Задача №5. Расчет устройств очистки пара в испарителе

Исходные данные:

Определить концентрацию солей во вторичном паре на выходе испарителя, если известны следующие данные (см. табл.): расход вторичного пара $D_{\rm u}^{\rm BT}$, давление вторичного пара P_2 , внутренний диаметр корпуса $D_{\rm K}$, количество Nотв и диаметр dots отверстий в паропромывочных листах, h — уровень воды на паропромывочном листе, m, Hпо — высота парового отсека, Z — число паропромывочных листов, Cконц — концентрация солей в концентрате, Cдв — концентрация солей в добавочной воде, Cк — концентрация солей в паропромывочном конденсате.

Методические указания:

Скорость движения пара в паровом объеме корпуса испарителя:

$$\omega_{\Pi O} = \frac{4D_{\text{H}}^{\text{BT}}}{\rho^{//}\pi D_{\text{K}}^2}.$$

$$\rho" = f(P_2)$$

Минимальная скорость пара в отверстиях паропромывочного листа:

$$\omega_{\min} = 1,41d_{\text{otb}}^{\frac{2}{9}}h^{\frac{1}{9}}\sqrt{\frac{g}{\rho''}}\sqrt{\sigma(\rho'-\rho'')g}\left(\frac{\rho'-\rho''}{g\sigma}\right)^{\frac{1}{6}},$$

где dotв — диаметр отверстий в паропромывочных листах, h — высота слоя воды над листом, ρ 'и ρ " — плотность воды и пара, σ — коэффициент поверхностного натяжения воды. Теплофизические параметры определяются для состояния насыщения по давлению P_2 .

Объемное паросодержание в паровом отсеке:

$$\varphi = 0,26 \left(\frac{\omega_{\Pi O}^{2}}{g\sqrt{\frac{\sigma}{g(\rho' - \rho'')}}} \right)^{0,4} \cdot \left(\frac{\rho''}{\rho' - \rho''} \right)^{0,12}.$$

Сепарация влаги в отсеке зависит от:

$$N = \frac{\omega_{\Pi O}^2}{\varphi \cdot g \cdot H_{\Pi O}}.$$

Скорость пара в отверстиях паропромывочного листа:

$$\omega_0 = \frac{4D_H^{BT}}{\rho "\pi d_{ome}^2 N_{ome}}.$$

Должно соблюдаться условие $\omega_0 > 1, 2\omega_{\min}$.

Критерий Галилея:

$$Ga = \frac{g\left(\frac{\sigma}{g\rho''}\right)^{\frac{3}{2}}}{\left(v'\right)^{2}}.$$

Эффективность сепарации возрастает при $N < N_{\kappa pum}$:

где:

$$N_{\kappa pum} = 4, 2 \cdot 10^{-6} Ga^{0.55} \left(\frac{\rho''}{\rho' - \rho''} \right)^{0.35}.$$

$$y_{\Pi O1} = C \frac{\omega_{\Pi O}^{2,76}}{H_{\Pi O}^{2,3}}.$$

При $N > N_{\kappa pum}$

$$y_{\Pi O2} = B \frac{\omega_{\Pi O}^{7,8}}{H_{\Pi O}^{6,5}}.$$

где:

С и В – коэффициенты, зависящие от Р2, определяются по формулам:

$$C = (0.142 + 5.156P - 12.373P^2 + 16.768P^3 - 7.744P^4) \cdot 10^{-4}$$
.

$$B = (0.133 + 1.054 P + 16.39 P^{2} - 26.906 P^{3} + 17.328 P^{4})10^{-5}.$$

Р в бар.

Влажность пара на выходе из слоя воды:

При
$$N < N_{\kappa pum}$$
:

$$y_{en1} = 5, 4 \cdot 10^{12} \cdot A^{-1,15} \cdot y_{HO1}.$$

При
$$N > N_{\kappa pum}$$
:

$$y_{en2} = 5,6 \cdot 10^{28} \cdot A^{-2,6} \cdot y_{IIO2}.$$

где:

$$A = h \left(\frac{\sigma \rho'}{\left(\mu'\right)^2} \right) \left(\frac{\rho' - \rho''}{\rho''} \right).$$

Концентрация солей в паровом отсеке перед 1-м промывочным листом в зависимости от N и $N_{\kappa pum}$:

$$C_{\Pi O 1} = y_{\Pi O i} C_{KOHII}$$
.

где
$$y_{\Pi Oi} = y_{\Pi O1}$$
 или $y_{\Pi O2}$

Концентрация солей в промывочной воде на 1-м листе:

$$C_{np.e.}^{J1} = C_{JB} + C_{IIO1} \eta_{JP}.$$

где $\eta_{\mathit{\PiP}}$ – коэффициент промывки, принимается 0,9..0,95 на 1-м и 0,8..0,9 на 2-м листе.

Концентрация солей за 1-м паропромывочный листом:

$$C_{\Pi\Omega 2} = C_{\Pi\Omega 1} (1 - \eta_{\Pi P}) + y_{e_{\Pi} 1} C_{np.e.}^{\Pi 1}.$$

Концентрация солей в промывочной воде на 2-м листе

$$C_{np.e.}^{II2} = C_K + C_{IIO2} \eta_{IIP}.$$

Концентрация солей за 2-м паропромывочным листом

$$C_{\Pi O 3} = C_{\Pi O 2} \left(1 - \eta_{\Pi P} \right) + y_{e \pi i} C_{n p. e.}^{\Pi 2}.$$

Концентрация солей во вторичном паре на выходе испарителя:

$$C_{H2} = C_{\Pi O2} \left(1 - \eta_C \right), \frac{MKZ}{KZ}.$$

где

 $\eta_{\rm C}$ — коэффициент очистки пара от влаги в жалюзийном сепараторе, принимается 0,75..0,85.

Таблица 1. Исходные данные

	D_{M}^{BT} ,	P ₂ ,	Dк,	Nотв	d0,	h,	Нпо,	Z	Сконц,	Сдв,	Ск,
	кг/с	бар	M		MM	MM	M		$\Gamma/\kappa\Gamma$	г/кг	мкг/кг
	111, 0										
1	3,1	1,2	2,5	6000	6	80	1,0	1	100	1,0	-
2	4,3	1,5	2,8	11500	5	70	0,9	2	80	1,2	10
3	5,2	3,5	2,7	9500	5	60	1,1	1	100	1,1	-
4	4,7	4,5	2,4	9800	4,5	65	0,8	1	90	1,0	-
5	6,3	5,5	2,6	9500	5	75	0,85	2	110	0,9	15
6	9,1	2,8	3,2	12000	6	82	1,1	1	94	0,8	-
7	3,8	1,6	2,1	7900	5,5	86	1,3	1	60	0,95	-
8	2,5	2,4	2,3	2500	7	82	0,86	1	60	0,95	-
9	4,2	2,6	2,9	4800	6,5	62	0,88	1	120	1,1	-
10	3,3	1,6	1,8	4800	6,5	72	1,2	2	110	1,0	30
11	5,2	2,3	2,2	7600	6	74	1,0	1	50	0,8	-
12	7,9	3,1	2,6	7200	7	68	1,2	1	70	0,9	-
13	3,5	4,1	2,4	7600	4,5	66	1,1	1	100	1,0	-
14	6,6	1,1	3,2	13500	6	75	1,1	2	80	0,8	15