

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ					
ектор ИШНПТ	Директор ИШНП				
К.К. Манабаев					
2021 г.	>>	«			

ИССЛЕДОВАНИЕ СВОЙСТВ СТРОИТЕЛЬНОЙ ВОЗДУШНОЙ ИЗВЕСТИ

Методические указания к выполнению лабораторной и самостоятельной работы по курсу «Общая технология силикатов» для студентов направления подготовки бакалавров 18.03.01 Химическая технология

УДК 666 (076.5)

Исследование свойств строительной воздушной извести

Методические указания к лабораторному практикуму и самостоятельной работе студентов по курсу «Общая технология силикатов» для студентов направления подготовки бакалавров 18.03.01 Химическая технология

Томск: Изд. ТПУ, 2021.- 19 с.

Составители: к.т.н. Смиренская В.Н

к.т.н., ст. преподаватель Сударев Е.А.

методические указания рассмотрены и рекомендованы
к изданию методическим семинаром НОЦ Н.М Кижнера
«»2021 г.

Заведующий кафедрой - руководитель научно-образовательного центра на правах кафедры, д.х.н, профессор ______ Е.А. Краснокутская

Рецензент

Доктор технических наук, профессор ТПУ B.И. Верещагин

1. Лабораторная работа по теме «Воздушная известь»

1.1. Общие теоретические сведения

Строительной воздушной известью называют вяжущее вещество, получаемое умеренным обжигом, не доводимым до спекания, карбонатных пород, содержащих не более 6 % примесей [1].

Если глинистых примесей в известняке больше 6 %, то продукт обжига приобретает выраженные гидравлические свойства и называется гидравлической известью. Гидравлическую известь получают умеренным обжигом карбонатных пород с высоким содержанием глинистых примесей - более 8-20 %.

Отдельно выделяют *молотую карбонатную известь*, представляющую собой порошкообразную смесь совместно измельченных негашеной извести и карбонатных пород.

Классификация. В зависимости от характера последующей обработки обожженного продукта воздушная известь делится на *негашеную* (комовую и молотую) и *гашеную* — гидратную (по агрегатному состоянию различают: известковое молоко, известковое тесто, порошок — пушонка извести).

Комовая негашеная известь представляет собой кусковую обожженную известь, которая может содержать примеси мелких частиц извести и золы сгоревшего топлива.

Молотая негашеная известь — порошкообразный продукт, полученный помолом комовой извести.

Гашеная (гидратная) известь — *известковое молоко*, представляет собой суспензию с соотношением компонентов известь: вода, равном 1:(3,5 и более).

Гашеная известь до состояния *известкового теста* — тестообразный продукт гашения комовой или молотой извести при соотношении известь: вода, равном 1:3,5.

Гашеная известь — nушонка представляет собой порошкообразный продукт гашения комовой извести при соотношении известь: вода, равном 1:2,5-3.

В молотую негашеную, а также гашеную известь можно вводить тонкомолотые минеральные добавки: доменные и топливные шлаки и золы, вулканические пемзы, туфы и пеплы, кварцевые пески, трепелы и гипс.

В зависимости от содержания оксида магния различают следующие виды воздушной извести: *кальциевую* при содержании не более 5 % MgO, *магнезиальную* при содержании 5-20 % MgO и *доломитовую* (высокомагнезиальную) при содержании 20-40 % MgO.

В зависимости **от температуры**, развивающейся при гашении извести, различают **низкоэкзотермичную** известь (*с температурой гашения ниже* 70 °C) и высокоэкзотермичную (*с температурой гашения выше* 70 °C).

По **скорости гашения** согласно ГОСТ 9179-2018 различают **известь быстрогасящуюся** (скорость гашения не более **8 мин**); **среднегасящуюся** (скорость гашения не более **25 мин**) и **медленногасящуюся** (скорость гашения не менее **25 мин**).

По условиям твердения различают известь *воздушную* и *гидравлическую*. Воздушная известь твердеет и сохраняет прочность (в составе растворов и бетонов) в воздушно-сухих условиях; а гидравлическая известь обеспечивает прочность, как на воздухе, так и в воздушно-влажной среде.

В зависимости от пластичности извести, зависящей от содержания глинистых и песчаных примесей, различают жирную и тощую извести.

Состав и свойства воздушной извести. *Негашеная известь*, называемая *кипелкой*, состоит в основном из активного *CaO*, а *гашеная* – из $Ca(OH)_2$.

Важнейшим технологическим свойством извести является ее *способность* гаситься, т.е. активно взаимодействовать с водой с выделением большого количества тепла и образованием продукта реакции в высокодисперсном состоянии.

На свойства воздушной извести большое влияние оказывают содержащиеся в исходном сырье — известняке - *примеси*: глина, углекислый магний, кварц и др., они в той или иной степени уменьшают ее способность к гашению. При производстве *молотой извести* некоторые примеси не только не ухудшают, но даже улучшают ее качество.

Известняк в чистом виде (с минимальным количеством примесей) дает при обжиге продукт, который при взаимодействии с водой полностью гасится, превращаясь в гидроксид кальция.

При значительном *содержании MgO* известь гасится медленнее и выделяет при гашении меньшее количество тепла.

Магнезиальная и доломитовая извести проявляют гидравлические свойства при меньшем содержании глинистых и песчаных примесей, чем маломагнезиальные, так как $Mg(OH)_2$ значительно менее растворим в воде, чем $Ca(OH)_2$.

Жирная известь быстро гасится, выделяя при этом много тепла, и дает после гашения пластичное жирное на ощупь тесто. Жирная известь отличается большей **пескоемкостью**, т.е. позволяет получать удобообрабатываемые строительные растворы при введении большего количества песка.

Тощая известь гасится медленно и дает менее пластичное тесто, в котором прощупываются мелкие зерна. Чем больше глинистых и песчаных примесей

содержит известняк, тем более тощей получается изготовленная из него известь.

Прочность воздушной извести не нормируется стандартом. Прочность гидратной извести-пушонки, а также известкового теста обычно невелика и через 28 суток составляет 0,5 - 1 МПа при испытании в стандартных образцах $(40 \times 40 \times 160 \text{ мм})$ из раствора жесткой консистенции. Молотая негашеная известь отличается более высокой прочностью (1-5 МПа через 28 суток).

Качество различных видов извести определяют главным образом их химическим составом и пластическими свойствами.

Сырьевые материалы. Для производства воздушной извести применяются все природные материалы, содержащие в основном углекислый кальций (мрамор, известняк, известковый туф мел, и т.д.). Теоретический состав химически чистого углекислого кальция: 56 % CaO и 44 % CO₂.

Основными литологическими разновидностями известняков, выделяемыми по структурным признакам, являются известняки *кристаллические*, *органогенные*, *обломочные* и известняки *смешанной структуры* [3].

Кристаллические известняки сложены кристаллами кальцита, которые могут быть различных размеров. Объемная плотность кристаллических зернистых и плотных известняков колеблется в пределах от 2400 до $2800 \ \kappa c/m^3$, такие известняки имеют предел прочности при сжатии $20 - 120 \ M\Pi a$.

Прочность некоторых видов *мрамора* достигает $300 \, M\Pi a$, при плотности $2900 - 3100 \, \kappa z/m^3$. Влажность мрамора составляет до $3 \, \%$, известняков 3- $10 \, \%$, а мела -15- $25 \, \%$.

Органогенные известняки - это скелетные остатки животных (зоогенных) или растительных (фитогенных) организмов, состоящие из кальцита или арагонита и цементирующей их массы — пелитоморфного (микрокристаллического) кальцита.

Обломочные известняки представляют собой обломки ранее сформировавшихся известняков и кальцитового цемента.

Известняки **со смешанной структурой** являются переходными разновидностями между кристаллическими, органогенными и обломочными известняками. Эти виды известняков широко распространены.

Известняковые горные породы обычно содержат различные примеси, главным образом глинистых веществ, доломита, кварца, оксида железа. Количество примесей колеблется в довольно значительных пределах. Даже сравнительно чистые известняки содержат 2-3 % примесей.

Самостоятельной литологической разновидностью известняков является *мел*, который представляет собой рыхлую слабоцементированную

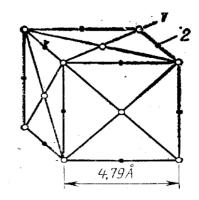
тонкозернистую породу с землистым изломом, состоящую из тонкого органогенного и пелитоморфного кальцита.

Существуют и другие литологические разновидности известняков химического происхождения: *оолитовые известняки*, состоящие из округлых зерен карбоната кальция, осажденного концентрическими слоями вокруг зародыша, с диаметром зерен от 1-2 мм и более.

Оолитовые известняки, известковые туфы, мел, известняки - ракушечники имеют предел прочности при сжатии $0.5 - 50 \, M\Pi a$ при объемной плотности $100 - 1800 \, \kappa c/m^3$ (мел имеет плотность от $1400 \, \text{да} \, 2400 \, \kappa c/m^3$).

Карбонатные породы практически повсеместно распространены на территории России, что способствует широкому развитию производства из них вяжущих материалов.

Основным химическим соединением, являющимся основой большинства разновидностей карбонатных пород, является углекислый кальций — $CaCO_3$. Углекислый кальций встречается в природе в виде трех минералов: *кальцита*, *арагонита и ватерита*.


Свойства воздушной извести. Важнейшими строительно — техническикими свойствами воздушной извести являются:

содержание активных CaO и MgO; содержание активного MgO; температура и время гашения; содержание непогасившихся зерен.

Химический анализ и определение технических свойств строительной воздушной извести производится по методикам ГОСТ 22688 - 2018. «Известь строительная. Методы испытаний», а оценка качества ее - по ГОСТ 9179 — 2018. «Известь строительная. Технические условия», см. табл.1 [8].

Свойства оксида кальция. Чистый оксид кальция кристаллизуется в кубической сингонии, т.е. при обжиге карбонатных пород происходит превращение гексагональной кристаллической решетки CaCO₃ в кубическую CaO, см **рис. 4.**

Параметр кубической решетки $\it CaO$ - $\it a=0,4797$ $\it hm$. Число формульных единиц $\it CaO$ в элементарной ячейке равно 4. Спайность совершенная по кубу. Показатель преломления чистого оксида кальция $\it n_{cp}=1,836$. Плотность химически чистого оксида кальция $\it 3340~\kappa c/m^3$, твердость по шкале Мооса $\it 3-4$; температура плавления $\it 2843~K$, температура кипения $\it 3123~K$.

Рис. 4. Кристаллическая структура оксида кальция: $1 - \mathbf{Ca}^{2+}$, $2 - \mathbf{O}^{2-}$

Плотность высококальциевой извести заводского производства 2300 - 2400 $\kappa z/M^3$.

Оксид кальция легко гидратируется с выделением большого количества тепла. Растворяется в кислотах и воде. При хранении и транспортировании известь необходимо защищать от влаги [1], [4].

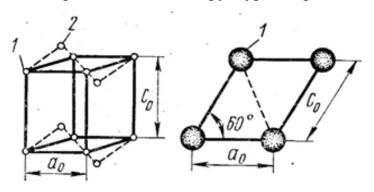
Гашение воздушной извести. Воздушная известь является высокоактивной по отношению к воде, и при взаимодействии с водой может превращаться в тонкодисперсный порошок — пушонку, известковое тесто, известковое молоко. Воздушная известь отличается от других вяжущих веществ тем, что может превращаться в порошок не только при помоле, но и путем гашения водой.

Процесс гашения извести протекает по следующей реакции:

$$CaO + H_2O \leftrightarrow Ca(OH)_2 + 65 \text{ кдж/г-моль CaO}$$
 (1)

При гашении извести выделяется значительное количество тепла, составляющее $65 \ \kappa \cancel{Д}ж$ на $1 \ \emph{г-моль}$, или $1160 \ \cancel{Д}ж$ на $1 \ \emph{г}$ CaO, что вызывает такой подъем температуры, который может привести к воспламенению дерева.

Гидратация оксида кальция является обратимой реакцией, направление которой зависит как *от температуры*, так и *от давления водяных паров*. Упругость пара при диссоциации Ca(OH)2 на CaO и H2O достигает атмосферного давления $(0,1 \ M\Pi a)$ при $547 \ ^{\circ}C$, **табл.1.**, однако, и в условиях более низкой температуры $Ca(OH)_2$ может частично разлагаться.


Таким образом, чтобы процесс гашения извести протекал в нужном направлении, необходимо стремиться к повышению упругости водяных паров над $Ca(OH)_2$ и не допускать слишком высокой температуры.

Вместе с тем, следует избегать и переохлаждения гасящейся извести, так как это сильно замедлит гашение.

Таблица 1. Зависимость давления водяного пара при диссоциации Ca(OH)₂ от температуры

Температура диссоциации, К (°C)	Равновесное давление водяных паров, МПа	Температура диссоциации, К (°C)	Равновесное давление водяных паров, МПа	Температура диссоциации К (°C)	Равновесное давление водяных паров, МПа
642 (369)	0,001	721 (448)	0,012	800 (527)	0,070
662 (389)	0,002	741 (468)	0,020	820 (547)	0,10
681 (408)	0,004	761 (488)	0,031	-	-
701 (428)	0,007	780 (507)	0,047	-	-

На рис.5. приведена кристаллическая структура гидроксида кальция.

Рис. 5. Кристаллическая структура гидроксида кальция: $1 - \mathbf{Ca^{2+}}$; $2 - \mathbf{OH^{-}}$

Кристаллы гидроксида кальция (портландита) – *Ca(OH)*₂ имеют форму гексагональных пластин или призм с совершенной базальной спайностью.

Гидроксид кальция имеет гексагонально — ромбическую сингонию. Параметры кристаллической решетки: a = 3,5844, c = 4,8962, $\alpha = 60^{\circ}$, число формульных единиц в элементарной ячейке - 4, показатели преломления составляют: $n_0 = 1,574$, $n_s = 1,545$.

Плотность монокристалла гидроксида кальция 2230 кг/м^3 , плотность аморфного гидроксида кальция 2080 кг/м^3 . Твердость гидратной извести 2-3, средняя твердость монокристаллов $Ca(OH)_2$ - 2,25.

Гидроксид кальция сравнительно *мало растворим* в воде **табл.2**. Однако его растворимость примерно в сто раз превышает растворимость карбоната кальция в отсутствие свободной CO_2 .

При нормальной температуре концентрация насыщенного раствора извести составляет около 0.13 % в пересчете на CaO или около 0.17 % в пересчете на $Ca(OH)_2$. С повышением температуры растворимость извести падает.

Растворимость $\it гидратной извести$ промышленного производства в среднем примерно на 7 % выше растворимости химически чистой $\it Ca(OH)_2$, приготовленной из исландского шпата.

Таблица 2. Растворимость Ca(OH)₂ в воде при различных температурах

Температура	Концентрация	Температура	Концентрация	Температура	Концентрация
K (°C)	насыщенного	К (° С)	насыщенного	К (° С)	насыщенного
	раствора СаО,		раствора СаО,		раствора СаО,
	гна 1000 г		г на 1000 г		г на 1000 г
273 (0)	1,30	333,8 (60,8)	0,818	398 (125)	0,380
288 (15)	1,22	354,7 (81,7)	0,657	423 (150)	0,247
298 (25)	1,13	363 (90)	0,591	463 (190)	0,084
313 (40)	1,00	372 (99)	0,523	473 (200)	0,050
323 (50)	0,917	393 (120)	0,400	523 (250)	0,037

Растворимость свежепогашеной извести, состоящей из частиц размером ~ 1 мкм, примерно на 10~% выше растворимости гидроксида кальция, состоящего из более крупных кристаллов.

Гашение извести в порошок – пушонку. Различают следующие стадии гашения извести в порошок – пушонку: первоначально кусочки извести впитывают воду, что сопровождается заметным уплотнением исходного материала. Этот процесс связан с образованием промежуточного соединения типа оксигидрата:

$$CaO + H_2O \leftrightarrow CaO \cdot 2H_2O$$
 (2)

Затем плотная гомогенная масса начинает бурно превращаться «бурлящий» порошкообразный продукт. При этом выделяется большое количество тепла, ведущее разогреву массы интенсивному парообразованию, образующийся пар разрыхляет кусочки извести в тонкодисперсный порошок. Процесс превращает ee соответствует самопроизвольному разложению оксигидрата по уравнению

$$CaO \cdot 2H_2O \rightarrow Ca(OH)_2 - 4H_2O + 65 кДж/г-моль CaO$$
 (3)

Оксигидрат кальция можно сохранить в устойчивом состоянии, если сильно охладить (заморозить) реагирующую смесь. Форма кристаллов этого соединения и его структура точно неопределены.

Заключительным этапом гашения является образование пушонки – появление хлопьев гидроксида кальция.

Установлено, что гексагональные кристаллиты $Ca(OH)_2$ симметрично заряжены двумя диполями с перекрещивающимися осями (квадруполь). Поэтому происходит взаимное притяжение разноименно заряженных участков отдельных кристаллитов, что приводит к образованию хлопьев. На следующем этапе отдельные хлопья превращаются в более крупные и плотные частицы.

Для гашения извести *в порошок* – *пушонку* теоретически необходимо добавлять 32,13 % воды от массы извести-кипелки. Практически в зависимости от состава извести, степени ее обжига и способа гашения, приливается примерно в два, а иногда и три раза больше воды, так как под действием тепла, образующегося при гашении, происходит сильное парообразование и часть воды удаляется из гасящейся массы.

Недостаток воды вызывает так называемое перегорание гашеной извести, заключающееся в образовании трудно проницаемых для воды и вследствие этого трудно гасящихся впоследствии образований. Появление последних объясняется следующим: гидратация извести в первое время после добавления воды происходит наиболее энергично в поверхностных слоях зерен кипелки, на которых вследствие избытка воды образуется тестообразный слой гидрата. Этот гидрат при дальнейшем поглощении воды внутренними слоями будет высыхать, уплотняться и плохо пропускать воду, необходимую для гашения внутренних слоев извести.

Чтобы облегчить проникновение воды к этим слоям и тем самым ускорить гашение извести, рекомендуется энергичное перемешивание гасящейся массы.

Хорошие результаты получаются и при гашении извести паром повышенного давления в герметично закрытых устройствах (гасильных барабанах).

*Масса 1 м*³ рыхло насыпанного порошка — *пушонки* составляет в среднем 400 - 450 кг, а уплотненного — 500 - 700 кг. Сухая пушонка представляет собой рыхлый порошок, в котором около 3/4 объема занимают пустоты. Более половины зерен порошка — пушонки имеют размер, не превышающий 0,01 мм.

Гашение извести до состояния известкового теста. Гашение извести большим количеством воды приводит к образованию высококонцентрированной водной суспензии — *известкового теста* со специфическими свойствами коллоидных систем, в частности - предельным напряжением сдвига известкового теста.

Известковая суспензия - тесто содержит положительно заряженные частицы $Ca(OH)_2$. Эти частицы (мицеллы) представляют собой кристаллиты $Ca(OH)_2$, окруженные молекулами воды. Наиболее прочно на поверхности частиц удерживается сравнительно небольшое число молекул H_2O . По мере удаления от ядра мицеллы вода удерживается слабее, образуя диффузную оболочку. Кристаллиты $Ca(OH)_2$ могут присоединять к себе до 8 молекул воды.

Количество воды, требуемое *для гашения извести в тесто*, зависит от качества извести, способа гашения и некоторых других факторов.

Чем жирнее известь, тем больше в известковом тесте воды. В среднем для гашения извести в тесто берут 2,5-3 л воды на 1 кг кипелки.

Масса 1 м³ известкового теста составляет 1300 - 1400 кг, из 1 м³ кипелки получают 1,5-2,4 м³ теста. Известковое тесто обычно содержит около 50 % воды.

Пластичность известкового теста зависит от размера частиц $Ca(OH)_2$, степени оводненности и наличия в воде затворения растворенных веществ. Диффузные оболочки, окружающие частицы $Ca(OH)_2$, уменьшают трение и увеличивают подвижность зерен, сообщая тесту пластичность.

Чем крупнее частицы, тем меньше водопотребность и оводненность теста, тем тоньше диффузные гидратные слои, и, следовательно, менее пластично тесто.

Электролиты с анионами SiO_3^{2-} , Cl^- , SO_4^{2-} , OH^- , CO_3^{2-} ухудшают пластичность теста, разряжая коллоидные мицеллы, что приводит к отрыву диффузных слоев.

При гашении *тощей извести* получаются более крупные зерна, имеющие меньшую суммарную поверхность и связывающие небольшое количество воды. Это снижает выход теста и делает его менее пластичным.

Гашение извести до состояния известкового молока. Если известь гасится при значительном избытке воды, получают низкоконцентрированную *известковую суспензию – молоко*.

Иногда в известь, погашенную до состояния известкового теста, добавляется вода до образования известкового молока, соотношение компонентов при этом составляет (известковое тесто – вода) 1:1,5, обычно концентрация известкового молока составляет 1,1-1,2 г/л.

Содержание суммы активных CaO и MgO в известковом молоке должно составлять не менее 20-25 %. Расход негашеной извести на 1 M^3 концентрированного известкового молока - 390 κz , остаток на сите N_2 063 не более 15 z/л.

Большое влияние на скорость гашения извести оказывает размер кристаллов оксида кальция.

Так, кристаллы CaO размером 0,3 мкм гасятся при обычной температуре примерно в 120 раз быстрее, чем кристаллы размером 10 мкм.

Взаимодействие оксида кальция с водой ускоряется при введении ряда добавок - $CaCl_2$, NaCl, NaOH и др., которые при взаимодействии с известью дают соединения, более растворимые, чем $Ca(OH)_2$.

Добавки, способствующие образованию менее растворимых соединений, замедляют гидратацию; это некоторые соли серной, фосфорной, щавелевой и угольной кислот. Замедляют взаимодействие с водой и поверхностно-активные вещества, например CCB, адсорбирующиеся на кристаллических зародышах $Ca(OH)_2$ с образованием поверхностных пленок, что препятствует росту кристаллов $Ca(OH)_2$, а следовательно, и последующему растворению CaO.

1.2. Методика выполнения лабораторной работы

Лабораторная работа включает определение основных свойств извести:

- Суммы активных СаО и МдО.
- Температуры и времени гашения извести.
- Содержания непогасившихся зерен.

1.2.1. Определение суммы активных СаО и МдО

Качество строительной воздушной извести зависит от содержания в ней активных **CaO** и **MgO** и чем оно выше, тем лучше (активнее) известь, **см Приложение A.**

Определяют количество активных CaO и MgO методом титрования.

Сущность метода заключается в том, что активные CaO и MgO при взаимодействии с водой образуют основания, которые в присутствии индикатора – фенолфталеина окрашивают раствор в малиновый цвет:

$$CaO + H2O = Ca(OH)2$$

$$MgO + H2O = Mg(OH)2$$
(4)

При титровании такого раствора соляной кислотой в присутствии индикатора раствор нейтрализуется и обесцвечивается.

Приборы и материалы для выполнения лабораторной работы:

- 1. Воздушная известь.
- 2. Аналитические (технические) весы.
- 3. Коническая колба на 250 мл.
- 4. Стеклянные бусы.
- 5. Песчаная баня (или электрическая плитка).
- 6. Дистиллированная вода.
- 7. 1% раствор фенолфталеина.
- 8. Стеклянная воронка (часовое стекло).
- 9. Соляная кислота, 1 N раствор.
- 10. Бюретка для титрования.

Навеска извести массой $1\ z$ помещается в коническую колбу на $250\ mn$, добавляется $150\ mn$ дистиллированной воды, 3-5 стеклянных бус или палочек длинной $5\text{-}7\ mn$, колба закрывается стеклянной воронкой или часовым стеклом и нагревается на песчаной бане (или электрической плитке) 5-7mun до кипения. Затем раствор в колбе охлаждается до температуры $20\text{-}30\ ^{\circ}C$, промываются стенки колбы и стеклянная воронка (или часовое стекло) дистиллированной водой, добавляется $2\text{-}3\ kannu$ фенолфталеина и раствор титруется при постоянном взбалтывании $1\ N$ раствором соляной кислоты до обесцвечивания раствора.

Титрование проводится медленно по каплям и считается законченным, если раствор остается бесцветным в течение *8 мин* при периодическом взбалтывании [8]. Процентное содержание активных **CaO** и **MgO** в извести определяется по формуле:

$$A = \frac{V \cdot T_{CaO} \cdot 100}{Q}, \%$$
 (5)

где V – объем I N раствора HCl, пошедшего на титрование, мл.

 T_{CaO} – титр 1 N раствора HCl, выраженный в граммах CaO.

Q – масса исходной навески извести, z.

По результатам испытаний делается **вывод** о содержании активных **CaO** и **MgO** и оценивается качество извести в соответствии с требованиями ГОСТ 9179-2018, см **табл.1**.

1.2.2. Определение температуры и времени гашения извести

Определение производится в сосуде Дьюара или в химическом стакане вместимостью **250...500 мл**, который помещают в другой стакан большего размера. Пространство между стенками и дном стаканов заполняется термоизоляционным материалом (минеральной ватой, асбестом или др.).

Приборы и материалы для выполнения лабораторной работы:

- 1. Воздушная известь.
- 2. Технические весы.
- 3. Прибор для определения скорости гашения извести (или бытовой термос на 500 мл).
- 4. Секундомер.
- 5. Термометр.

Навеска извести массой *10 г* помещается в стакан прибора (или термосную колбу). Расчет навески можно проводить по формуле:

$$G = 1000/A, z \tag{6}$$

где A – содержание суммы активных CaO и MgO, % [8].

Затем в стакан приливается 25 мл воды, имеющей температуру 20 °C, включается секундомер, стакан закрывается пробкой с термометром на 100 °C и помещается в больший сосуд прибора Дьюара, быстро перемешивается термометром (или палочкой) и оставляется в покое. Ртутный шарик термометра должен быть в реагирующей смеси. Отсчет температуры производится через 1 мин, начиная с момента добавления воды. Если в течение 4-х минут температура не повысится на 1 °C, то определение закончено.

За время гашения извести принимается время с момента добавления воды к извести до достижения максимальной температуры гашения извести или до начала периода, когда рост температуры не превышает 0.25 °C в минуту.

Результаты эксперимента записываются в таблицу и по этим данным строится график изменения температуры гашения извести от времени гашения в координатах: время гашения - τ , мин (ось абсцисс) и температура гашения извести – T, °C (ось ординат).

По результатам проведенного эксперимента делается вывод о классификации исследуемой извести по температуре и времени гашения.

1.2.3. Определение содержания непогасившихся зерен

При гашении извести часть ее остается в виде непогасившихся зерен различной крупности. Эти непогасившиеся зерна в большинстве своем представляют пережженные зерна **CaO** и **MgO** (*пережог*) и неразложившиеся в процессе обжига зерна карбоната кальция (недожег) и примеси.

Обжиг карбонатных пород в лабораторных условиях осуществляется при температурах 950 - 1100 °C. Карбонат магния начинает разлагаться уже при температурах 400 - 500 °C. Пережженные зерна MgO очень плотные, поэтому вода при гашении плохо проникает внутрь зерна, процесс гашения замедляется; такие зерна могут начать гаситься в готовых изделиях, причем процесс гашения сопровождается увеличением объема, возникновением напряжений и деформаций в изделиях, что может приводить и к их разрушению.

Непогасившиеся зерна **MgO** снижают качество воздушной извести и их содержание ограничено требованиями ГОСТ 9179-2018, см **табл. 1.**

Приборы и материалы для выполнения лабораторной работы:

- 1. Известь после гашения (после выполнения предыдущей работы).
- 2. Сито № 063.
- 3. Фарфоровая чашка, 100 мл.
- 4. Сушильный шкаф или песчаная баня.
- 5. Технические весы.

При выполнении данной лабораторной работы известь после полного гашения в сосуде Дьюара переносится (без потерь) на сито № 063, стакан и известь на сите тщательно промываются струей водой до чистоты промывных вод. Затем остаток непогасившихся зерен переносится (без потерь) с сита в фарфоровую чашку, избыток воды сливается, а известь высушивается в сушильном шкафу или на песчаной бане при температуре 140–150 °С до постоянной массы и взвешивается.

Расчет содержания непогасившихся зерен (Н.З.) производится по формуле

$$H.3. = \frac{m \cdot 100}{M}, \% \tag{7}$$

где m – остаток на сите после высушивания, z

M – масса исходной навески извести, M = 10 ε .

По результатам экспериментальных данных делается **вывод** о содержании непогасившихся зерен в извести и оценивается ее качество по ГОСТ 9179-2018, см **табл.1** [1-11].

ПРИМЕЧАНИЕ. По ГОСТ 22688 - 2018 определение непогасившихся зерен в извести осуществляется в металлическом сосуде емкостью 8-10 π , в который наливается 3,5-4,0 π воды нагретой до температуры 85-90 °C и всыпается 1 κz извести, при непрерывном перемешивании до окончания выделения пара. Тесто закрывается крышкой, выдерживается в течении 2 vacos, разбавляется холодной водой до консистенции молока и промывается на сите № 063 до чистоты промывных вод. Остаток переносится в фарфоровую чашку, высушивается в сушильном шкафу при 140–150 °C до постоянной массы и взвешивается [8].

Расчет содержания непогасившихся зерен производится по формуле 7

Вопросы к коллоквиуму:

- 1. Известковые вяжущие. Определение.
- 2. Современное производство извести. Развитие и проблемы.
- 3. Области применения воздушной извести.
- 4. ГОСТ 9179-2018. Строительная воздушная известь. Технические требования.
- 5. Классификация известковых вяжущих.
- 6. Основные свойства строительной воздушной извести.
- 7. Разновидности природного сырья для производства известковых вяжущих.
- 8. Основные свойства природного карбонатного сырья.
- 9. Гидратная известь (виды гидратной извести, основные технические требования, предъявляемые к гидратной извести.
- 10. Процессы при гашении извести в порошок-пушонку.
- 11. Гашение извести в тесто.
- 12. Гашение извести до состояния молока.
- 13. Свойства гидроксида кальция
- 14. Понятие «активные CaO и MgO» в извести, факторы определяющие их содержание, методика определения.
- 15. Температура гашения извести, факторы ее определяющие, методика определения.
- 16. Время гашения извести, факторы, влияющие на время гашения, методика определения.

Литература:

- 1. Бутт Ю.М. и др. Химическая технология вяжущих материалов. М.: Высшая школа, 1980. 472 с.
- 2. ГОСТ 9179-2018. Известь строительная. Технические условия.
- 3. Бойнтон Р.С.. Химия и технология извести. М.: Стройиздат, 1972. 240 с.
- 4. Горшков В.С.. Методы физико-химического анализа вяжущих материалов. М.: Высшая школа, 1981. 335 с.
- 5. Кузнецова Т.В. и др. Физическая химия вяжущих материалов. М.: Высшая школа, 1989. 384 с.
- 6. Бутт Ю.М. и др. Практикум по химической технологии вяжущих материалов. М.: Стройиздат, 1973. 502 с.
- 7. Монастырев А.В. Производство извести. М.: Стройиздат, 1986. 192 с.
- 8. ГОСТ 22688-2018. Известь строительная. Методы испытаний.
- 9. Волженский А.В. Минеральные вяжущие вещества. М.: Стройиздат, 1986. 463 с.
- 10. Колбасов В.М. и др. Технология вяжущих материалов. М.: Стройиздат, 1987. 433 с.
- 11. Химическая технология вяжущих материалов: учебное пособие [Электронный ресурс] / В. Н. Смиренская, С. А. Антипина, С. Н. Соколова; Томский политехнический университет (ТПУ). Томск: Издво ТПУ, 2009. 200 с.

Приложение А

Наименование	Негашеная известь								Гашеная известь		
свойств	кальциевая			магнезиальная		доломитовая		Ісорт	2сорт		
	lc	2c	3c	1c	2c	3c	lc	2c	3c		
Содержание суммы											
активных СаО и											
МдО, %, не менее											
в негашеной извести:											
без добавок	90	80	70	85	75	65	85	75	65	67	60
с добавками	64	52	-	64	52	-	64	52	-	50	40
Содержание актив-											
ной МдО, %,											
не более	5	5	5	20	20	20	40	40	40	-	-
Содержание СО2,											
%, не более	3	5	8	5	8	11	5	8	11	3	5
Содержание непога-											
сившихся зерен в											
негашеной комовой											
извести, %, не более	7	10	12	10	15	20	7	15	20	-	-
Потери при прока-											
ливании, %,											
не более	5	7	10	7	10	13	-	10	13	-	-
Влажность извести,											
%, не более	-	-	-	-	-	-	-	-	-	5	5
Дисперсность –											
остаток на ситах,								-			
%, не более:											
№ 063	-	-	-	-	-	-	-	-	-	2	2
№ 008	-	-	-	-	-	-	-	-	-	10	10

ИССЛЕДОВАНИЕ СВОЙСТВ СТРОИТЕЛЬНОЙ ВОЗДУШНОЙ ИЗВЕСТИ

Методические указания к выполнению лабораторной и самостоятельной работы по курсу «Общая технология силикатов» для студентов направления подготовки бакалавров 18.03.01 Химическая технология

Составители

Смиренская Вера Николаевна Сударев Евгений Александрович

Отпечатано в Издательстве ТПУ в полном соответствии С качеством представленного оригинал-макета

Подписано к печати 29.09.2021. Формат 60х84/16. Бумага «Снегурочка». Печать XEROX. Усл. печ.л. 9,01. Уч.-изд. л. 8,16. Заказ . Тираж 20 экз.

Национальный исследовательский Томский политехнический университет Система менеджмента качества

Издательство Томского политехнического университета сертифицирована NATIONAL QUALITY ASSURANCE по стандарту BS EN ISO 9001:2008

ИЗДАТЕЛЬСТВО ТПУ. 634050, г. Томск, пр. Ленина, 30 Тел./факс: 8(3822)56-35-35, www.tpu.ru