

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ БАЗОВАЯ

ВЫСОКОВОЛЬТНЫЕ ИСПЫТАТЕЛЬНЫЕ УСТАНОВКИ И ИЗМЕРЕНИЯ

Направление ООП	13.03.02	Электр	оэнергет	ика и эл	ектротехника
Профиль(и) подготовки	Высоковольтные электроэнергетика и				
*		Э	лектрот		
Квалификация	бакалавр				
Базовый учебный план приема (год)	2018				
Курс	4 ce	еместр	8		
Трудоемкость в кредитах		6			
Виды учебной деятельности	Временной ресурс				
		ной форм	e		
Лекции, ч	00	учения 22			
Практические занятия, ч	38				
Лабораторные занятия, ч	27				
Контактная (аудиторная)	88				
работа (ВСЕГО), ч	- 2555				
Самостоятельная работа, ч	128				
ИТОГО, ч		216			
Вид промежуточной	Экзамен	. (Обеспечи	вающее	
аттестации	диф.зачет (курсовой	диф.зачет подразделен (курсовой		деление	033
	проект)				
Руководитель ОЭЭ		the s	ser &	Демен	тьев Ю.Н.
Руководитель ООП			-0	Шеста	кова В.В.
Преподаватель		101	_	Юшко	в А.Ю.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного состава компетенций (результатов освоения) для подготовки к профессиональной деятельности (в соответствии с п. 3).

2. Место дисциплины в структуре ООП

Дисциплина «Высоковольтные испытательные установки и измерения» относится к блоку 1 «Дисциплины учебного плана ООП 13.03.02 «Электроэнергетика и электротехника»: вариативная часть, модуль специализации «Высоковольтные электроэнергетика и электротехника».

Пререквизиты:

- 1. Техника высоких напряжений.
- 2. Изоляция электротехнического оборудования высокого напряжения.

Кореквизиты:

- 1. Молниезащита.
- 2. Физика пробоя конденсированных сред.

3. Планируемые результаты обучения по дисциплине

В соответствии с требованиями ООП освоение дисциплины направлено на формирование у студентов следующих компетенций (результатов освоения ООП), в т.ч. в соответствии с ФГОС ВО и профессиональными стандартами (табл.1):

Составляющие результатов освоения ООП

Результаты	Компетенци	Составляющие результатов освоения Составляющие результатов освоения					
освоения ООП	и по ФГОС, СУОС	Код	Код Владение Код Умения		Код	Знания	
1	2	3	4	5	6	7	8
Р7. Применение фундаментальных знаний.	УК-1, УК-2, УК-3, УК-4, ОПК-1, ОПК- 2	B.7.2	анализа физических явлений в электрических устройствах, объектах и системах	У.7.2	выявлять физическую сущность явлений и процессов в устройствах различной физической природы и выполнять применительно к ним простые технические расчеты	3.7.2	основных физических явлений и законов механики, электротехники, органической и неорганической химии теплотехники, оптики, ядерной физики и их математическое описание
Р10. Исследования.	ОПК-2, ОПК- 3, ПК-1, ПК- 2, ПК-5, ПК- 12, ПК-14, ПК-15	B.10.1	работы с приборами и установками для экспериментальных исследований	У.10.1	проводить эксперименты по заданным методикам с последующей обработкой и анализом результатов в области электроэнергетики	3.10.1	типовых стандартных приборов, устройств, аппаратов, программных средств, используемых при экспериментальных исследованиях
Р11. Инженерная практика	ОПК-2, ОПК- 3, ПК-11, ПК- 13, ПК-18	B.11.1	использования прикладных программ и средствами автоматизированного проектирования при решении инженерных задач электроэнергетики	У.11.1	рассчитывать режимы работы электроэнергетических и электротехнических установок различного назначения, определять состав оборудования и его параметры, схемы электроэнергетических объектов	3.11.1	инструментария для решения задач проектного и исследовательского характера в сфере профессиональной деятельности по электроэнергетике

Таблица 1

В результате освоения дисциплины студентом должны быть достигнуты следующие результаты (табл. 2):

Планируемые результаты обучения по дисциплине

Таблина 2

№ п/п	Результат					
РД1 (P7)	Применение соответствующих гуманитарных, социально-экономических, математических, естественно-научных и инженерных знаний, компьютерных технологии для решения задач расчета и анализа электрических устройств, объектов и систем					
РД2 (P10)	Умение планировать и проводить необходимые экспериментальные исследования, связанные с определением параметров, характеристик и состояния электрооборудования, объектов и систем электроэнергетики, интерпретировать данные и делать выводы					
РД3	Применение современных методов и инструментов практической инженерной деятельности					
(P11)	при решении задач в области электроэнергетики					

4. Структура и содержание дисциплины

Раздел 1. Основные положения курса

Роль энергетики в научно-техническом развитии общества. Проблемы передачи электроэнергии. Роль испытаний изоляции обеспечении высоковольтных установок и высоковольтного оборудования. Работы российских ученых в области высоковольтной техники.

Лабораторные работы:

1. Вводное занятие, знакомство с высоковольтными лабораториями, правила техники безопасности при работе в лаборатории.

Раздел 2. Методы и устройства для получения и регулирования высоких переменных напряжений промышленной частоты

Высоковольтные испытательные трансформаторы. Назначение, особенности работы, устройство и конструктивное исполнение испытательных трансформаторов. Выбор испытательного трансформатора, схемы включения трансформаторов при испытании высоковольтной изоляции. Каскадное соединение испытательных трансформаторов. Проблемы создания каскадных схем при получении сверхвысоких напряжений. Питание первичных обмоток трансформаторов в каскадных схемах через переходные трансформаторы и по автотрансформаторной схеме. Особенности, достоинства и недостатки таких схем. Эксплуатационно-технические возможности и принципиальное конструктивное исполнение каскадов трансформаторов. Методы регулирования напряжения на зажимах первичных обмоток трансформаторов и каскадов трансформаторов. Необходимость регулирования напряжения и требования к устройствам для регулирования напряжения. Реостатный способ регулирования, трансформаторы с переменным коэффициентом регулирования, трансформаторы с подвижным сердечником, индукционные регуляторы. Назначение, устройство, эксплуатационно-технические возможности, область применения.

Лабораторные работы:

1. Исследование схем регулирования напряжения.

Практические занятия:

1. Регуляторы напряжения и высоковольтные трансформаторы.

Раздел 3. *Методы и устройства получения высоких напряжений* выпрямленного тока

Общая характеристика методов получения высокого напряжения постоянного тока. Элементы установок для получения высокого напряжения выпрямленного тока. Высоковольтные выпрямители, основные сравнительные характеристики. Электронные, ионные и полупроводниковые вентили, их устройство, принцип работы, технические возможности. Схемы выпрямления напряжения переменного тока. Классификация схем, сравнительные характеристики выходного напряжения, тока. Однополупериодные, двухполупериодные однофазные и трехфазные схемы. Работа установок, область применения, форма и величина выходного напряжения. Способ снижения пульсаций выходного напряжения. Схемы выпрямления с удвоением и утроением напряжения. Работа таких установок, величина и форма выходного напряжения. Область применения. Каскадный генератор постоянного тока. Электрическая схема, принцип каскадного умножения напряжения. Величина и форма напряжения на выходе каскадного генератора на холостом ходу и при работе на нагрузку. Пульсация и падение напряжения. Пути снижения пульсации и падения напряжения на выходе генератора. Принципиальное конструктивное исполнение и область применение каскадных генераторов.

Лабораторные работы:

1. Исследование схем выпрямления.

Практические занятия:

1. Расчет схем выпрямления высокого напряжения переменного тока

Раздел 4. *Методы и устройства получения высоких импульсных* напряжений

Форма испытательного «грозового» импульса напряжения. Назначение и принцип получения импульсных напряжений. Схема замещения зарядного и разрядного контуров одноступенчатого генератора импульсных напряжений (ГИН). Анализ зарядного контура для определения параметров зарядного контура. Анализ разрядного контура. Связь параметров «грозового» испытательного импульса с параметрами разрядного контура. ГИН для получения сверхвысоких импульсных напряжений. Электрическая схема многоступенчатого ГИН. Назначение элементов схемы, работа ГИН. Форма выходного напряжения, устранение колебаний напряжений, вызванных наличием индуктивности и «паразитной» разрядного контура ГИН. Конструктивное исполнение ГИН основные сравнительные характеристики ГИН.

Лабораторные работы:

1. Исследование схем умножения.

Практические занятия:

1. Расчет генератора на основе емкостных накопителей энергии.

Раздел 5. *Методы и устройства для получения коммутационных импульсов* напряжения

Назначение коммутационных импульсов, их форма и величина напряжения. Электрические схемы установок с использованием испытательных трансформаторов генераторов импульсных напряжений. Принцип устройства генераторов коммутационных импульсов, ИХ работа, величина и форма напряжения. Эксплуатационно-технические возможности, принципиальное конструктивное исполнение.

Назначение испытаний выключателей на отключающую способность. Колебательные контуры. Принцип работы колебательного контура, назначение элементов электрической схемы, технические возможности.

Лабораторные работы:

1. Профилактические испытания высоковольтного вакуумного выключателя

Практические занятия:

1. Расчет и выбор вакуумного выключателя.

Раздел 6. Измерение высоких напряжений и больших импульсных токов

Краткий обзор существующих методов, их возможности и основные требования к измерительным устройствам. Электростатические киловольтметры, емкостновыпрямительные схемы измерения. Принцип устройства, работа и область применения. Шаровые измерительные разрядники. Устройство, принцип измерения, к измерительным разрядникам для обеспечения погрешностей при измерении. Методики измерения различных видов напряжения шаровыми разрядниками. Делители напряжения. Назначение, классификация, требования к делителям. Делители для измерения постоянных, переменных и импульсных напряжений. Схемы замещения, анализ возможных погрешностей и основные пути их снижения. Принципиальное конструктивное исполнение. Влияние схемы подключения делителя к осциллографу на погрешность измерения напряжения. Измерение больших импульсных токов. Классификация и область применения измерительных устройств. Активные шунты, устройство, анализ погрешностей при измерении шунтами и пути их снижения. Специальные трансформаторы тока (пояс Роговского). Схемы включения пассивных элементов на выходе трансформатора тока. Условие малоискажающей записи сигнала с выхода трансформатора тока. Конструктивное исполнение «пояса Роговского».

Лабораторные работы:

1. Калибровка высоковольтного киловольтметра с помощью шарового разрядника.

Практические занятия:

- 1. Расчет делителя напряжения.
- 2. Расчет пояса Роговского.

По дисциплине предусмотрено выполнение курсового проекта.

Тема: «Расчет генератора импульсных напряжений».

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины предусмотрена в видах и формах, приведенных в табл. 3.

Основные виды и формы самостоятельной работы

Таблица 3

Виды самостоятельной работы		
источников информации по индивидуально заданной проблеме курса		
Изучение тем, вынесенных на самостоятельную проработку		
Поиск, анализ, структурирование и презентация информации		
Выполнение домашних заданий, расчетно-графических работ и домашних контрольных		
работ		
Подготовка к лабораторным работам, к практическим занятиям		
Выполнение курсовой работы или проекта, работа над междисциплинарным проектом		
Исследовательская работа и участие в научных студенческих конференциях, семинарах	5	
и олимпиадах		
Подготовка к контрольной работе и коллоквиуму, к зачету, экзамену	20	
Итого		

6. Оценка качества освоения дисциплины

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Положением о промежуточной аттестации студентов Томского политехнического университета».

Максимальное количество баллов по дисциплине в семестре – 100 баллов, в т.ч.:

- в рамках текущего контроля 80 баллов,
- за промежуточную аттестацию (экзамен/зачет) 20 баллов.

Оценка качества освоения дисциплины производится по результатам оценочных мероприятий.

Оценочные мероприятия текущего контроля по разделам и видам учебной деятельности приведены в Приложении «Календарный рейтинг-план изучения дисциплины (модуля)», «Календарный рейтинг-план выполнения курсового проекта (работы)» (при наличии).

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Методическое обеспечение

Основная литература:

1. Лавринович, Валерий Александрович. Высоковольтные испытательные установки и измерения: учебное пособие / В. А. Лавринович ;

- Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2010. 98 с.: ил.. Библиогр.: с. 50. http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C2 10863
- 2. Бочаров, Юрий Николаевич. Техника высоких напряжений. Высоковольтные испытания и измерения: учебное пособие / Ю. Н. Бочаров, С. М. Дудкин, В. В. Титков; Санкт-Петербургский государственный политехнический университет (СПбГПУ). Санкт-Петербург: Изд-во СПбПУ, 2013. 210 с.: ил.. Приоритетный национальный проект "Образование". Библиогр.: с. 208-209.. ISBN 978-5-7422-4019-8 http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C3 18263
- 3. Техника высоких напряжений: учебник / И. М. Богатенков [и др.]; под ред. Г. С. Кучинского. Екатеринбург: АТП, 2015. 606 с.: ил.. Библиогр.: с. 598-600.. ISBN 5-283-04757-2. http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C3 18176

Дополнительная литература:

- 1. Шваб, Адольф. Измерения на высоком напряжении: Измерительные приборы и способы измерения: пер. с нем. / А. Шваб. 2-е изд., перераб. и доп.. Москва: Энергоатомиздат, 1983. 264 с. http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C3 4086
- 2. Техника высоких напряжений: теоретические и практические основы применения / М. Бейер [и др.]; под ред. В. П. Ларионова. Москва: Энергоатомиздат, 1989. 555 с.. ISBN 5283024601. http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C3 4076
- 3. Кондра, Борис Николаевич. Высоковольтные испытательные установки: учебное пособие / Б. Н. Кондра; Киевский политехнический институт (КПИ). Киев: УМКВО, 1989. 52 с.. http://catalog.lib.tpu.ru/catalogue/simple/document/RU%5CTPU%5Cbook%5C2 74800

7.2 Информационное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. ProQuest Dissertations and Theses электронное собрание магистерских и докторских диссертаций, защищенных в университетах 80 стран мира http://www.proquest.com/products-services/pqdt.html
- 2. Электронная библиотека диссертаций Российской государственной библиотеки http://diss.rsl.ru/?menu=disscatalog
- 3. SCIRUS поисковая система научной информации, (научные журналы, персональные страницы ученых) http://www.sciencedirect.com/

Используемое лицензионное программное обеспечение (в соответствии с Перечнем лицензионного программного обеспечения ТПУ):

- 1. Программный комплекс «Matlab».
- 2. Программный комплекс «Mathcad».
- 3. Программы MS Word, MS Excel, MS PowerPoint.

8. Материально-техническое обеспечение дисциплины

Основное материально-техническое обеспечение дисциплины представлено в табл. 4.

Таблица 4

Материально-техническое обеспечение дисциплины (модуля)

№ п/п	Наименование оборудованных учебных кабинетов, компьютерных классов, учебных лабораторий, объектов для проведения практических занятий с перечнем основного оборудования	Адрес (местоположение), с указанием корпуса и номера аудитории
1	Учебная аудитория для проведения лекционных занятий. Специализированная лекционная: Проектор Epson EB-915W, моноблок MSI Wind Top, экран, лицензионные программы: MS Word, MS Excel, MS PowerPoint.	634034 г. Томская область, г. Томск, улица Усова, д.7, учебный корпус №8, аудитория 328
2	Учебная аудитория для проведения лабораторных занятий. Высоковольтный зал № 1: Лабораторная установка «Высоковольтная изоляция»: мост переменного тока P5026; образцовый воздушный конденсатор P5023; прибор контроля влажности ПКВ - 13; мегомметр; трансформатор напряжения HTMИ-10; электронный счётчик импульсов ПС-10000; стенд испытания защитных средств (боты, перчатки, коврики); Установки переменного и постоянного тока на напряжение 110 кВ – 2 шт; Высоковольтные делители напряжения переменного и постоянного тока на 110 кв – 4 шт; Осциллографы быстродействующие типа «Текtronix» – 2 шт; Испытательная установка для определения электрической прочности жидкостей на 90 кВ типа АИМ – 90; Лабораторная установка «Генератор импульсных токов» на напряжение 50 кВ, ток 50 кА; Электростатический киловольтметр на напряжение до 75 кв – 2 шт; Установка для измерения диэлектрических потерь в электрической изоляции». Установка для измерения изучения высоковольтного коронного разряда – 2 шт.	634034 г. Томская область, г. Томск, улица Усова, д.7, учебный корпус №8, аудитория 071
3	Учебная аудитория для проведения практических занятий. Специализированная лекционная: моноблок MSI Wind Тор, Плазменная панель LG50" 50PA6520(тип3) , лицензионные программы: MS Word, MS Excel, MS PowerPoint.	634034 г. Томская область, г. Томск, улица Усова, д.7, учебный корпус №8, аудитория 348
4	Аудитория для самостоятельной работы. Компьютерные классы – компьютеры на базе Intel E2220, Intel G2020, Celeron 440 – 32 шт.; лицензионные программы. лицензионные программы: MS Word, MS Excel, MS PowerPoint, Mathcad, MatLAB, Electronic workbench Pro.	634034 г. Томская область, г. Томск, улица Усова, 7, учебный корпус №8, аудитория 127

Программа составлена на основе Общей характеристики ООП ТПУ по направлению 13.03.02 «Электроэнергетика и электротехника» подготовки бакалавров (приема 2018 г.).

Программа составлена на основе Общей характеристики ООП ТПУ по направлению 13.03.02 «Электроэнергетика и электротехника» подготовки бакалавров (приема 2018 г.).

Программа одобрена на заседании отделения электроэнергетики и электротехники (протокол № \nearrow от « $\cancel{28}$ » $\cancel{66}$ 2018 г.).

Автор: Доцент ИШЭ ______/Юшков А.Ю./ подпись

Рецензент: Доцент ИШЭ /Космынина Н.М./