ГЛАВА 4

АЛГЕБРАИЧЕСКИЕ СТРУКТУРЫ НА МНОЖЕСТВАХ

Групповые по Бурбаки структуры на множествах чаще называют алгебраическими структурами (см., например, [43]), хотя понятие *груп- па* является более широким в сравнении с понятием *алгебра*.

4.1. Внешние и внутренние законы композиции на множествах

Законом композиции или операций на множествах называют отображение произведений множеств в одно из множеств.

Так, сложение векторов \bar{x} и \bar{y} из множества A векторов трёхмерного пространства есть бинарная операция φ : $A \times A \to A$ ($\bar{x} + \bar{y} = \bar{z}$ - сложение по "правилу треугольника"), умножение вектора \bar{x} на число α также является бинарной операцией ψ : $A \times \mathbf{R} \to A$, заданной формулой $\psi(\bar{x},\alpha) = \alpha \times \bar{x}$. В первом случае бинарная операция называется внутренней, во втором случае говорят о внешнем законе композиции.

Свойства операций определяются аксиомами. Так, аксиомы унарной операции \neg отрицание и бинарных отношений &,V, \Rightarrow и \Leftrightarrow (см. Глава 2, п. 2) записаны в форме истинностных таблиц. Внешний закон композиции всегда называют умножением, мы будем обозначать его символом \oplus , внутренние законы композиции называют и сложением, и умножением и обозначают символами \oplus и \otimes , соответственно. Чем больше операций задано на множествах, тем богаче соответствующая этим операциям структура. Перечислим свойства и согласованность операций (см. Глава 2, п. 2).

- 1. Ассоциативность: $(a \otimes b) \otimes c = a \otimes (b \otimes c)$.
- 2. Коммутативность: $a \oplus b = b \oplus a$.
- 3. Антикоммутативность: $a \otimes b = -b \otimes a$.
- 4. Дистрибутивность: $\alpha \oplus (b \oplus c) = (\alpha \oplus b) \oplus (\alpha \oplus c)$.
- 5. Существование *нейтрального* относительно операции ϕ *элемента* e: $e \oplus a = a \ (0 + a = a), \ e \otimes b = b \ (1 \times b = b) \ e \oplus c = c \ (1 \times \overline{x} = \overline{x}).$
- 6. Существование обратного κ элементу a (κ элементу b) относи-

тельно операции \oplus (операции \otimes) элемента a^{-1} (элемента b^{-1}):

$$a \oplus a^{-1} = e(\overline{a} + (-\overline{a})) = \overline{0} \ b \otimes b^{-1} = e \ (b \cdot b^{-1}) = 1.$$

Для аддитивных операций \oplus нейтральный элемент e называют нулем, для мультипликативных операций \otimes — единицей. Для некоммутативных операций различают левый и правый нейтральные элементы.

4.2. Изоморфизм алгебраических структур

Пусть на множествах M и P заданы некоторые структуры, например с помощью внутренних бинарных операций \otimes и \oplus , соответственно, т. е. \otimes : $M \times M \to M$ и \oplus : $P \times P \to P$. Множество со структурой мы будем обозначать соответствующей парой (M, \otimes) и (P, \oplus) .

Определение 4.1. Биекция β : $M \to P$ называется изоморфизмом структур (M, \otimes) и (P, \oplus) , если из $a \otimes b = c$ на множестве M следует $\beta(a) \oplus \beta(b) = \beta(c)$ на множестве P, если же множество M совпадает c множеством P, то изоморфизм β называется автоморфизмом.

При этом также говорят, что структуры (M, \otimes) и (P, \oplus) изоморфны. Отношение изоморфности на множестве $\{(M, \varphi)\}$ структур обладает свойствами (ср. п. 6, Глава 3) рефлексивности, симметричности и транзитивности, которые гарантируются биекциями соответствующих множеств, и потому это отношение есть отношение эквивалентности. Теории изоморфных структур совпадают и не зависят ни от конкретной природы элементов изоморфных множеств, ни от способов задания структуры на множествах.

Пример 4.1. Пусть $R^+ \stackrel{\triangle}{=} \{x: x \in R, x > 0\}, a \oplus b \stackrel{\triangle}{=} a + b \text{ и } a \otimes b \stackrel{\triangle}{=} a \times b.$

Тогда β : $\mathbf{R}^+ \to \mathbf{R}$, где $\beta(x) \stackrel{\triangle}{=} \ln x$, есть изоморфизм, так что структуры (\mathbf{R}^+ , \times) и (\mathbf{R} , +) изоморфны. Этот изоморфизм позволяет операцию умножения чисел заменить менее *трудоемкой* операцией сложения их логарифмов. Подробности см. в [5], [27] и в [45].

4.3. Структура группы на множестве

Определение 4.2. Группой называется множество G с такой бинарной операцией $\otimes: G \times G \to G$, что

- 1) \otimes ассоциативна: $a \otimes (b \otimes c) = (a \otimes b) \otimes c$,
- 2) существует $e \in G$ (нейтральный элемент по отношению к опе-

 $payuu \otimes$): $\forall g \in G \ e \otimes g = g \otimes e = g$,

3) $\forall a, a \in G, \exists b \in G: a \otimes b = b \otimes a = e$, элемент b называют обратным (противоположным) элементом элементу a относительно операции \otimes .

Пример 4.2. Множество **Z** целых чисел с операцией сложения образует аддитивную коммутативную группу, при этом нейтральным элементом служит число 0, а обратным элементом для $z \in \mathbf{Z}$ является противоположное число -z: -z+z=0.

Упражнение 4.1. Показать, что если в определении группы постулировать существование таких левого и правого (e и e^*) нейтральных элементов и левого и правого обратных (b и b^*) элементов к элементу a, что $e \otimes a = a \otimes e^* = a$ и $b \otimes a = a \otimes b^* = e$, то $e = e^*$ и $b = b^*$.

Упражнение 4.2. Показать, что множество R^+ положительных чисел с операцией \otimes , определяемой формулой $a \otimes b = a^b$, не образует группу.

Упражнение 4.3. Показать, что множество G параллельных переносов плоскости и множество ϕ вращений плоскости с центром в некоторой точке О образуют группу параллельных переносов и, соответственно, группу вращений.

Замкнутость групповой операции \otimes группы G определяется тем, что:

- 1) отображение $\otimes: G \times G \to G$ задано для всех пар $(a, b) \in G \times G$ и, кроме того,
- 2) это отображение есть сюръекция, так что в группе G уравнение $a \otimes x = b$ разрешимо при любых a и b из G.

$$\bullet a \otimes x = b \Rightarrow a^{-1} \otimes (a \otimes x) = a^{-1} \otimes b \Rightarrow (a^{-1} \otimes a) \otimes x = a^{-1} \otimes b \Rightarrow$$

$$\Rightarrow e \otimes x = a^{-1} \otimes b \Rightarrow x = a^{-1} \otimes b. \blacksquare$$

Определение 4.3. Подмножество \widetilde{G} группы G, являющееся группой c законом композиции \otimes группы G, называется подгруппой группы G.

Так, в группе ф поворотов плоскости множество $\phi_k = \{\phi_{k,m}\}, \ k \in \mathbf{Z}$, где $\phi_{k,m}$ – поворот плоскости на угол $\alpha_{k,m} = \frac{\pi m}{k}, \ m \in \mathbf{Z}$, является подгруппой группы ф. Нейтральным элементом здесь является $\phi_{k,0}$ – пово-

рот плоскости на 0 радиан, обратным элементом для $\phi_{k,m}$ будет поворот $\phi_{k,-m}$ и элемент $\phi_{k,p}\otimes\phi_{k,q}=\phi_{k,p+q}$ есть поворот на угол $\alpha_{k,p}+\alpha_{k,q}=\frac{\pi(p+q)}{k}.$

Очевидно, что всякая подгруппа \widetilde{G} группы G содержит нейтральный элемент e группы G и $\forall a \in \widetilde{G} \ \exists a^{-1} \in \widetilde{G}$. Назовем три подгруппы:

- 1) $\widetilde{G}_0 \stackrel{\Delta}{=} \{e\}$,
- 2) $\widetilde{G}_1 \stackrel{\triangle}{=} \{e, a\}$, где $a \otimes a = e$, т. е. $a^{-1} = a$,

3)
$$\widetilde{G}_n \stackrel{\Delta}{=} \{e, a_1, ..., a_n\}$$
, где $a_k = a_{k-1} \otimes a_1$, $k \leq n$, $a_n \otimes a_1 = e \stackrel{\Delta}{=} a_0$.

Группа \widetilde{G}_n называется циклической группой, порождённой элементом a_1 , для элементов a_p и a_q такой группы

$$a_p \otimes a_q = a_r$$
, где $p + q \equiv r \mod(n+1)$ и $(a_p)^{-1} = a_{n+1-p}$.

Конкретной реализацией группы \widetilde{G}_1 является множество $\{1,-1\}$, где $e^{\stackrel{\triangle}{=}}1$, $a^{\stackrel{\triangle}{=}}-1$ и законом композиции служит умножение из множества ${\it R}$: $(-1)\otimes 1^{\stackrel{\triangle}{=}}1\times (-1)=-1$.

Циклической группой \widetilde{G}_n является множество

$$Z_n = \{ \{ m_k \} : m_k \equiv k \pmod{n}, \ 0 \le k \le n-1, \ m_k \in \mathbb{Z} \}, \ n \ge 2 \},$$

классов $\{m_k\}$ эквивалентности по модулю числа n во множестве ${\pmb Z}$ целых чисел, когда закон композиции \otimes группы Z_n определяется формулой $k \stackrel{\Delta}{=} p \otimes q \stackrel{\Delta}{=} (p+q) \equiv k \pmod{n}, \ p,q \in {\pmb Z}$.

При этом по определению $m_k \otimes m_s \equiv (k+c) \pmod{n}$ и аддитивной единицей, нулём группы, служит класс $\{m_0\} = \{0, n, 2n, ...\}$ (см. Пример 3.4, Глава 3).

Очевидно, что не каждая группа G имеет циклические подгруппы.

В качестве упражнений читателю мы предлагаем проверить следующие утверждения:

1. Если G_1 и G_2 являются подгруппами группы G, то подмножество $G_1 \cap G_2$ также является подгруппой.

2. Все подгруппы данной группы G пересекаются по подгруппе $G_0 = \{e\}$.

Понятие подгруппы позволяет изучать свойства группы G на некоторой, не слишком малой, её подгруппе. Но следует заметить, что если G группа, то множество $G \setminus \{a\}, \ a \in G$, уже группой не является, если при этом $a \neq a^{-1}$. Подробности см. в [27], [43], [45], [57], [82] и др.

4.4. Кольца и поля

Структура группы не позволяет описать даже простейшие во многих математических дисциплинах *линейные операции*, т. е. отображение $l: M \times A \to M$ со свойствами:

$$l(x, \alpha + \beta) = l(x, \alpha) \oplus l(x, \beta)$$
 и $l(x \oplus y, \alpha) = l(x, \alpha) \oplus l(y, \alpha)$.

Здесь \oplus и + суть знаки законов композиции в M и в A, соответственно.

Определение 4.4. Кольцом называется коммутативная группа K с операцией \oplus , если на ней определена вторая бинарная операция \otimes : $K \times K \to K$ и операции \oplus и \otimes согласованы дистрибутивностью:

$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c), (b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a).$$

Кольцо K называется коммутативным, если операция \otimes коммутативна, и кольцом с единицей, если в K существует нейтральный элемент относительно второй операции \otimes .

Операции \oplus и \otimes обычно называют сложением и, соответственно, умножением, нейтральный элемент относительно \oplus обозначают через 0 и называют нулём, обратный для a элемент обозначают символом -a и называют противоположным a, нейтральный элемент относительно операции \otimes называют единицей.

Ближайший пример — множество Z целых чисел с операциями \times и + есть коммутативное кольцо с единицей. Второй пример некоммутативного кольца с единицей даёт множество $K_n = \{A, B, C, ...\}$ квадратных матриц порядка n.

Пример 4.3. Множество $K_2 = \{A, B, C, ...\}$ квадратных матриц порядка 2 (при n=2) образует некоммутативное кольцо с единицей:

$$B \stackrel{\triangle}{=} (b_{ij}) \stackrel{\triangle}{=} (b_{11}b_{12} \\ b_{21}b_{22}), 0 \stackrel{\triangle}{=} (0 \ 0), e \stackrel{\triangle}{=} E \stackrel{\triangle}{=} (1 \ 0),$$

$$A \oplus B = (a_{ij}) \oplus (b_{ij}) \stackrel{\triangle}{=} \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix},$$

$$A \otimes B = (a_{ij}) \otimes (b_{ij}) \stackrel{\triangle}{=} \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}.$$

Здесь предполагается, что элементы a_{ij} , b_{ij} , ... матриц A, B,... из кольца K_n сами являются элементами некоторого кольца K_0 с операциями + и \times ($b \times a = a \times b$), и если $K_0 = \mathbf{Z}$, то $K_1 = \mathbf{Z}$. Так что кольцо K_n квадратных матриц порядка n есть обобщение кольца \mathbf{Z} целых чисел.

Пример 4.4. Интересный пример кольца даёт множество **Z** целых чисел, у которого операции \oplus и \otimes определены как сложение и умножение по модулю числа p. Например, при p=6 (см. Пример 3.4 Главы 3) $s \equiv k \pmod{6}$ означает, что $\exists m \in \mathbf{Z} : \left(\frac{s}{6}\right) = m + \left(\frac{k}{6}\right)$, где $0 \le k \le 5$. В этом кольце при $a \otimes b = 0$ не всегда $q \equiv a \pmod{6} \cdot p \equiv b \pmod{6} = 0$. Например, $3 \otimes 8 = 0$, ибо $3 \cdot 8 = 24 \equiv 0 \pmod{6}$ в то время как $3 \equiv 3 \pmod{6}$, $8 \equiv 2 \pmod{6}$ и $3 \cdot 2 = 6$.

Ненулевые элементы p и q кольца K называются делителями нуля, если $p\otimes q=0$.

Упражнение 4.4. Показать, что в кольце K без делителей нуля равенство $a \otimes b = a \otimes c$ имплицирует равенство b = c (здесь $a \neq 0$).

Введём ещё одну алгебраическую структуру на M, необходимую нам для описания (в Главе 5) множества \mathbf{R} действительных чисел.

Определение 4.5. Коммутативное кольцо F c единицей называет-ся полем, если для $\forall a \in F \setminus \{0\}$ существует в F такой элемент b, обозначаемый через a^{-1} , что $a \otimes b = 1$.

Так что в поле F уравнение $a \otimes x = b$ разрешимо для всех b и $a \neq 0$ (во множестве Z, например, уравнение ax = b не разрешимо при b=1 и $a \neq 1$).

Примеры поля дают множества: Q – рациональных чисел, R – действительных чисел, C – комплексных чисел.

Упражнение 4.5. Показать, что множество P(A) всех подмножеств множества A с операциями \cup и \cap в качестве \oplus и \otimes , соответственно, не образует поля.

Пример 4.5. Интересный пример поля даёт множество Z_p целых чисел, имеющее в качестве операций \oplus и \otimes сложение и умножение по модулю простого числа p. Здесь, например, при p=3 равенство $2 \otimes x = 1$ означает, что $2 \times x \equiv 1 \pmod{3}$, и поэтому

$$2 \cdot \left(\frac{x}{3}\right) = z + \left(\frac{1}{3}\right)$$
, т. е. $x = 0.5 \cdot (3z + 1)$ и $x \in \mathbb{Z}$ при нечётном z .

Упражнение 4.6. Показать на примере q=4, что множество Z_q не образует поля, если q не является простым числом.

Последний пример и упражнения оправдывают следующие два понятия. Число n называют аддитивным порядком ненулевого элемента a поля F, если $a \otimes n = 0$ и $\forall r : 0 < r < n \ a \otimes r \neq 0$, $n,r \in N$.

Определение 4.6. Говорят, что поле F имеет характеристику n, если все ненулевые элементы поля F имеют аддитивный порядок n, в противном случае говорят, что поле имеет характеристику 0.

Так, например, поле Q рациональных чисел имеет характеристику 0.

Общее утверждение таково: поле характеристики 0 бесконечно, и характеристика каждого конечного поля есть простое число p.

Структура поля на множестве M позволяет ввести отношение порядка на M, то есть упорядочить поле F, введя следующее ниже определение.

Определение 4.7. Поле F называется упорядоченным, если оно содержит такое непустое подмножество F^* , замкнутое относительно операций сложения и умножения, что

$$\forall x \in F \setminus \{0\} \text{ либо } x \in F^*, \text{ либо } -x \in F^*.$$

Если $1 \in F^*$, то F^* называется множеством всех положительных элементов из F. При этом с изложением Главы 3 более согласуется условие $0 \notin F^*$ (по Определению 4.7 допустимо и $0 \in F^*$). Далее пишем a > 0, если $a \in F^*$ и b < 0, если в $b \in F \setminus \{0\} \cup F^*$), т. е. если $-b \in F^*$.

Теперь можно показать, что отношение < асимметрично и транзитивно, т. е. является отношением порядка на F.

Замечание 4.1. Из аксиом поля F не следует по необходимости существование подмножества F^* из Определения 4.7.

Упражнение 4.7. Записать аксиомы поля.