, когда аргумент $\alpha(x)$ функции в вычисляемом пределе стремится не к нулю, а к отличному от нуля числу, например, $\alpha(x) \longrightarrow a, a \neq 0$, вводят новую переменную $t = \alpha(x) - a$.

Тогда, если $\alpha(x) \to a$, то $t \to 0$ (функция t(x) должна быть непрерывной функцией в окрестности точки t=0).

Новая переменная $t \to 0$ (при $\alpha(x) \to a$), и для нее легко можно использовать таблицу эквивалентных бесконечно малых функций.

Например, вычислим предел

$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\ln(\operatorname{tg} x)} = \left\{ \frac{\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}}{\ln 1} \right\} = \left\{ \frac{0}{0} \right\} = \left| x - \frac{\pi}{4} = t \iff x \to \frac{\pi}{4} \Rightarrow t \to 0 \right| = 1$$

Предварительно сделаем следующие преобразования:

$$\cos x = \cos(t + \frac{\pi}{4}) = \cos t \cos \frac{\pi}{4} - \sin t \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} (\cos t - \sin t);$$

$$tg x = tg(t + \frac{\pi}{4}) = \frac{tg t + tg \frac{\pi}{4}}{1 - tg t tg \frac{\pi}{4}} = \frac{tg t + 1}{1 - tg t} = \frac{1 - tg t + 2 tg t}{1 - tg t} = 1 + \frac{2 tg t}{1 - tg t};$$

$$\frac{2 tg t}{1 - tg t} \to 0 \quad \text{при} \quad t \to 0$$

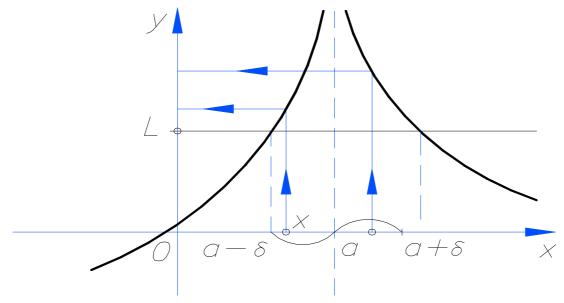
и воспользуемся результатами преобразований:

$$\lim_{t \to 0} \frac{\frac{\sqrt{2}}{2}(\sin t + \cos t) - \frac{\sqrt{2}}{2}(\cos t - \sin t)}{\ln(1 + \frac{2 \operatorname{tg} t}{1 - \operatorname{tg} t})} = \lim_{t \to 0} \frac{\sqrt{2} \sin t}{2 \frac{\operatorname{tg} t}{1 - \operatorname{tg} t}} = \lim_{t \to 0} \frac{\sqrt{2} t}{2 \frac{t}{1 - t}} = \frac{\sqrt{2}}{2}.$$

Функция f(x) называется бесконечно большой при $X \to a$, если для любого сколь угодно большого положительного числа L ($\forall L > 0$) существует такое положительное число δ , зависящее от L ($\exists \delta(L) > 0$), что для всех x из области определения функции, удовлетворяющих неравенству $0 < |x - a| < \delta$, выполняется неравенство |f(x)| > L. При этом пишут: $\lim_{x \to a} f(x) = \infty$; это и означает, что функция f(x) является бесконечно большой. $\lim_{x \to a} f(x) = \infty \Leftrightarrow (\forall L > 0) (\exists \delta(L) > 0) (\forall x \in X, 0 < |x - a| < \delta)$:

То есть при стремлении значений x к точке x = a значения функции f(x) становятся больше сколь угодно большого предварительно заданного числа L.

Бесконечно большие функции (б. б. ф.), так же как и бесконечно малые, можно



сравнивать между собой.

Если предел отношения двух бесконечно больших функций равен:

- 1. Бесконечности, тогда в числителе б. б. ф. более высокого порядка роста;
- 2. Нулю, тогда в числителе б. б. ф. более низкого порядка роста;
- 3. Постоянному числу, не равному нулю или единице, тогда эти бесконечно большие функции одинакового порядка роста;
- 4. Единице, тогда бесконечно большие функции эквивалентны.

Полезно иметь в виду, что при вычислении пределов отношений конечного числа б. б. ф. складываемых функций слагаемые более низкого порядка роста можно отбрасывать, а сумму заменять слагаемым самого высокого порядка роста.

При $x \to \infty$ самый высокий порядок роста имеет показательная функция $f(x) = a^x$; степенная функция $f(x) = x^n$ имеет порядок роста, более низкий по сравнению с показательной функцией, но более высокий по сравнению с логарифмической; логарифмическая функция $f(x) = \log_a x$ имеет самый низкий порядок роста по сравнению и с показательной функцией, и со степенной. Это обозначают так:

$$\log_a x \ll x^n \ll a^x$$
, при $x \to \infty$.

Очень эффективным при вычислении пределов оказывается применение следующих **правил**:

- 1. Предел отношения б. м. ф. (б. б. ф.) не изменится, если заменить эти функции эквивалентными.
- 2. Разность эквивалентных б. м. ф. (б. б. ф.) есть б. м. ф. (б. б. ф.) более высокого порядка малости (роста) по сравнению с уменьшаемой и вычитаемой б. м. ф. (б. б. ф.).
- 3. Сумма конечного числа б. м. (б. б.) слагаемых разного порядка малости (роста) эквивалентна слагаемому самого низкого (высокого) порядка малости (роста).
- **4.** Если б. м. ф. $\alpha(x) \sim \alpha_1(x)$ при $x \rightarrow a$, $A = \text{const} \neq 0$, то $A + \alpha(x) \sim A + \alpha_1(x)$ при $x \rightarrow a$.

Например.
$$\lim_{x \to \infty} \frac{1 + x - x^2}{2x^2 + 3x} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{-x^2}{2x^2} = -\frac{1}{2}$$
.

Чтобы вычислить предел $\lim_{x\to a} u^v$,

можно воспользоваться основным логарифмическим тождеством

$$u^{v} = e^{v \ln u}$$

Например.
$$\lim_{x \to 0} \sqrt[x]{1+5x} = \lim_{x \to 0} (1+5x)^{\frac{1}{x}} \left\{ 1^{\infty} \right\} = e^{\lim_{x \to 0} \frac{\ln(1+5x)}{x}} = \left\{ \frac{0}{0} \right\} = e^{\lim_{x \to 0} \frac{5x}{x}} = e^{5}.$$

Если же $u \to 1, v \to \infty$,

то есть в случае неопределенность вида $\{1^{\infty}\}$,

можно применить следующую последовательность тождественных преобразований:

$$\lim_{x \to a} u^{v} = \lim_{x \to a} (1 + (u - 1))^{v} = \lim_{x \to a} (1 + (u - 1))^{\frac{1}{u - 1}(u - 1) \cdot v} = e^{\lim_{x \to a} (u - 1) \cdot v}$$

Например.

$$\lim_{x \to \infty} \left(\frac{x+3}{x-2}\right)^x = \left\{1^{\infty}\right\} = \lim_{x \to \infty} \left(1 + \left(\frac{x+3}{x-2} - 1\right)\right)^x = \lim_{x \to \infty} \left[\left(1 + \frac{5}{x-2}\right)^{\frac{x-2}{5}}\right]^{\frac{5}{x-2} \cdot x} = e^{\lim_{x \to \infty} \frac{5x}{x}} = e^{5}$$

Непрерывность функции одного аргумента

Определение непрерывной на интервале (a, b)функции

Функция называется непрерывной на интервале (a, b), если она непрерывна в каждой точке этого интервала.

Определение предела справа для ϕ ункции f(x):

$$\lim_{x \to a+0} f(x) = A$$

Число A называется пределом справа для функции f(x) при x, стремящемся к a ($\mathcal{X} \longrightarrow a$), если для любого сколь угодно малого положительного числа \mathcal{E} ($\forall \mathcal{E} > 0$) существует такое положительное число δ , зависящее от ${m \mathcal{E}}$ $(\exists \delta(\varepsilon) > 0)$, что для всех значений x из области определения функции, удовлетворяющих неравенству $0 < x - a < \delta$, следует выполнение неравенства $|f(x) - A| < \varepsilon$

Точки x берутся справа от точки x = a.

Правосторонний предел обозначают также f(a+0).

Определение предела слева для функции

$$\lim_{x \to a-0} f(x) = A$$

Число A называется пределом слева функции f(x) при \mathbf{x} , стремящемся к a ($\mathcal{X} \rightarrow a$), если для любого сколь угодно малого положительного числа \mathcal{E} ($\forall \varepsilon > 0$) существует такое положительное число δ , зависящее от $(\exists \delta(\varepsilon) > 0)$, что для всех значений **x** из области

Точки x берутся **слева** от точки x = a.

Левосторонний предел обозначают также f(a-0).

Теорема о необходимых и достаточных условиях существования предела А ϕ ункции f(x) в точке x = a

Предел A функции f(x) в точке x = a существует тогда и только тогда, когда существуют односторонние пределы этой функции в точке x = a и эти односторонние пределы равны между собой:

$$\lim_{x \to a - 0} f(x) = \lim_{x \to a + 0} f(x) = A$$
, или $f(a - 0) = f(a + 0) = A$

Определение непрерывной на отрезке [a,b]функции

Функция f(x) называется непрерывной на отрезке [a,b], если она непрерывна на интервале (a, b) и в точке

$$x = a - \text{справа} (f(a+0) = f(a)), \text{ а в точке}$$

 $x = b - \text{слева} (f(b-0) = f(b)).$

Определение
точек разрыва
функции

Точки, в которых нарушается хотя бы одно из трех условий непрерывности функции, называются точками разрыва графика функции, или просто точками разрыва.

Определение точек устранимого разрыва функции

Односторонние пределы функции в исследуемой точке конечны и равны между собой. В самой точке функция не определена или не задана.

Определение точек разрыва первого рода функции

Односторонние пределы функции в исследуемой точке конечны, но не равны между собой.

Определение точек разрыва второго рода функции

Хотя бы один из односторонних пределов функции в исследуемой точке равен бесконечности или не существует.

Элементарные функции терпят разрыв в точках, не принадлежащих области их определения.

Функция **кусочно-аналитическая** (состоит из «кусочков» аналитических, то есть элементарных, функций), не является элементарной. Такая функция может иметь **разрыв** в точках, где эта функция **не определена**, а также в точках, где **происходит переход** от одного аналитического задания функции к другому (от одной формулы к другой) — это точки, «подозрительные» на разрыв. В точке, «подозрительной» на разрыв, функция может оказаться непрерывной, если в этой точке выполняются все три условия непрерывности функции:

- 1. Функция определена в точке;
- 2. Существует конечный предел функции в этой точке;
- 3. Предел функции в точке равен значению функции в этой точке.

Для исследования элементарной функции на непрерывность можно применить такой план:

- 1. Найти точки, которые не принадлежат области определения данной функции.
- 2. Вычислить односторонние пределы функции в этих точках.
- 3. Сделать вывод о характере разрыва функции в исследуемых точках. Для исследования кусочно-аналитической функции на непрерывность можно

Для исследования кусочно-аналитической функции на непрерывность можно предложить такой план:

- 1. Найти точки, в которых данная функция не определена точки разрыва графика функции.
- 2. Указать точки, в которых происходит переход от одной формулы задания функции к другой формуле, точки, «подозрительные» на разрыв.
- 3. Вычислить односторонние пределы функции во всех этих точках (найденных по предыдущим двум пунктам плана).
- 4. Сделать вывод о характере разрыва или о непрерывности функции в исследуемых точках.

Дифференциальное и интегральное исчисление

4.1. Таблица производных

1. (const)' = 0;

степенные функции

$$2. \quad \underline{(u^n)' = n \cdot u^{n-1} \cdot u'};$$

2a.
$$(x)' = 1$$
;

2b.
$$(u^2)' = 2 \cdot u \cdot u'$$
;

2c.
$$\left(\frac{1}{u}\right)' = -\frac{1}{u^2} \cdot u';$$

2e.
$$(\sqrt{u})' = \frac{1}{2 \cdot \sqrt{u}} \cdot u';$$

$$(\sqrt[n]{x^m} = x^{\frac{m}{n}}; \frac{1}{\sqrt[n]{x^m}} = x^{-\frac{m}{n}})$$

показательные функции

3.
$$(a^u)' = a^u \cdot \ln a \cdot u';$$

3a.
$$(e^u)' = e^u \cdot u';$$

логарифмические функции

4.
$$(\log_a u)' = \frac{1}{u \cdot \ln a} \cdot u';$$

4a.
$$(\ln u)' = \frac{1}{u} \cdot u';$$

$$(\ln \frac{a}{b} = \ln a - \ln b; \quad \ln a^n = n \ln a)$$

тригонометрические функции

5.
$$(\sin u)' = \cos u \cdot u'$$
;

6.
$$(\cos u)' = -\sin u \cdot u'$$

7.
$$(tg u)' = \frac{1}{\cos^2 u} \cdot u';$$

8.
$$(ctg u)' = -\frac{1}{\sin^2 u} \cdot u';$$

обратные тригонометрические функции

9.
$$(\arcsin u)' = \frac{1}{\sqrt{1 - u^2}} \cdot u';$$

10.
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u';$$

11.
$$(arctg \ u)' = \frac{1}{1+u^2} \cdot u';$$

12.
$$(arcctg u)' = -\frac{1}{1+u^2} \cdot u';$$

гиперболические функции

13.
$$(shu)' = chu \cdot u'$$
;

14.
$$(ch u)' = sh u \cdot u'$$
;

15.
$$(th u)' = \frac{1}{ch^2 u} \cdot u';$$

16.
$$(cth u)' = -\frac{1}{sh^2 u} \cdot u';$$

показательно - степенные функции

17.
$$(u^{v})' = u^{v} \cdot \ln u \cdot v' + v \cdot u^{v-1} \cdot u'$$
. модуль функции

18.
$$\underline{|u|' = \operatorname{sgn} u \cdot u'}$$
, $(|u| = \operatorname{sgn} u \cdot u)$,

где $\operatorname{sgn} u = \begin{cases} 1, u > 0 \\ -1, u < 0; - функция знак u \\ 0, u = 0 \end{cases}$

(сигнум и).

Правила дифференцирования

1. $(cu)' = c \cdot u'$;

1a.
$$\left(\frac{u}{c}\right)' = \frac{1}{c} \cdot u';$$

2.
$$(u \pm v)' = u' \pm v';$$

3.
$$(u \cdot v)' = u' \cdot v + u \cdot v';$$

4.
$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2};$$

5. сложная функция

$$(F(u(x))' = F_u' \cdot u_x';$$

6. параметрически заданная функция

$$\begin{cases} x = x(t), \\ y = y(t) \end{cases} \Rightarrow y'_{x} = \frac{y'_{t}}{x'_{t}}; y''_{xx} = \frac{(y'_{x})'_{t}}{x'_{t}};$$

7. *неявно заданная функция* y = y(x) уравнением

F(x,y) = 0; \Rightarrow чтобы найти производную неявно заданной функции, нужно продифференцировать обе части уравнения F(x,y) = 0, считая у функцией от x и применяя правило 5 дифференцирования сложной функции;

8. логарифмическое дифференцирование

$$y = f(x) \Rightarrow \ln y = \ln f(x);$$

$$\frac{1}{y} \cdot y' = (\ln f(x))'.$$

Приложения производной

Теоремы Роля, Лагранжа, Коши

Теорема	Если	то
Ролля	f(x): 1. непрерывна на отрезке $[a, b]$; 2. дифференцируема на интервале (a, b) ; 3. принимает равные значения на концах отрезка, то есть $f(a) = f(b)$,	существует хотя бы одна точка ξ , $a < \xi < b$, что $f'(\xi) = 0$
Лагранж а	f(x): 1. непрерывна на отрезке $[a,b]$; 2. дифференцируема на интервале (a,b) ,	существует хотя бы одна точка ξ , $a < \xi < b$, что $f(b) - f(a) = f'(\xi)(b - a)$
Коши	$f(x)$ и $g(x)$: 1. непрерывны на отрезке $[a,b]$; 2. дифференцируемы на интервале (a,b) 3. $g'(x) \neq 0$ во всех точках интервала (a,b) ,	существует хотя бы одна точка ξ , $a < \xi < b$, что $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$

Раскрытие неопределенностей по правилу Лопиталя

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left\{ \frac{0}{0} \right\} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \quad \text{или} \quad \lim_{x \to a} \frac{f(x)}{g(x)} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

№ п/ п	Вид неопред еленнос ти	Преобразования	Результат преобразований $(c, d-\mathrm{const} \neq 0)$
1	{0⋅∞}	$f(x) \cdot h(x) = \frac{f(x)}{\frac{1}{h(x)}} = \frac{h(x)}{\frac{1}{f(x)}}$	$\left\{ egin{array}{c} 0 \\ 0 \end{array} ight\}$ или $\left\{ egin{array}{c} \infty \\ \infty \end{array} ight\}$ — применить правило Лопиталя
2	$\{\infty-\infty\}$	2.1. Дроби привести к общему знаменателю; 2.2. Умножить и разделить разность функций на сопряжениее выражение, если это разность квадратных корней; 2.3. Умножить и разделить разность функций на неполный квадрат суммы этих функций, если это разность корней кубических; $2.4. \ f(x) - h(x) = \frac{1}{h(x)} - \frac{1}{f(x)}$ $\frac{1}{f(x) \cdot h(x)}$	$ \begin{cases} \frac{c}{0} \\ = \infty; \qquad \left\{ \frac{c}{\infty} \right\} = 0; \\ \left\{ \frac{0}{c} \right\} = 0; \qquad \left\{ \frac{\infty}{c} \right\} = \infty; \\ \left\{ \frac{c}{d} \right\} = A $ $ \begin{cases} \frac{0}{0} \\ 0 \end{cases} $ или $\left\{ \frac{\infty}{\infty} \right\} - $ применить правило Лопиталя
3	$ \begin{cases} 1^{\infty} \end{cases}, $ $ \begin{cases} 0^{0} \end{cases}, $ $ \begin{cases} \infty^{0} \end{cases}. $	$y = u^{\nu} \Rightarrow \ln y = \nu \ln u;$ 3.1. $\lim_{x \to a} \ln y = A \Rightarrow \lim_{x \to a} y = e^{A}.$ 3.2. $y = u^{\nu} = e^{\nu \cdot \ln u}$	См. выше

Исследования функции без применения производных

№ п/ п	Цель исследования	Действия	Вывод	
1	Найти область определения функции	Найти точки, в которых функция не определена или не задана (точки разрыва графика функции)	области определения функции	
2	Найти вертикальные асимптоты	Вычислить односторонние пределы функции в точках разрыва и в точках, «подозрительных» на разрыв для кусочно-аналитической функции	Если хотя бы один из односторонних пределов в исследуемой точке равен бесконечности, то график функции имеет вертикальную асимптоту: $\lim_{x\to a\pm 0} f(x) = \infty \Longrightarrow x = a -$ вертикальная асимптота	
3	Исследовать функцию на четность и нечетность	Если $f(-x) = f(x)$, то функция четная. Если $f(-x) = -f(x)$, то функция нечетная	Ограничиться исследованием функции на интервале $(0, \infty)$. График четной функции симметричен относительно оси OY , график нечетной функции симметричен относительно начала координат	
4	Исследовать функцию на периодичность	T — период функции — (наименьшее из всех возможных значений, удовлетворяющих уравнению: $f(x+T) = f(x)$	Ограничиться исследованием на интервале, по длине равном периоду T , за пределы интервала продолжить график функции периодическим образом	
5	Найти точки пересечения с осями координат	Решив уравнение $y = f(x) = 0$, найти $x_0 : f(x_0) = 0$. Найти $y(0) = y_0$	Точка пересечения графика с осью $OX: (x_0,0) \ .$ Точка пересечения графика с осью $OY: \ (0,y_0)$	
6	Найти наклонные, в частности, горизонтальные асимптоты	Вычислить пределы $k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$ и $b = \lim_{x \to \pm \infty} (f(x) - kx)$	Если k и b – конечные числа, то уравнение наклонных асимптот $y = kx + b$, причем, при $\kappa = 0$ асимптота горизонтальная $y = b$	

Исследования функции с применением производных

№ п / п	Цель исследования	Действия и вывод			
		$y'(x_i)$ (необход 1.2.1. Пр	йти критические точки перв $= 0$ или $y'(x_i) = \infty$, или у димое условие существовани оименить первое достаточн ской точке:	$y'(x_i)$ — не существует ия экстремума функции в т	очке);
	И	X	<i>x</i> < <i>x</i> ₁	x_1	$x > x_x$
	ти и точк	<i>y</i> ′	_	Критическая точка первого порядка	+
1	ти интервалы монотонности и точ локальных экстремумов функции	у	Функция убывает	$(x_1, y(x_1))$ — точка минимума	Функция возрастает
	валы м ых экстј	х	x < x ₂	x_2	x > x ₂
	Найти интервалы монотонности и точки локальных экстремумов функции	y'	+	Критическая точка первого порядка	_
		У	Функция возрастает	$(x_2, y(x_2))$ — точка максимума	Функция убывает
		нулю), п функции $y^{(2k)}(x_3)$ $y^{(2k)}(x_4)$	ли x_3 и x_4 – стационарны можно применить второе в в точке: (1) > 0 \Rightarrow (x_3 , $y(x_3)$) – точко (1) < 0 \Rightarrow (x_4 , $y(x_4)$) – точко (2) = 0, $y^{(2k+1)} \neq 0$ – в точко	достаточное условие суща локального минимума; са локального максимума;	дествования экстремума
2.1. Найти критические точки второго порядка $x_j, j=1,2,,m$:					
	Найти интервалы выпуклости и вогнутости графика функции и точки перегиба	(необхо д 2.2. Пр существ	$y''(x_j) = 0$ или $y''(x_j) = \infty$, или $y''(x_j)$ — не существует (необходимое условие существования точки перегиба графика); 2.2. Применить достаточные условия выпуклости и вогнутости графика и существования точек перегиба:		
2	ерваль утости и точк	X	<i>x</i> < <i>x</i> ₆	X_6	$x > x_6$
	Найти инте и вогну функции	y"	+	Критическая точка второго порядка, точка непрерывности	_
		У	График функции вогнутый	$(x_6, y(x_6))$ — точка перегиба	График функции выпуклый

Решение типового варианта и образец оформления индивидуального задания № 1

Вариант №0

1. Используя определение предела последовательности (предела функции), докажите, что

a)
$$\lim_{n \to \infty} \frac{10n^2 + 1}{5n^2} = 2.$$
;

6)
$$\lim_{x \to 3} \frac{2x^2 - 8x + 6}{x - 3} = 4.$$

a)
$$\lim_{n\to\infty} \frac{n^4 - 100n^2 + 1}{100 - 15n^4}$$
;

6)
$$\lim_{n\to\infty} \frac{2n!}{3n! - (n-1)!};$$

B)
$$\lim_{x \to +\infty} \frac{x^3 - 5x + 1}{2x^3 - 7x^2 - 2x};$$
 F) $\lim_{x \to \infty} \left(\frac{3x^4}{x^2 + 3} - 3x^2 \right);$

$$\lim_{x \to \infty} \left(\frac{3x^4}{x^2 + 3} - 3x^2 \right);$$

$$_{\pi}$$
) $\lim_{x\to 1} \frac{3x^2 + x - 4}{2x^2 + x - 3}$;

e)
$$\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^3 - 2\sqrt{2}}$$
;

$$\lim_{x \to \infty} \left(\frac{3x - 1}{3x - 5} \right)^{x - 1};$$

3)
$$\lim_{x\to 0} \frac{\ln(5+x) - \ln 5}{x}$$
;

и)
$$\lim_{x\to 0} \frac{3^{2x}-1}{x}$$
;

$$\lim_{x \to 0} \frac{\sqrt{1 + x \arcsin(x)} - 1}{\operatorname{tg} x^2};$$

л)
$$\lim_{x\to 2-0} \left(\frac{1}{1-3^{-\frac{1}{x-2}}}\right);$$

$$\min_{x \to 2+0} \left(\frac{1}{1 - 3^{-\frac{1}{x-2}}} \right).$$

3. Исследуйте на непрерывность, найдите точки разрыва, укажите характер разрыва и изобразите графически следующие функции:

a)
$$y = \begin{cases} x, & x < 0, \\ 3, & 0 \le x < 4, \\ \sqrt{x}, & x \ge 4; \end{cases}$$

$$6) y = \frac{1}{\frac{1}{x^{-2} + 1}};$$

B)
$$y = |x| + 2$$
.

4. Сравните бесконечно малые $\alpha(x)$ и $\beta(x)$ при $x \to 0$, $\alpha(x) = \ln(\sqrt[4]{1 - \cos(\sqrt{x})} + 1)$ и $\beta(x) = e^{\sqrt{x}} - 1$.

относительно $y = \left(e^{x^2} - \cos x\right) \pi p \mu \ x \to 0.$

Задача 1. Используя определение предела последовательности (предела функции),

докажите a)
$$\lim_{n\to\infty} \frac{10n^2+1}{5n^2} = 2$$
; б) $\lim_{x\to 3} \frac{2x^2-8x+6}{x-3} = 4$

Решение 1 *a*). Докажите, что
$$\lim_{n\to\infty} \frac{10n^2+1}{5n^2} = 2$$
.

Для любого $\varepsilon > 0$ попробуем найти такое натуральное число N, что для всякого натурального n > N выполнялось неравенство

17

$$|x_n-2|<\varepsilon$$

Для этого найдем абсолютную величину разности

$$\left| \frac{10n^2 + 1}{5n^2} - 2 \right| = \left| \frac{10n^2 + 1 - 10n^2}{5n^2} \right| = \left| \frac{1}{5n^2} \right| = \frac{1}{5n^2}.$$

Значит, неравенство $|x_n-2|<\varepsilon$ выполняется, если $\frac{1}{5n^2}<\varepsilon$, откуда $n>\sqrt{\frac{1}{5\varepsilon}}$.

Поэтому в качестве N можно взять целую часть числа $\sqrt{\frac{1}{5\varepsilon}}$, т.е. $N=E\!\!\left(\sqrt{\frac{1}{5\varepsilon}}\right)$

Итак, для любого $\varepsilon > 0$ можно найти такое N, что из неравенства n > N будет следовать $|x_n - 2| < \varepsilon$, а это значит, что

$$\lim_{n \to \infty} \frac{10n^2 + 1}{5n^2} = 2.$$

Решение 1 б). Докажите, что
$$\lim_{x \to 3} \frac{2x^2 - 8x + 6}{x - 3} = 4$$

Первый способ – используется определение предела функции по Коши. Следуя определению предела функции по Коши надо доказать, что для всякого ε > 0 существует такое δ > 0, что из равенства $0 < |x-3| < \delta$ следует $|f(x)-4| < \varepsilon$.

Рассмотрим модуль разности |f(x)-4| относительно модуля |x-3|. Другими словами, необходимо решить неравенство

$$\left| \frac{2x^2 - 8x + 6}{x - 3} - 4 \right| = \left| \frac{2x^2 - 8x + 6 - 4x + 12}{x - 3} \right| = \left| \frac{2(x - 3)^2}{x - 3} \right| = 2|x - 3| < \varepsilon.$$

Последнее неравенство показывает, что как только $|x-3| < \varepsilon/2 = \delta$, выполняется неравенство $|f(x)-4| < \varepsilon$. Следовательно, $\delta = \varepsilon/2$ и

$$\lim_{x \to 3} \frac{2x^2 - 8x + 6}{x - 3} = 4.$$

Задача 2.

Решение 2 *a*). Найдите предел
$$\lim_{n\to\infty} \frac{n^3 - n^2 + 5}{1 + 2n - 5n^3}$$

Убедившись, что имеет место неопределенность вида $\stackrel{\infty}{--}$, оставляем старшие $\stackrel{\infty}{--}$

степени n в числителе и в знаменателе:

$$\lim_{n \to \infty} \frac{n^3 - n^2 + 5}{1 + 2n - 5n^3} = \left(\frac{\infty}{\infty}\right) = \lim_{n \to \infty} \frac{n^3}{-5n^3} = -5.$$

Решение 2 б). Найдите предел $\lim_{n\to\infty} \frac{2n!}{3n!-(n-1)!}$.

Убедившись, что имеет место неопределенность вида $\dfrac{\infty}{\infty-\infty}$, вынесем в

числителе и знаменателе общий множитель (n-1)!. Учитывая, что $n! = (n-1)! \cdot n$ получим

$$\lim_{n \to \infty} \frac{2n!}{3n! - (n-1)!} = \lim_{n \to \infty} \frac{2(n-1)! \cdot n}{3(n-1)! \cdot n - (n-1)!} = \lim_{n \to \infty} \frac{2(n-1)! \cdot n}{(n-1)! (3n-1)} = \lim_{n \to \infty} \frac{2n}{3n-1}.$$

Далее оставляем старшую степень n в числителе и знаменателе:

$$\lim_{n\to\infty} \frac{2n!}{3n!-(n-1)!} = \lim_{n\to\infty} \frac{2n}{3n-1} = \left(\frac{\infty}{\infty}\right) = \lim_{n\to\infty} \frac{2n}{3n} = \frac{2}{3}.$$

Решение 2 *г***).** Найдите предел
$$\lim_{x \to \infty} \left(\frac{3x^4}{x^2 + 3} - 3x^2 \right)$$
.

Анализируя условие задачи, заключаем, что при $x \to \infty$ функция представляет разность двух положительных бесконечно больших величин (случай ∞ $-\infty$). После этого преобразуем данную функцию к виду дроби, числитель и знаменатель которой одновременно стремятся к нулю или к бесконечности. Тем самым данный случай нахождения предела функции сводится к случаю

$$\frac{0}{0}$$
 или $\frac{\infty}{\infty}$.

$$\lim_{x \to \infty} \left(\frac{3x^4}{x^2 + 3} - 3x^2 \right) = \lim_{x \to \infty} \left(\frac{3x^4 - 3x^4 - 9x^2}{x^2 + 3} \right) = \lim_{x \to \infty} \frac{-9x^2}{x^2 + 3} = \lim_{x \to \infty} \frac{-9x^2}{x^2} = -9$$

Оставляем главную часть бесконечно большой x^2 в знаменателе.

Решение 2 *д***).** Найдите предел
$$\lim_{x \to 1} \frac{3x^2 + x - 4}{2x^2 + x - 3}$$
.

Вначале убеждаемся, что предел функции нельзя найти непосредственной подстановкой x = 1. В этом случае дробь представляет отношение двух бесконечно

малых величин (случай $\frac{\mathbf{U}}{\mathbf{O}}$). Делаем преобразование, чтобы сократить дробь на

множитель (x - 1), стремящийся к нулю. Разлагаем числитель и знаменатель на множители (делением многочлена на многочлен):

$$\lim_{x \to 1} \frac{3x^2 + x - 4}{2x^2 + x - 3} = \lim_{x \to 1} \frac{(x - 1)(3x + 4)}{(x - 1)(2x + 3)} = \lim_{x \to 1} \frac{3x + 4}{2x + 3} = \frac{7}{5}.$$

Решение 2 *e*). Найдите предел
$$\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^3 - 2\sqrt{2}}$$
.

Вначале убеждаемся, что предел функции нельзя найти непосредственной подстановкой $x = \sqrt{2}$. В этом случае дробь представляет отношение двух

бесконечно малых функций (неопределённость вида $\frac{0}{0}$). Делаем преобразование,

чтобы сократить дробь на множитель $(x - \sqrt{2})$, стремящийся к нулю. Разлагаем числитель и знаменатель дроби на множители, используя формулу разности квадратов в числителе и разности кубов в знаменателе: $a^2-b^2=(a-b)\ (a+b),$ $a^3-b^3=(a-b)\ (a^2+a\ b+b^2).$

$$a^{2} - b^{2} = (a - b) (a + b),$$

 $a^{3} - b^{3} = (a - b) (a^{2} + a b + b^{2}).$

Тогда получим

$$\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^3 - 2\sqrt{2}} = \lim_{x \to \sqrt{2}} \frac{\left(x - \sqrt{2}\right)\left(x + \sqrt{2}\right)}{\left(x - \sqrt{2}\right)\left(x^2 + \sqrt{2}x + 2\right)} = \lim_{x \to \sqrt{2}} \frac{\left(x + \sqrt{2}\right)}{\left(x^2 + \sqrt{2}x + 2\right)} = \frac{\sqrt{2}}{3}.$$

Решение 2 *ж*). Найдите предел
$$\lim_{x \to \infty} \left(\frac{3x-1}{3x-5} \right)^{x-1}$$
.

Убедившись сначала, что при указанном изменении аргумента функция представляет степень, основание которой стремиться к единице, а показатель – к бесконечности (неопределённость вида 1^{∞}). Далее преобразуем функцию так, чтобы использовать 2-й замечательный предел:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \lim_{\alpha\to 0} \left(1+\alpha\right)^{\frac{1}{\alpha}} = e.$$

Выделив целую часть из дроби, получаем

$$\lim_{x \to \infty} \left(\frac{3x - 1}{3x - 5} \right)^{x - 1} = \lim_{x \to \infty} \left(1 + \frac{4}{3x - 5} \right)^{\frac{(3x - 5)}{4} \frac{4}{(3x - 5)}(x - 1)}.$$

Первый множитель показателя степени забираем для е, второй и третий остается. Таким образом, получаем:

$$\lim_{x \to \infty} \left(\frac{3x - 1}{3x - 5} \right)^{x - 1} = \lim_{x \to \infty} \left(1 + \frac{4}{3x - 5} \right)^{\frac{(3x - 5)}{4} \cdot \frac{4}{(3x - 5)}(x - 1)} e^{\lim_{x \to \infty} \frac{4(x - 1)}{(3x - 5)}} = e^{\frac{4}{3}}.$$

Решение 2 3). Найдите предел
$$\lim_{x \to 0} \frac{\ln(5+x) - \ln 5}{x}$$
.

Вначале убеждаемся, что предел функции нельзя найти непосредственной подстановкой x = 0. В этом случае дробь представляет отношение двух бесконечно

малых функций (неопределённость вида $\frac{0}{0}$). Используем свойства логарифмов:

$$\ln a - \ln b = \ln \frac{a}{b}$$
, $\ln a + \ln b = \ln ab$, $\ln a^b = b \ln a$.

В результате получим

$$\lim_{x \to 0} \frac{\ln(5+x) - \ln 5}{x} = \lim_{x \to 0} \frac{\ln \frac{5+x}{5}}{x} = \lim_{x \to 0} \ln \left(1 + \frac{x}{5}\right)^{\frac{1}{x}} = \ln \left(\lim_{x \to 0} \left(1 + \frac{x}{5}\right)^{\frac{5}{x} \cdot \frac{1}{5}}\right) = \ln e^5 = 5.$$

Решение 2 *u*). Найдите предел
$$\lim_{x\to 0} \frac{3^{2x}-1}{x}$$
.

Вначале убеждаемся, что предел функции нельзя найти непосредственной подстановкой x = 0. В этом случае дробь представляет отношение двух бесконечно

малых функций (неопределённость вида $\frac{0}{0}$).

Эквивалентные бесконечно малые ($\alpha(x)$ – б.м.)

Таблиц	a 1.
$\sin \alpha(x) \sim \alpha(x)$	$\ln\left(1+\alpha(x)\right)\sim\alpha\left(x\right)$
$\arcsin \alpha(x) \sim \alpha(x)$	$\log_{a}(1+\alpha(x)) \sim \frac{\alpha(x)}{\ln a}$
$\operatorname{tg} \ \alpha(x) \sim \alpha(x)$	$e^{\alpha(x)}$ - 1 ~ $\alpha(x)$
$arctg \ \alpha(x) \sim \alpha(x)$	$a^{\alpha(x)} - 1 \sim \alpha(x) \ln a$
$1 - \cos \alpha(x) \sim \frac{\alpha^2(x)}{2}$	$\sqrt[n]{1+\alpha(x)}-1\sim\frac{\alpha(x)}{n}$

Замени выражение, стоящее в числителе на эквивалентную бесконечно малую функцию ($2 \cdot x \cdot \ln 3$) и получим:

$$\lim_{x\to 0} \frac{3^{2x}-1}{x} = \lim_{x\to 0} \frac{2x\ln 3}{x} = 2\ln 3.$$
 Решение 2 к). Найдите предел
$$\lim_{x\to 0} \frac{\sqrt{1+x\arcsin(x)}-1}{\operatorname{tg} x^2}.$$

Аналогично убеждаемся, что предел функции нельзя найти непосредственной подстановкой x=0. В этом случае дробь представляет отношение двух бесконечно малых функций (неопределённость вида $\frac{0}{0}$). Воспользуемся таблицей 1 и получим:

$$\lim_{x \to 0} \frac{\sqrt{1 + x \arcsin(x)} - 1}{\operatorname{tg} x^2} = \lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{x^2} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{x^2} = \frac{1}{2}.$$

Решение 2 л). Найдите предел
$$\lim_{x\to 2-0} \left(\frac{1}{1-3^{-\frac{1}{x-2}}}\right)$$
.

Если переменная x будет стремиться к 2 слева, т. е. (x-2) будет отрицательной бесконечно малой, то $\left(-\frac{1}{x-2}\right)$ будет положительной бесконечно большой и

$$\lim_{x \to 2-0} \left(\frac{1}{1-3^{-\frac{1}{x-2}}} \right) = \lim_{x \to 2} \left(\frac{1}{1-3^{\frac{1}{x-2}}} \right) = \frac{1}{1-3^{+\infty}} = 0.$$

Решение 2 м). Найдите предел
$$\lim_{x\to 2+0} \left(\frac{1}{1-3^{-\frac{1}{x-2}}}\right)$$
.

Аналогично, если переменная x будет стремиться к 2 справа, то (x-2) будет положительной бесконечно малой, и $\left(-\frac{1}{x-2}\right)$ будет отрицательной бесконечно большой и

$$\lim_{x \to 2+0} \left(\frac{1}{1-3^{-\frac{1}{x-2}}} \right) = \lim_{x \to 2} \left(\frac{1}{1-3^{-\frac{1}{x-2}}} \right) = \frac{1}{1-3^{-\infty}} = 1.$$

Задача 3. Исследуйте на непрерывность, найдите точки разрыва, укажите характер разрыва и изобразите графически функцию:

a)
$$y = \begin{cases} x, & x < 0, \\ 3, & 0 \le x < 4, \\ \sqrt{x}, & x \ge 4. \end{cases}$$

Решение. Область определения функции $D(y) = (-\infty; +\infty)$. Но из этого не следует, что она и непрерывна на всей числовой оси, так как эта функция неэлементарная. Она задана тремя различными формулами для различных интервалов изменения аргумента x и может иметь разрыв в точках $x_1 = 0$ и $x_2 = 4$, где меняется ее аналитическое выражение.

Исследуя точку $x_1 = 0$, находим односторонние пределы функции при стремлении аргумента к этой точке слева и справа:

$$\lim_{x \to -0} f(x) = \lim_{x \to -0} x = 0,$$
 $\lim_{x \to +0} f(x) = \lim_{x \to +0} 3 = 3,$ Односторонние пределы функции конечны, но не равны между собой.

Поэтому, вследствие невыполнения 2-го условия непрерывности, в точке $x_1 = 0$ функция имеет разрыв первого рода.

В этой точке разрыва функция имеет конечный скачок:

$$h = \lim_{x \to +0} f(x) - \lim_{x \to -0} f(x) = 3 - 0 = 3.$$

Исследуя точку x_2 = 4, находим односторонние пределы функции при стремлении аргумента к этой точке слева и справа

$$\lim_{x \to 4-0} f(x) = \lim_{x \to 4-0} 3 = 3,$$
 $\lim_{x \to 4+0} f(x) = \lim_{x \to 4+0} \sqrt{x} = 2,$ Односторонние пределы функции конечны, но не равны между собой.

Поэтому, вследствие невыполнения 2-го условия непрерывности, в точке x_2 = 4 функция имеет разрыв первого рода.

В этой точке разрыва функция имеет конечный скачок:
$$h = \lim_{x \to 4+0} f(x) - \lim_{x \to 4-0} f(x) = 2 - 3 = -1.$$

Во всех остальных точках числовой оси y = f(x) непрерывна, так как формулы, которыми она задана, определяют собой элементарные непрерывные функции.

График функции на рис.1.

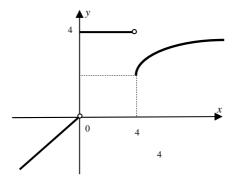


Рис.1.

Задача 3 *б*) Исследуйте на непрерывность, найдите точки разрыва, укажите характер разрыва и изобразите графически функцию:

$$y = \frac{1}{2^{\frac{1}{x-2}} + 1}.$$

Решение. Область определения функции $D(y) = (-\infty; 2) \cup (2; +\infty)$.

Элементарная функция y = f(x) определена, а следовательно, и непрерывна на всей числовой оси, кроме точки x = 2. В точке x = 2 функция имеет разрыв, поскольку она определена в любой окрестности этой точки, за исключением самой точки.

Найдем односторонние пределы функции в этой точке

$$\lim_{x \to 2^{-0}} \frac{1}{2^{\frac{1}{x-2}} + 1} = \left(\frac{1}{2^{-\infty} + 1}\right) = 1, \quad \lim_{x \to 2^{+0}} \frac{1}{2^{\frac{1}{x-2}} + 1} = \left(\frac{1}{2^{+\infty} + 1}\right) = 0,$$

Односторонние пределы функции конечны, но не равны между собой.

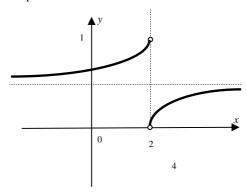
Следовательно, функция в точке x = 2 имеет разрыв первого рода; при этом она имеет конечный скачок:

$$h = \lim_{x \to 2+0} f(x) - \lim_{x \to 2-0} f(x) = 0 - 1 = -1.$$

Исследуем поведение функции при $x \to -\infty$ и $x \to +\infty$:

$$\lim_{x \to -\infty} \frac{1}{2^{\frac{1}{x-2}} + 1} = \frac{1}{2^0 + 1} = \frac{1}{2}, \qquad \lim_{x \to +\infty} \frac{1}{2^{\frac{1}{x-2}} + 1} = \frac{1}{2^0 + 1} = \frac{1}{2}.$$

График функции на рис.4.2.1.



Puc. 4.2.1.

Задача 3 ϵ). Исследуйте на непрерывность, найдите точки разрыва, укажите характер разрыва и изобразите графически функцию

$$y = |x| + 2.$$

Решение: Область определения функции $D(y) = (-\infty; +\infty)$. Но из этого не следует, что она и непрерывна на всей числовой оси, так как эта функция неэлементарная:

$$y = |x| + 2 = \begin{cases} x + 2, & ecnu \ x \ge 0, \\ -x + 2, & ecnu \ x < 0. \end{cases}$$

Она задана двумя различными формулами для различных интервалов изменения аргумента x и может иметь разрыв в точке x=0, где меняется ее аналитическое выражение.

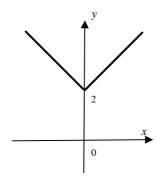
Исследуя точку x = 0, находим односторонние пределы функции при стремлении аргумента к этой точке слева и справа:

$$\lim_{x \to -0} f(x) = \lim_{x \to -0} (x+2) = 2, \quad \lim_{x \to +0} f(x) = \lim_{x \to +0} (-x+2) = 2,$$

Односторонние пределы функции конечны, равны между собой и равны значению функции в точке. Следовательно, в точке выполняются все условия непрерывности: функция определена в окрестности точки x=0 и

$$\lim_{x \to -0} f(x) = \lim_{x \to +0} f(x) = f(0).$$

Поэтому в точке x=0 функция y=|x|+2 непрерывна. График функции на рис.4.2.2.



Puc. 4.2.2.

Задача 4. Сравните бесконечно малые $\alpha(x)$ и $\beta(x)$ при $x \to 0$, если $\alpha(x) = \ln(\sqrt[4]{1 - \cos(\sqrt{x})} + 1)$ и $\beta(x) = e^{\sqrt{x}} - 1$.

Решение: Для сравнения двух бесконечно малых при $x \to x_0$ используем следующее определение:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \begin{cases} 0 & -a(x) \text{ б.м. более высокогопорядка, чем } b(x), \\ \infty & -a(x) \text{ б.м. низшего порядка относительно } b(x), \\ C, C \neq 0, \text{const } -a(x) \text{ u } b(x) \text{ б.м. одного порядка.} \end{cases}$$

Находим предел отношения $\alpha(x)$ к $\beta(x)$ при $x \to 0$, используя таблицу эквивалентных бесконечно малых (таблица 1 в примере 2.и.):

$$\lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to 0} \frac{\ln(\sqrt[4]{1 - \cos(\sqrt{x})} + 1)}{e^{\sqrt{x}} - 1} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{\sqrt[4]{1 - \cos(\sqrt{x})}}{\sqrt{x}} = \lim_{x \to 0} \frac{\sqrt[4]{\frac{x}{2}}}{\sqrt{x}} = \lim_{x \to 0} \frac{1}{\sqrt[4]{2x}} = +\infty.$$

Следовательно, $\alpha(x)=\ln(\sqrt[4]{1-\cos(\sqrt{x})}+1)$ бесконечно малая более низкого порядка, чем $m{\beta}(x)=e^{\sqrt{x}}-1$ при x o 0 .

Задача 5. Определите порядок малости относительно x функции

$$y = \left(e^{x^2} - \cos x\right) \text{при } x \to 0.$$

Решение: Бесконечно малая $\alpha(x)$ называется бесконечно малой порядка k относительно бесконечно малой $\beta(x)$, если

$$\lim_{x \to x_0} \frac{\alpha(x)}{\left[\beta(x)\right]^k} = c , \text{ где } c = \text{const} \neq 0.$$

Находим предел отношения функции $y = \left(e^{x^2} - \cos x\right)$ к функции x^k при $x \to 0$:

$$\lim_{x\to 0} \frac{\left(e^{x^2} - \cos x\right)}{x^k} = \left(\frac{0}{0}\right) = \lim_{x\to 0} \frac{e^{x^2} - 1 + 1 - \cos x}{x^k} = \lim_{x\to 0} \frac{x^2 + \frac{x^2}{2}}{x^k} = \lim_{x\to 0} \frac{3x^2}{2x^k} = \frac{3}{2}, \text{ при } k = 2.$$

Следовательно, порядок малости относительно x функции $y = \left(e^{x^2} - \cos x\right)$

при $x \to 0$ равен 2.

Решение типового варианта и образец оформления индивидуального задания №2

Задача 1. Исходя из определения производной, найти $f'(x_0)$ для функций:

1.1.
$$f(x) = 1 - x + (x + 2)^2$$
, $x_0 = 3$; 1.2. $f(x) = \begin{cases} 1 + e^{\frac{-1}{|x - 2|}}, & x \neq 2; x_0 = 2. \\ 1, & x = 2, \end{cases}$

Решение 1.1. $f(x) = 1 - x + (x+2)^2$, в точке $x_0 = 3$.

По определению производной:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x},$$

где $\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0)$. Найдем $f(x_0 + \Delta x)$ для заданной функции. В f(x) вместо x подставим $x_0 + \Delta x$:

$$f(x_0 + \Delta x) = 1 - [x_0 + \Delta x] + ([x_0 + \Delta x] + 2)^2 \Rightarrow$$
$$f(3 + \Delta x) = 1 - [3 + \Delta x] + ([3 + \Delta x] + 2)^2.$$

Найдем $\Delta f(3)$ для заданной функции:

$$\Delta f(3) = f(3 + \Delta x) - f(3) = 1 - [3 + \Delta x] + ([3 + \Delta x] + 2)^2 - [1 - 3 + (3 + 2)^2] = 0$$

$$= 1 - 3 - \Delta x + 25 + 10\Delta x + \Delta x^{2} - 23 = 9\Delta x + \Delta x^{2}.$$

Подставим полученное приращение функции в точке x_0 = 3 в определение производной:

$$f'(3) = \lim_{\Delta x \to 0} \frac{\Delta f(3)}{\Delta x} = \lim_{\Delta x \to 0} \frac{9\Delta x + \Delta x^2}{\Delta x} = \lim_{\Delta x \to 0} (9 + \Delta x) = 9.$$

Таким образом, f'(3) = 9.

Решение 1.2.
$$f(x) = \begin{cases} 1 + e^{\frac{-1}{|x-2|}}, & x \neq 2; \\ 1, & x = 2, \end{cases}$$

По определению производной

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}$$
.

Однако, данная функция кусочно-аналитическая. Поэтому, производная будет существовать в точке x_0 , если

$$f'_{-}(x_0) = f'_{+}(x_0) = f'(x_0).$$

По определению односторонних производных:

$$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{\Delta f(x_0)}{\Delta x}, \qquad f'_{+}(x_0) = \lim_{\Delta x \to 0^{+}} \frac{\Delta f(x_0)}{\Delta x}.$$

Найдем односторонние производные, учитывая, что $f(x_0) = f(2) = 1$:

$$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{(1 + e^{\frac{-1}{|2 + \Delta x - 2|}}) - 1}{\Delta x} =$$

$$= \lim_{\Delta x \to 0^{-}} \frac{e^{\frac{-1}{|\Delta x|}}}{\Delta x} = \left| \frac{0}{0} \right| = \lim_{\Delta x \to 0^{-}} \frac{e^{\frac{1}{\Delta x}}}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{\frac{1}{\Delta x}}{e^{-\frac{1}{\Delta x}}} = \left| \frac{\infty}{\infty} \right| =$$

по правилу Лопиталя

$$\lim_{\Delta x \to 0^{-}} \frac{-\frac{1}{\Delta x^{2}}}{\frac{1}{\Delta x^{2}} \cdot e^{-\frac{1}{\Delta x}}} = \lim_{\Delta x \to 0^{-}} \frac{-1}{e^{-\frac{1}{\Delta x}}} = 0.$$

Аналогичный результат получим для правосторонней производной:

$$f'_{+}(x_{0}) = \lim_{\Delta x \to 0^{+}} \frac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{|\Delta x|}}}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \left| \frac{0}{0} \right| = \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \left| \frac{0}{0} \right| = \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \left| \frac{0}{0} \right| = \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2} \lim_{\Delta x \to 0^{+}} \frac{e^{\frac{-1}{\Delta x}}}{\Delta x} = \frac{1}{2$$

$$\lim_{\Delta x \to 0^{+}} \frac{\frac{1}{\Delta x}}{e^{\frac{1}{\Delta x}}} = \left| \frac{\infty}{\infty} \right| = \lim_{\Delta x \to 0^{+}} \frac{-\frac{1}{\Delta x^{2}}}{-\frac{1}{\Delta x^{2}} \cdot e^{\frac{1}{\Delta x}}} = \lim_{\Delta x \to 0^{+}} \frac{1}{e^{\frac{1}{\Delta x}}} = 0.$$

Таким образом, односторонние производные в точке x_0 = 2 равны, следовательно, производная функции в точке x_0 = 2 существует и равна нулю f'(2) = 0.

Замечание. Для функций, у которых производная в точке x_0 приводит к неопределенности $0 \times \infty$, производная ищется по определению.

Задача 2. Найти производную функций:

2.1.
$$y = 2 + 2x^{2} + \ln(x - 3);$$
 2.2. $y = 3^{x} - \log_{3} x + x^{3};$
2.3. $y = (1 - 4x)^{4} \cdot 3^{\sqrt[5]{(1 + 2x)^{2}}};$ 2.4. $y = \frac{3x^{4} - 2x^{3} + 10x - 12}{1 - x^{2}};$
2.5. $y = \sqrt[3]{1 - x - 3\sqrt{x}} - \frac{1}{\sqrt{3 - 3x^{2} + x^{4}}};$ 2.6. $y = \sin^{3}(2 - x + x^{2});$
2.7. $y = \ln(5^{x} - \sqrt{x^{2} + \sqrt{2x + \sqrt{x}}});$ 2.8. $y = arcctg\left(tg4x + \frac{1}{\sqrt{\cos x}}\right).$

Решение 2.1.
$$y = 2 + 2x^2 + \ln(x-3)$$
.

Воспользуемся правилом дифференцирования суммы и таблицей производных:

$$(u+v)' = u' + v'$$
.

Тогда

$$y' = \left(2 + 2x^2 + \ln(x - 3)\right)' = 2' + \left(2x^2\right)' + \left(\ln(x - 3)\right)' = 0 + 4x + \frac{1}{x - 3}$$

Решение 2.2.
$$y = 3^x - \log_3 x + x^3$$
.

Воспользуемся правилом дифференцирования суммы и таблицей производных:

$$y' = (3^x)' - (\log_3 x)' + (x^3)' = 3^x \ln 3 - \frac{1}{x \ln 3} + 3x^2$$
.

Решение 2.3.
$$y = (1-4x)^4 \cdot 3^{\sqrt[5]{(1+2x)^2}}$$

Воспользуемся правилом дифференцирования произведения

$$(u \cdot v)' = u'v + uv'$$
.

и правилом дифференцирования сложной функции

$$(y(u))' = y'_u \cdot u'_x.$$

Тогда

$$y' = \left((1 - 4x)^4 \right)' \cdot 3^{\sqrt[5]{(1 + 2x)^2}} + (1 - 4x)^4 \cdot \left(3^{\sqrt[5]{(1 + 2x)^2}} \right)' =$$

$$= 4(1 - 4x)^3 \left(1 - 4x \right)' \cdot 3^{\sqrt[5]{(1 + 2x)^2}} + (1 - 4x)^4 \cdot 3^{\sqrt[5]{(1 + 2x)^2}} \left(\sqrt[5]{(1 + 2x)^2} \right)' =$$

$$= 4(1 - 4x)^3 \left(-4 \right) \cdot 3^{\sqrt[5]{(1 + 2x)^2}} + (1 - 4x)^4 \cdot 3^{\sqrt[5]{(1 + 2x)^2}} \cdot \frac{2}{5} (1 + 2x)^{-\frac{3}{5}} \cdot 2$$
Решение 2.4. $y = \frac{3x^4 - 2x^3 + 10x - 12}{1 - x^2}$;

Воспользуемся правилом дифференцирования частного

$$\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}.$$

$$y' = \frac{(3x^4 - 2x^3 + 10x - 12)' \cdot (1 - x^2) - (3x^4 - 2x^3 + 10x - 12) \cdot (1 - x^2)'}{(1 - x^2)^2} =$$

$$= \frac{(12x^3 - 6x^2 + 10) \cdot (1 - x^2) - (3x^4 - 2x^3 + 10x - 12) \cdot (-2x)}{(1 - x^2)^2}.$$
Решение 2.5. $y = \sqrt[3]{1 - x - 3\sqrt{x}} - \frac{1}{\sqrt{3 - 3x^2 + x^4}}.$

Перепишем заданную функцию в более удобном для дифференцирования виде:

$$y = (1 - x - 3\sqrt{x})^{\frac{1}{3}} - (3 - 3x^2 + x^4)^{-\frac{1}{2}}$$

Найдем производную как от степенной функции:

$$y' = \frac{1}{3}(1 - x - 3\sqrt{x})^{-\frac{2}{3}} \cdot (1 - x - 3\sqrt{x})' + \frac{1}{2}(3 - 3x^2 + x^4)^{-\frac{3}{2}} \cdot (3 - 3x^2 + x^4)' =$$

$$= \frac{1}{3}(1 - x - 3\sqrt{x})^{-\frac{2}{3}} \cdot (-1 - \frac{3}{2\sqrt{x}}) + \frac{1}{2}(3 - 3x^2 + x^4)^{-\frac{3}{2}} \cdot (-6x + 4x^3)$$

27

Решение 2.6.
$$y = \sin^3(2 - x + x^2)$$
.

Перепишем заданную функцию в более удобном для дифференцирования виде:

$$y = \left(\sin(2 - x + x^2)\right)^3.$$

Продифференцируем сложную функцию сначала как степенную $y=u^3$, затем как тригонометрическую $u=\sin v$, затем как сумму элементарных функций $v=2-x+x^2$.

$$y' = 3\left(\sin(2-x+x^2)\right)^2 \cdot \left(\sin(2-x+x^2)\right)' =$$

$$= 3\left(\sin(2-x+x^2)\right)^2 \cdot \cos(2-x+x^2) \cdot (2-x+x^2)' =$$

$$= 3\left(\sin(2-x+x^2)\right)^2 \cdot \cos(2-x+x^2) \cdot (-1+2x)$$

Решение 2.7. $y = \ln(5^x - \sqrt{x^2 + \sqrt{2x + \sqrt{x}}})$.

Найдем производную сложной функции:

$$y' = \frac{1}{5^x - \sqrt{x^2 + \sqrt{2x + \sqrt{x}}}} (5^x - \sqrt{x^2 + \sqrt{2x + \sqrt{x}}})' =$$

$$= \frac{1}{5^x - \sqrt{x^2 + \sqrt{2x + \sqrt{x}}}} \left(5^x \ln 5 - \frac{1}{2\sqrt{x^2 + \sqrt{2x + \sqrt{x}}}} \cdot (x^2 + \sqrt{2x + \sqrt{x}})' \right) =$$

$$= \frac{1}{5^x - \sqrt{x^2 + \sqrt{2x + \sqrt{x}}}} \left(5^x \ln 5 - \frac{1}{2\sqrt{x^2 + \sqrt{2x + \sqrt{x}}}} \cdot (2x + \frac{1}{2\sqrt{2x + \sqrt{x}}} (2x + \sqrt{x})' \right) =$$

$$= \frac{1}{5^x - \sqrt{x^2 + \sqrt{2x + \sqrt{x}}}} \left(5^x \ln 5 - \frac{1}{2\sqrt{x^2 + \sqrt{2x + \sqrt{x}}}} \cdot (2x + \frac{1}{2\sqrt{2x + \sqrt{x}}} (2 + \frac{1}{2\sqrt{x}}) \right) +$$

$$Permenne 2.8. \ y = arcctg \left(tg4x + \frac{1}{\sqrt{\cos x}} \right).$$

Перепишем заданную функцию в более удобном для дифференцирования виде:

$$y = arcctg \left(tg4x + (\cos x)^{-\frac{1}{2}} \right).$$

Найдем производную сложной функции:

$$y' = \frac{1}{1 + \left(tg4x + (\cos x)^{-\frac{1}{2}}\right)^2} \left(tg4x + (\cos x)^{-\frac{1}{2}}\right) =$$

$$= \frac{1}{1 + \left(tg4x + \frac{1}{\sqrt{\cos x}}\right)^2} \left(\frac{4}{\cos^2 4x} - \frac{1}{2}(\cos x)^{-\frac{3}{2}} \cdot (-\sin x)\right).$$

Замечание. В заданиях на нахождение производной нет необходимости упрощать полученные выражения. Однако, при вычислении производных высших порядков или в задачах на приложение производной упрощение выражений обязательно.

Задача 3. Найти производную показательно- степенной функции $y = (\cos \sqrt{1-x})^{x^2}$.

Решение. Можно воспользоваться правилом: производная показательностепенной функции равна сумме производных от неё как от показательной и как от степенной функции.

$$y' = (\cos\sqrt{1-x})^{x^2} (\ln(\cos\sqrt{1-x})) 2x + x^2 (\cos\sqrt{1-x})^{x^2-1} (-\sin\sqrt{1-x}) \frac{-1}{2\sqrt{1-x}}$$

Но можно выполнить тождественное преобразование над данной функцией:

$$y = (\cos \sqrt{1-x})^{x^2} = e^{\ln(\cos \sqrt{1-x})^{x^2}} = e^{x^2 \cdot \ln(\cos \sqrt{1-x})}$$

Получили показательную функцию с показателем в виде произведения двух сложных функций.

$$y' = e^{x^2 \cdot \ln(\cos \sqrt{1-x})} \cdot (x^2 \cdot \ln(\cos \sqrt{1-x}))' =$$

$$= e^{x^2 \cdot \ln(\cos \sqrt{1-x})} \cdot ((x^2)' \cdot \ln(\cos \sqrt{1-x}) + x^2 \cdot (\ln(\cos \sqrt{1-x}))') =$$

$$= e^{x^2 \cdot \ln(\cos \sqrt{1-x})} \cdot \left(2x \cdot \ln(\cos \sqrt{1-x}) + x^2 \cdot \frac{1}{\cos \sqrt{1-x}} (\cos \sqrt{1-x})'\right) =$$

$$= e^{x^2 \cdot \ln(\cos \sqrt{1-x})} \cdot \left(2x \cdot \ln(\cos \sqrt{1-x}) + x^2 \cdot \frac{-\sin \sqrt{1-x}}{\cos \sqrt{1-x}} \cdot \frac{-1}{2\sqrt{1-x}}\right).$$

Заметим, что первый множитель – это исходная функция. Поэтому окончательный результат можно записать как

$$y' = (\cos\sqrt{1-x})^{x^2} \cdot \left(2x \cdot \ln(\cos\sqrt{1-x}) + x^2 \cdot \frac{-\sin\sqrt{1-x}}{\cos\sqrt{1-x}} \cdot \frac{-1}{2\sqrt{1-x}}\right)$$

Задача 4. Найти производную неявно заданной функции y=y(x): $\sin(x\cdot y)=\ln(x+y)$.

Решение. Продифференцируем левую и правую части равенства по x:

$$(\sin(x \cdot y))' = (\ln(x+y))' \Rightarrow$$

$$\cos(xy) \cdot (x \cdot y)' = \frac{1}{x+y} (x+y)' \Rightarrow$$

$$\cos(xy) \cdot (x'y+xy') = \frac{1}{x+y} (x'+y').$$

Учитывая, что x – свободная переменная, а y(x) – функция, запишем:

$$\cos(xy) \cdot (y + xy') = \frac{1}{x + y} (1 + y').$$

Раскроем скобки и выразим y':

$$y\cos(xy) + xy'\cos(xy) = \frac{1}{x+y} + y' \cdot \frac{1}{x+y} \Rightarrow$$

$$y'\left(x\cos(xy) - \frac{1}{x+y}\right) = \frac{1}{x+y} - y\cos(xy) \Rightarrow$$

$$y' = \frac{\frac{1}{x+y} - y\cos(xy)}{x\cos(xy) - \frac{1}{x+y}}.$$

Задача 5. Найти производную параметрически заданной функции:

$$\begin{cases} x = \sin^3 2t, \\ y = t - \cos^3 2t. \end{cases}$$

Решение. Воспользуемся формулой для производной параметрически

заданной функции
$$\begin{cases} x = x(t), \\ y = y(t): \end{cases}$$
 $y_x' = \frac{y_t'}{x_t'}.$

Найдем производные y'_t и x'_t :

$$y'_t = 1 - 3\cos^2 2t \cdot (-\sin 2t) \cdot 2 = 1 + 6\cos^2 2t \cdot \sin 2t$$
,
 $x'_t = 3\sin^2 2t \cdot \cos 2t \cdot 2 = 6\sin^2 2t \cdot \cos 2t$.

Подставим найденные производные по параметру t в формулу y_x' :

$$y_x' = \frac{1 + 6\cos^2 2t \cdot \sin 2t}{6\sin^2 2t \cdot \cos 2t}.$$

Задача 6. Найти угловой коэффициент касательной к кривой y=y(x) в точке x_0 и составить уравнение касательной и нормали в точке $M_0(x_0;y_0)$:

6.1.
$$y = arcctg \frac{\sqrt{3}}{x}$$
, $x_0 = -1$; 6.2.
$$\begin{cases} x = 2t^3 + 1, \\ y = t^4, \end{cases} M_0(-15; 16).$$

Решение. 6.1.
$$y = arcctg \frac{\sqrt{3}}{x}$$
, $x_0 = -1$.

Угловой коэффициент k касательной к кривой y=y(x) в точке x_0 – это производная функции y=y(x) в точке x_0 . Тогда

$$k = y' = \frac{1}{1 + \left(\frac{\sqrt{3}}{x}\right)^2} \cdot \left(\frac{\sqrt{3}}{x}\right)' = \frac{1}{1 + \frac{3}{x^2}} \cdot \frac{-\sqrt{3}}{x^2} = \frac{-\sqrt{3}}{x^2 + 3}.$$

Найдем y ′в точке x_0 = −1:

$$k = y'(-1) = \frac{-\sqrt{3}}{(-1)^2 + 3} = \frac{-\sqrt{3}}{4}$$
.

Уравнение касательной и нормали к кривой y=y(x) в точке x_0 имеют вид:

$$y - y(x_0) = y'(x_0)(x - x_0)$$
 $y - y(x_0) = \frac{-1}{y'(x_0)}(x - x_0)$

соответственно.

Найдем $y(x_0)$:

$$y(-1) = arcctg \frac{\sqrt{3}}{-1} = -\frac{\pi}{3} + \pi n$$
.

Выберем значение функции y(-1) для n=0 (для определенности) и запишем уравнение касательной

$$y + \frac{\pi}{3} = \frac{-\sqrt{3}}{4}(x+1)$$

и нормали

$$y + \frac{\pi}{3} = \frac{4}{\sqrt{3}}(x+1)$$
.

Решение. 6.1.
$$\begin{cases} x = 2t^3 + 1, \\ y = t^4, \end{cases} M_0(-15; 16).$$

Угловой коэффициент k касательной к кривой y=y(x) в точке x_0 – это производная функции y=y(x) в точке x_0 . Тогда

$$k = y'_x = \frac{y'_t}{x'_t} = \frac{4t^3}{6t^2} = \frac{2}{3}t$$
.

Чтобы найти y 'в точке x_0 , нужно вычислить точку t_0 . Подставим $x_0 = -15$ в функцию $x = 2t^3 + 1$:

$$-15 = 2t^3 + 1 \Rightarrow t_0 = -2.$$

Проверим, удовлетворяет ли найденная t_0 функции $y = t^4$ при y_0 =16:

$$16 \equiv (-2)^4$$
.

Получили истинное высказывание, значит t_0 найдена правильно. Найдем у 'в точке

$$k = y_x'(-2) = \frac{2}{3} \cdot (-2) = -\frac{4}{3}$$

запишем уравнение касательной

$$y - 16 = \frac{-4}{3}(x + 15)$$

и нормали

$$y-16=\frac{3}{4}(x+15)$$
.

Задача 7. Найти производную второго порядка $\frac{d^2y}{dx^2}$ для функций:

7.1.
$$y = (x-1) \cdot e^{x^3}$$
; $7.2. \begin{cases} x = 2t^3 + 1, \\ y = t^4, \end{cases}$

Решение. 7.1.
$$y = (x-1) \cdot e^{x^3}$$
.

По определению производной второго порядка y'' = (y')'.

$$y'' = (y')'.$$

Найдем производную первого порядка:

$$y' = (x-1)' \cdot e^{x^3} + (x-1)(e^{x^3})' = e^{x^3} + (x-1) \cdot 3x^2 \cdot e^{x^3}$$

Для вычисления второй производной упростим выражение y':

$$y' = (1+3x^3-3x^2) \cdot e^{x^3}$$
.

$$y'' = (1+3x^3 - 3x^2)' \cdot e^{x^3} + (1+3x^3 - 3x^2) \cdot (e^{x^3})' = 0$$

$$= (9x^2 - 6x) \cdot e^{x^3} + (1+3x^3 - 3x^2) \cdot 3x^2 \cdot e^{x^3} = 0$$

$$= (9x^5 - 9x^4 + 12x^2 - 6x) \cdot e^{x^3}.$$

Задача 8. Найти дифференциал функции $y = \frac{1}{\sqrt{4x+1}}$ и вычислить

приближенно с помощью дифференциала значение функции y(3.8).

Решение. По определению дифференциала функции первого порядка dv = v' dx.

Тогда

$$dy = \left(\frac{1}{\sqrt{4x+1}}\right)' dx = \frac{-4}{2\sqrt{(4x+1)^3}} dx = \frac{-2}{\sqrt{(4x+1)^3}} dx.$$

При достаточно малых приращениях свободной переменной x дифференциал функции можно считать приближенно равным приращению функции, т.е. $\Delta y \approx dy$. Тогда,

$$\Delta y = y(x) - y(x_0) \approx y'(x_0) dx \Rightarrow y(x) \approx y(x_0) + y'(x_0) dx.$$

Выберем в качестве x_0 число, достаточно близкое к числу x=3.8, но при котором

 $y(x_0)$ и $y'(x_0)$ легко вычисляются. Таким числом является $x_0=3.75$. Тогда

$$dx = x - x_0 = 3.8 - 3.75 = 0.05$$
.

Подставим числовые значения в приближенную формулу:

$$y(3.8) \approx y(3.75) + y'(3.75)dx \Rightarrow$$

$$y(3.8) \approx \frac{1}{\sqrt{4 \cdot 3.75 + 1}} - \frac{2}{\sqrt{(4 \cdot 3.75 + 1)^3}} \cdot 0.05 = \frac{1}{\sqrt{16}} - \frac{2}{\sqrt{(16)^3}} \cdot 0.05$$

$$y(3.8) \approx \frac{1}{4} - \frac{0.1}{4^3} = \frac{159}{640}$$
.

Задача 9. Найти дифференциал второго порядка функции $y = \frac{\sqrt{x+1}}{x-1}$ в

точке $x_0 = 3$.

Решение. По определению дифференциал второго порядка равен:

$$d^2y = y''dx^2$$

Найдем первую и вторую производные:

$$y' = \frac{(\sqrt{x+1})'(x-1) - (x-1)'\sqrt{x+1}}{(x-1)^2} = \frac{\frac{(x-1)}{2\sqrt{x+1}} - \sqrt{x+1}}{(x-1)^2} = \frac{\frac{(x-1) - 2(x+1)}{2\sqrt{x+1} \cdot (x-1)^2}}{2\sqrt{x+1} \cdot (x-1)^2} = \frac{-x-3}{2\sqrt{x+1} \cdot (x-1)^2}$$
$$y'' = \frac{(-x-3)' \cdot \sqrt{x+1} \cdot (x-1)^2 - (-x-3) \cdot (\sqrt{x+1} \cdot (x-1)^2)'}{2(\sqrt{x+1} \cdot (x-1)^2)^2} = \frac{-x-3}{2\sqrt{x+1} \cdot (x-1)^2}$$

$$= \frac{-\sqrt{x+1} \cdot (x-1)^2 + (x+3) \cdot \left(\frac{(x-1)^2}{2\sqrt{x+1}} + 2(x-1)\sqrt{x+1}\right)}{2(x+1)(x-1)^4} =$$

$$= \frac{-\sqrt{x+1} \cdot (x-1) + (x+3) \cdot \left(\frac{(x-1) + 2\sqrt{x+1} \cdot 2\sqrt{x+1}}{2\sqrt{x+1}}\right)}{2(x+1) \cdot (x-1)^3} =$$

$$= \frac{\sqrt{x+1} \cdot (1-x) \cdot 2\sqrt{x+1} + (x+3) \cdot (5x+3)}{2(x+1) \cdot 2\sqrt{x+1} \cdot (x-1)^3} = \frac{2(1-x)(x+1) + (5x^2 + 18x + 9)}{4(x+1)^{3/2} \cdot (x-1)^3} =$$

$$= \frac{3x^2 + 18x + 11}{4(x+1)^{3/2} \cdot (x-1)^3}$$

Найдем вторую производную функции в точке $x_0 = 3$:

$$y''(3) = \frac{3 \cdot (3)^2 + 18 \cdot 3 + 11}{4(3+1)^{3/2} \cdot (3-1)^3} = \frac{92}{4 \cdot 8^2} = \frac{23}{64}$$

Подставляя в формулу для второго дифференциала в точке

$$d^2y(x_0) = y''(x_0)dx^2$$

получим:

$$d^2y(3) = \frac{23}{64}dx^2.$$

Решение типового варианта и образец оформления индивидуального задания №3

Задача 1. Вычислить указанные пределы, используя правило Лопиталя:

a)
$$\lim_{x\to 0} \frac{e^{4x} - 4x - 1}{x^2}$$
; 6) $\lim_{x\to \infty} (\ln x)^{\frac{2}{x-1}}$;

$$\text{s) } \lim_{x \to 0} \left[\frac{1}{2x^2} - \frac{1}{2xtgx} \right].$$

Решение 1 *a*)
$$\lim_{x\to 0} \frac{e^{4x} - 4x - 1}{x^2}$$
.

По теореме Лопиталя если $f(x) \rightarrow 0$ и $g(x) \rightarrow 0$ при $x \rightarrow x_0$ и существует предел

отношения производных этих функций $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = const$ то

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Аналогично правило Лопиталя формулируется для функций, стремящихся к бесконечности $f(x) \to \infty$ и $g(x) \to \infty$ при $x \to x_0$.

Т.е. правило Лопиталя применимо к неопределенностям вида $\frac{0}{0}$ и $\frac{\infty}{\infty}$.

Поэтому, начнем решение с установления неопределенности.

$$\lim_{x \to 0} \frac{e^{4x} - 4x - 1}{x^2} = \left| \frac{0}{0} \right| = \lim_{x \to 0} \frac{(e^{4x} - 4x - 1)'}{(x^2)'} = \lim_{x \to 0} \frac{4e^{2x} - 4}{2x} = \left| \frac{0}{0} \right| =$$

применим правило Лопиталя еще раз:

$$= \lim_{x \to 0} \frac{(4e^{2x} - 4)'}{(2x)'} = \lim_{x \to 0} \frac{8e^{2x}}{2} = 4.$$

Решение 1 б)
$$\lim_{x\to\infty} (\ln x)^{\frac{2}{x-1}}$$
.

Установим вид неопределенности. Для этого подставим в функцию значение переменной x, к которому она стремится:

$$\lim_{x \to \infty} \left(\ln x \right)^{\frac{2}{x-1}} = \left| \infty^0 \right|.$$

Для такого вида неопределенности правило Лопиталя неприменимо. Воспользуемся определением логарифма: $a = e^{\ln a}$ и запишем

$$(\ln x)^{\frac{2}{x-1}} = e^{\ln(\ln x)^{\frac{2}{x-1}}}$$

По свойству логарифма $\ln x^b = b \ln x$, тогда

$$e^{\ln(\ln x)^{\frac{2}{x-1}}} = e^{\frac{2}{x-1}\cdot\ln(\ln x)} = e^{\frac{2\ln(\ln x)}{x-1}}$$

Применим выполненное преобразование для вычисления предела
$$\lim_{x\to\infty} \left(\ln x\right)^{\frac{2}{x-1}} = \lim_{x\to\infty} e^{\ln\left(\ln x\right)^{\frac{2}{x-1}}} = \lim_{x\to\infty} e^{\frac{2\ln\left(\ln x\right)}{x-1}} = e^{\frac{2\ln\left(\ln x\right)}{x-1}}.$$

Последнее равенство можно применить в силу непрерывности показательной функции.

$$e^{\lim_{x \to \infty} \frac{2\ln(\ln x)}{x-1}} = e^{\left|\frac{\infty}{\infty}\right|}$$

Теперь можно применить правило Лопиталя

$$\lim_{e^{x \to \infty}} \frac{2\ln(\ln x)}{x-1} = \lim_{e^{x \to \infty}} \frac{(2\ln(\ln x))'}{(x-1)'} = \lim_{e^{x \to \infty}} \frac{2 \cdot \frac{1}{\ln x} \cdot \frac{1}{x}}{1} = \lim_{e^{x \to \infty}} \frac{2}{x \ln x} = \frac{2}{e^{x}} = e^{0} = 1$$

Решение 1 в)
$$\lim_{x\to 0} \left[\frac{1}{2x^2} - \frac{1}{2xtgx} \right]$$
.

Установим неопределенности

$$\lim_{x \to 0} \left[\frac{1}{2x^2} - \frac{1}{2xtgx} \right] = \left| \infty - \infty \right|.$$

Приведем дроби к общему знаменателю, тем самым преобразуем неопределенность

вида
$$\left|\infty-\infty\right|$$
 к неопределенности $\left|\dfrac{0}{0}\right|$:

$$\lim_{x \to 0} \left[\frac{1}{2x^2} - \frac{1}{2xtgx} \right] = \frac{1}{2} \lim_{x \to 0} \frac{tgx - x}{x^2 tgx} = \left| \frac{0}{0} \right| = \frac{1}{2} \lim_{x \to 0} \frac{\frac{1}{\cos^2 x} - 1}{2xtgx + \frac{x^2}{\cos^2 x}} = \frac{1}{\cos^2 x} = \frac{1}{\cos^$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{1 - \cos^2 x}{2xtgx \cdot \cos^2 x + x^2} = \frac{1}{2} \lim_{x \to 0} \frac{\sin^2 x}{2x\sin x \cdot \cos x + x^2} =$$

$$\frac{1}{2} \lim_{x \to 0} \frac{\sin^2 x}{x(\sin 2x + x)} = \left| \frac{0}{0} \right| = \frac{1}{2} \lim_{x \to 0} \frac{2\sin x \cos x}{(\sin 2x + x) + x(2\cos 2x + 1)} =$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{\sin 2x}{\sin 2x + x + 2x\cos 2x + x} = \left| \frac{0}{0} \right| =$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{2\cos 2x}{2\cos 2x + 1 + 2\cos 2x - 4x\sin 2x + 1} = \frac{1}{2} \cdot \frac{2}{2 + 1 + 2 - 0 + 1} = \frac{1}{4}$$

Задача 2. Записать формулу Тейлора для функции y=f(x) в окрестности точки x_0 :

a)
$$y = e^{3-2x}$$
, $x_0 = 1$;
6) $y = \frac{x - \ln(1 - x^2)}{x}$, $x_0 = 0$.

Решение a) $y = e^{3-2x}$, $x_0 = 1$.

Формула Тейлора в окрестности точки x_0 имеет вид

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n$$

Задача может быть решена двумя способами.

І способ. Найдем значение функции и n ее производных в точке x_0 =1:

$$y(1) = e$$

$$y' = -2e^{3-2x} \Rightarrow y'(1) = -2e,$$

$$y'' = -2(-2)e^{3-2x} \Rightarrow y''(1) = (-2)^{2}e,$$

$$y''' = -2(-2)(-2)e^{3-2x} \Rightarrow y'''(1) = (-2)^{3}e,$$
...
$$y^{(n)} = (-2)^{n}e^{3-2x} \Rightarrow y^{(n)}(1) = (-2)^{n}e.$$

Подставим полученные значения производных в формулу Тейлора и запишем ответ:

$$f(x) = e - \frac{2e}{1!}(x-1) + \frac{4e}{2!}(x-1)^2 + \dots + (-1)\frac{2^n e}{n!}(x-1)^n + R_n$$

II способ. Выделим в показателе функции степень (x-1). Для этого выполним тождественное преобразование (вычтем и прибавим единицу) и запишем функцию как произведение двух множителей:

$$y = e^{3-2x} = e^{3-2(x-1+1)} = e^{3-2([x-1]+1)} = e^{1-2[x-1]} = e^1 \cdot e^{-2[x-1]}$$

Используем для разложения по формуле Тейлора стандартное разложение Маклорена для функции

$$e^{t} = 1 + t + \frac{t^{2}}{2!} + \frac{t^{3}}{3!} + \dots + \frac{t^{n}}{n!} + R_{n}$$

Положим t = -2(x-1) и запишем ответ:

$$y = e \left(1 - \frac{2}{1!} (x - 1) + \frac{4}{2!} (x - 1)^2 + \dots + (-1) \frac{2^n}{n!} (x - 1)^n + R_n \right) \Rightarrow$$

$$y = e - \frac{2e}{1!} (x - 1) + \frac{4e}{2!} (x - 1)^2 + \dots + (-1) \frac{2^n e}{n!} (x - 1)^n + R_n.$$

б)
$$y = \frac{x - \ln(1 - x^2)}{x}$$
, $x_0 = 0$. Так как $x_0 = 0$, то для заданной функции

необходимо записать формулу Маклорена. Используем стандартное разложение Маклорена для функции $\ln(1+t)$,

$$\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} - \dots + (-1)^{n-1} \frac{t^n}{n} + R_n,$$

положив $t = -x^2$. Подставим это разложение в функцию:

$$y = \frac{x - \left(-x^2 - \frac{(-x^2)^2}{2} + \frac{(-x^2)^3}{3} - \dots + (-1)^{n-1} \frac{(-x^2)^n}{n} + R_n\right)}{x} \Rightarrow y = \frac{x - \left(-x^2 - \frac{x^4}{2} + \frac{-x^6}{3} - \dots + (-1)^{n-1} \frac{(-1)^n x^{2n}}{n} + R_n\right)}{x}.$$

Раскроем скобки и разделим каждое слагаемое на знаменатель х:

$$y = 1 + x + \frac{x^3}{2} + \frac{x^5}{3} + \dots + \frac{x^{2n-1}}{n} + R_n$$

Задача 3. Найти экстремумы функций

a)
$$y = (x^2 + x + 2)(x^2 + x - 2)$$
; 6) $y = \frac{e^x}{(x+3)^2}$; 6) $y = x + \sqrt{3-x}$.

Решение
$$a) \ y = (x^2 + x + 2)(x^2 + x - 2)$$
. Область определения D[y]=R.

Согласно достаточному признаку экстремума, точка x_0 является экстремумом, если при переходе через x_0 меняется знак первой производной заданной функции. Найдем производную функции:

$$y' = (x^{2} + x + 2)'(x^{2} + x - 2) + (x^{2} + x + 2)(x^{2} + x - 2)' =$$

$$= (2x + 1)(x^{2} + x - 2) + (x^{2} + x + 2)(2x + 1).$$

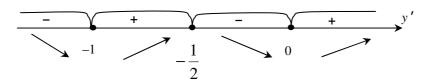
Приравняем производную к нулю, чтобы найти критические точки (необходимый признак экстремума). Для этого разложим выражение производной на множители:

$$y' = (2x+1)(x^2+x-2+x^2+x+2) = (2x+1)(2x^2+2x) = 2x(2x+1)(x+1) = 0$$

Имеем критические точки:

$$x_1 = 0$$
, $x_2 = -\frac{1}{2}$, $x_3 = -1$.

Проверим достаточный признак экстремума. Для этого поместим на числовую ось x_1 , x_2 , x_3 и рассмотрим знак производной слева и справа от каждой из критических точек (рис. 4.2.3):



Получили, что точка x_1 =1 – точка минимума, $x_2 = -\frac{1}{2}$ – точка максимума, x_3 =0 – точка минимума данной функции. Более того, можно сделать вывод о поведении функции: на интервале ($-\infty$;-1) функция убывает, на интервале (-1; $-\frac{1}{2}$) –

возрастает, на интервале ($-\frac{1}{2}$;0) – убывает, на интервале (0;+ ∞) – возрастает.

Решение б)
$$y = \frac{e^x}{(x+3)^2}$$
. Область определения функции – вся числовая ось

кроме x = -3. Согласно достаточному признаку экстремума, точка x_0 является экстремумом, если при переходе через x_0 меняется знак первой производной заданной функции. Найдем производную функции:

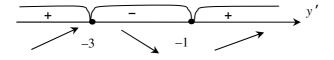
$$y' = \frac{(e^x)'(x+3)^2 - ((x+3)^2)'e^x}{(x+3)^4} = \frac{e^x(x+3)^2 - 2(x+3)e^x}{(x+3)^4} = \frac{e^x(x+3-2)}{(x+3)^3} = \frac{e^x(x+3-2)}{(x+3)^3}.$$

Найдем критические точки. Для этого приравняем производную к нулю и рассмотрим точки, в которых производная не существует:

$$y' = 0 \Rightarrow x_1 = -1$$

 $y' \not\exists \Rightarrow x_2 = -3$

Проверим достаточный признак экстремума. Для этого поместим на числовую ось x_1 , x_2 и рассмотрим знак производной слева и справа от каждой из критических точек (рис. 4.2.4):



Puc. 4.2.4.

Получили, что точка x_1 = -1 – точка минимума, x_2 = -3 – точка максимума данной функции. Более того, можно сделать вывод о поведении функции: на интервале ($-\infty$;-3) функция возрастает, на интервале

(-3;-1) – убывает, на интервале (-1,+∞) – возрастает.

Решение s) $y = x + \sqrt{3} - x$. Область определения функции – полупрямая $x \le 3$. Найдем критические точки:

$$y' = 1 - \frac{1}{2\sqrt{3 - x}} = \frac{2\sqrt{3 - x} - 1}{2\sqrt{3 - x}}.$$

$$y' = 0 \Rightarrow \sqrt{3 - x} = \frac{1}{2} \Rightarrow 3 - x = \frac{1}{4} \Rightarrow x_1 = \frac{11}{4},$$

$$y' \not\exists \Rightarrow x_2 = 3.$$

Проверим достаточный признак экстремума. Для этого поместим на числовую ось x_1 , x_2 и рассмотрим знак производной слева и справа от каждой из критических точек (рис. 4.2.5):

$$\frac{11}{4}$$
 3

Получили, что точка $x_1 = \frac{11}{4}$ — точка максимума, $x_2 = 3$ — не является экстремумом.

Это граница области определения. А по определению локального экстремума точкаэкстремум должна иметь двустороннюю окрестность, в которой функция принимает максимальное или минимальное значение. Можно сделать вывод о поведении

функции: на интервале ($-\infty; \frac{11}{4}$) функция возрастает, на интервале ($\frac{11}{4}; 3$) – убывает.

Задача 4. Найти наибольшее и наименьшее значение функций в указанных интервалах:

a)
$$y = x^4 - 8x^2 + 3$$
, [-2;1];
 $y = \frac{x^3 - 1}{4x^2}$, [-8;-1].

Решение
$$a$$
) $y = x^4 - 8x^2 + 3$, [-2;1].

Найдем производную и приравняем ее к нулю:

$$y' = 4x^3 - 16x = 4x(x^2 - 4) = 4x(x - 2)(x + 2)$$

$$y' = 0 \Rightarrow x_1 = -2, x_2 = 0, x_3 = 2.$$

Однако, $x_3 = 2 \notin [-2;1]$, поэтому, исключаем ее из рассмотрения. Вычислим значения функции в критических точках и на концах интервала:

$$y(0) = 3,$$
 $y(-2) = -13,$ $y(1) = -4.$

y(0) = 3, y(-2) = -13, Выбираем наибольшее и наименьшее значение из полученных:

$$y_{\text{наибольшее}} = 3,$$

 $y_{\text{наименьшее}} = -13.$

Решение б)
$$y = \frac{x^3 - 1}{4x^2}$$
, [-8;-1].

Найдем производную и приравняем ее к нулю:

$$y' = \frac{1}{4} \cdot \frac{3x^2 \cdot x^2 - 2x \cdot (x^3 - 1)}{x^4} = \frac{1}{4} \cdot \frac{3x^2 \cdot x^2 - 2x \cdot x^3 + 2x}{x^4} = \frac{1}{4} \cdot \frac{x^3 + 2}{x^3}$$

$$y' = 0 \implies x_1 = -\sqrt[3]{2}, \ y' \not\exists \Rightarrow x_2 = 0.$$

Однако, $x_2 = 0 \notin [-8;-1]$, поэтому, исключаем ее из рассмотрения. Вычислим значения функции в критических точках и на концах интервала:

$$y(\sqrt[3]{2}) = \frac{1}{4 \cdot \sqrt[3]{4}} \approx 0.158,$$
$$y(-8) = \frac{-3}{4 \cdot 4} \approx -0.188,$$
$$y(-1) = \frac{-2}{4} = -0.5.$$

Выбираем наибольшее и наименьшее значение из полученных:

$$y_{наибольшее} = y(\sqrt[3]{2}) \approx 0.158,$$

 $y_{наименьшее} = y(-1) = -0.5.$

Задача 5. Исследовать и построить графики функций:

Решение *a*)
$$y = \frac{x^3 + 1}{x^2}$$
.

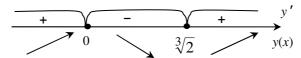
- 1. Область определения функции вся числовая ось, кроме точки x = 0.
- 2. Вертикальные асимптоты: x = 0. Найдем пределы слева и справа:

$$\lim_{x \to 0^{-}} \frac{x^3 + 1}{x^2} = \frac{1}{(-0)^2} = +\infty, \quad \lim_{x \to 0^{+}} \frac{x^3 + 1}{x^2} = \frac{1}{(+0)^2} = +\infty.$$

- 3. Функция не периодическая, общего вида.
- 4. Критические точки:

$$y' = \frac{3x^2 \cdot x^2 - 2x \cdot (x^3 + 1)}{x^4} = \frac{x^4 - 2x}{x^4} = \frac{x^3 - 2}{x^3}.$$
$$y' = 0 \implies x_1 = \sqrt[3]{2}, \ y' \not\exists \Rightarrow x_2 = 0.$$

5. Экстремумы и промежутки возрастания и убывания:



6. Точки, подозрительные на перегиб. Найдем вторую производную и приравняем ее к нулю:

$$y'' = \frac{3x^2 \cdot x^3 - 3x^2(x^3 - 2)}{x^6} = \frac{6x^2}{x^6} = \frac{6}{x^4}.$$
$$y'' = 0 \implies x = \emptyset,$$
$$y' \not\exists \Rightarrow x = 0.$$

 $y' \not\exists \Rightarrow x = 0.$ 7. Точка x_0 является точкой перегиба, если при переходе через x_0 меняется знак второй производной. Для заданной функции вторая производная положительна для любого х из области определения функции. Следовательно, перегибов нет. Согласно достаточному признаку выпуклости и вогнутости функции, если $\,y^{\prime\prime} > 0\,$, то

функция вогнута \cup .

8. Найдем наклонные асимптоты: y = k x + b, где

$$k = \lim_{x \to \pm \infty} \frac{y(x)}{x}; \quad b = \lim_{x \to \pm \infty} [y(x) - kx].$$

$$k = \lim_{x \to \pm \infty} \frac{x^3 + 1}{x^3} = 1.$$

$$b = \lim_{x \to \pm \infty} \left[\frac{x^3 + 1}{x^2} - 1 \cdot x \right] = \lim_{x \to \pm \infty} \frac{x^3 + 1 - x^3}{x^2} = \lim_{x \to \pm \infty} \frac{1}{x^2} = 0.$$

Таким образом, наклонная асимптота — прямая y = x.

9. Нули функции и некоторые вспомогательные точки: y(-1)=0, $y(\sqrt[3]{2})=\frac{3}{3/4}$.

Результаты исследования сводим в таблицу

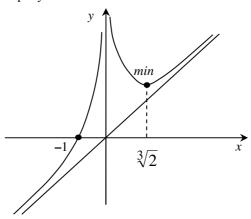
Результаты исследования сводим в таолицу
$$x = (-\infty; -1)$$
 $x = (-1; 0)$ $x = (-1; 0)$ $x = (0; \sqrt[3]{2})$ x

Построение графика начинаем с асимптот: вертикальной x = 0 и наклонной y = x.

Затем ставим вспомогательные точки $y(-1)=0, \ y(\sqrt[3]{2})=\frac{3}{\sqrt[3]{4}}$. Теперь, согласно

данным таблицы, рисуем кривую, возрастающую вогнуто от асимптоты y = x к асимптоте x = 0 через точку

y(-1)=0. Следующая часть графика – кривая убывает вогнуто от асимптоты x=0 до точки min, затем вогнуто возрастает, приближаясь к асимптоте y=x. График функции изображен на рисунке 4.2.6.



Puc. 4.2.6.

Решение *b*)
$$y = x\sqrt{1-x^2}$$
.

- 1. Область определения функции отрезок $-1 \le x \le 1$.
- 2. Вертикальных асимптот нет.
- 3. Функция не периодическая, нечетная (можно исследовать и построить функцию на полуинтервале, а на вторую половину достроить центрально симметрично).
- 4. Критические точки

$$y' = \sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} = \frac{1 - x^2 - x^2}{\sqrt{1 - x^2}} = \frac{1 - 2x^2}{\sqrt{1 - x^2}} = \frac{(1 - \sqrt{2}x)(1 + \sqrt{2}x)}{\sqrt{1 - x^2}}$$

$$y' = 0 \implies x_1 = \frac{1}{\sqrt{2}}, \ x_2 = -\frac{1}{\sqrt{2}}, \ y' \not\exists \Rightarrow x_{3,4} = \pm 1.$$

5. Экстремумы и промежутки возрастания и убывания:

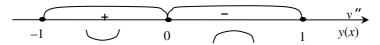
6. Точки, подозрительные на перегиб. Найдем вторую производную и приравняем ее к нулю:

$$y'' = \frac{-4x \cdot \sqrt{1 - x^2} + \frac{x(1 - 2x^2)}{\sqrt{1 - x^2}}}{(\sqrt{1 - x^2})^2} = \frac{-4x \cdot (1 - x^2) + x(1 - 2x^2)}{(1 - x^2)\sqrt{1 - x^2}} = \frac{-3x + 2x^3}{(1 - x^2)^{3/2}} = \frac{x(2x^2 - 3)}{(1 - x^2)^{3/2}} = \frac{x(\sqrt{2}x - \sqrt{3})(\sqrt{2}x + \sqrt{3})}{(1 - x^2)^{3/2}}.$$

$$y'' = 0 \implies x_1 = 0, \ x_2 = \sqrt{\frac{3}{2}}, \ x_3 = -\sqrt{\frac{3}{2}}, \ y' \not\exists \Rightarrow x_{3,4} = \pm 1.$$

Однако, $x_{2,3} = \pm \sqrt{\frac{3}{2}} \notin D[y]$. Поэтому, исключаем их из рассмотрения.

7. Точка x_0 является точкой перегиба, если при переходе через x_0 меняется знак второй производной. Исследуем знак второй производной.



8. Наклонных асимптот нет, т.к. область определения – отрезок. А наклонные асимптоты существуют только при $x \rightarrow \pm \infty$.

9. Нули функции и некоторые вспомогательные точки: $y(\pm 1)=0$, y(0)=0,

$$y(\pm \frac{1}{\sqrt{2}}) = \pm \frac{\sqrt{3}}{2\sqrt{2}}.$$

Результаты исследования сводим в таблицу

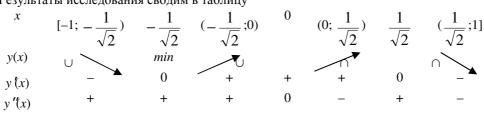
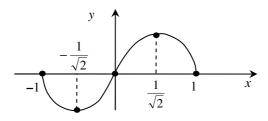


График функции изображен на рисунке 4.2.7.



Puc. 4.2.7.

Задача 6. Построить эскиз графика по известным результатам аналитического исследования:

 $X \in (-\infty;1) \cup (1;\infty)$.

-2:0:2:4.

- 1) Область определения:
- 2) Вертикальные асимптоты: x = 1
- 3) Горизонтальные асимптоты:

$$y = 1 \ (x \rightarrow -\infty), y = -2 \ (x \rightarrow +\infty)$$

- 4) Наклонные асимптоты:
- 5) Стационарные точки:
- 6) Точки, где $(y' = \infty)$:
- 7) Интервалы монотонности:

$$a$$
) возрастания: $(-2;-1),(1;2),(4;\infty);$

 δ) убывания:

$$(-\infty;-2),(-1;1),(2;4)$$
.

8) Интервалы выпуклости и вогнутости:

а) выпуклости:

$$(-\infty; -\frac{5}{2}), (0;1), (1;3), (5;\infty);$$
 б) вогнутости:

$$(-\frac{5}{2};-1),(-1;0),(3;5).$$

9) Значение функции в некоторых точках: $y(-\frac{5}{2}) = \frac{3}{4}$, $y(-2) = \frac{1}{2}$, y(-1)=4, y(0)=1, y(2)=-1, y(3)=-2, y(4)=-3.5, y(5)=-2.5.

Решение. Результаты аналитического исследования функции изобразим схематически:

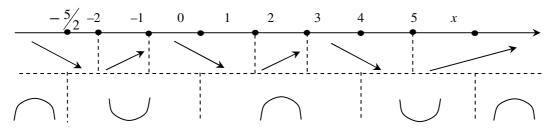


Рис. 4.2.8. Промежутки возрастания и убывания; выпуклости и вогнутости

Построение графика начинаем с асимптот. Затем строим заданные в пункте 9 некоторые точки. График функции изображен на рисунке 4.2.9.

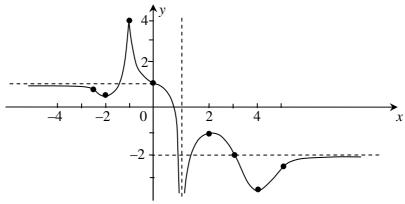


Рис. 4.2.9.