Дисциплина:

ТЕХНИКА ВЫСОКИХ НАПРЯЖЕНИЙ

Преподаватель:

Соловьев Михаил Александрович,

Доцент кафедры ЭСС ЭНИН

Контакты:

Аудитория 212, гл. корпус Тел. (3822) 60-62-50

Эл. почта: solo@tpu.ru

Техника высоких напряжений (ТВН) является одной из профилирующих дисциплин при подготовке инженеров-электриков.

Цель — изучение экономически оправданных и технически выполнимых приемов и методов проектирования и эксплуатации изоляции линий электропередачи и подстанций.

Научный фундамент курса (ТВН) - теоретические и экспериментальные данные по электрофизическим процессам в газообразных, жидких и твердых изоляционных средах.

На этом базируется возможность создания надежной изоляции электрических систем.

Кроме этого, надежность изоляции обусловливается грамотной эксплуатацией, ограничением всех видов воздействий (перенапряжений) на нее и своевременно проведенными испытаниями.

Дисциплина имеет тесную связь с дисциплинами:

«Электромеханика»,

«Электрические станции»,

«Электрические сети и системы»,

рассматривая вопросы производства, передачи и распределения электрической энергии с точки зрения надежности.

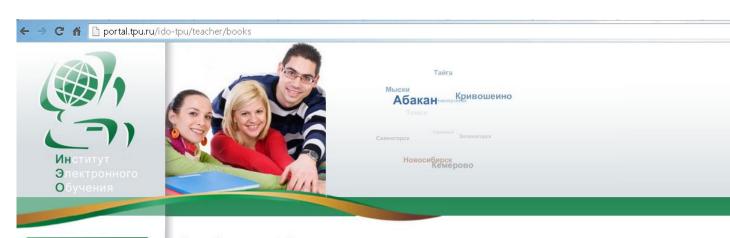
Основой для освоения курса ТВН является знание основ физики, математики, теории вероятности и теоретических основ электротехники.

После изучения дисциплины студент должен:

- 1) Знать виды электрической изоляции оборудования высокого напряжения, воздушных ЛЭП, электрооборудования станций и подстанций.
- 2) Овладеть методами профилактических испытаний изоляции, методами защиты изоляции электрооборудования от набегающих волн и прямых ударов молнии.
- 3) Уметь выполнить расчеты по оценке уровня и показателя грозоупорности воздушных линий.
- 4) Организовать техническое обслуживание и безопасную эксплуатацию установок высокого напряжения.

Изучение дисциплины включает рассмотрение 4-х основных разделов:

- 1) Электрический разряд в газовых, жидких и твердых диэлектриках (физика и теория, факторы, влияющие на разрядное напряжение, коронный разряд, разряд по поверхности и др.)
- 2) Испытательные установки в измерение высоких напряжений
- 3) Изоляция и испытание изоляции установок высокого напряжения (устройство и расчет воздушных ЛЭП, кабелей, трансформаторов, конденсаторов, электрических машин. Координация изоляции в элементах энергосистемы. Профилактика изоляции.
- 4) Перенапряжения в электрических системах и методы защиты оборудования (внутренние перенапряжения, дуговые, коммутационные, атмосферные (молния и грозозащита)).


Изучение дисциплины:

- 1) Лекции (1 + 4)
- 2) Лабораторные работы (6)
- 3) Самостоятельная работа
 - Работа с литературой
 - Выполнение Индивидуального домашнего задания

Индивидуальное домашнее задание:

- Ответ на 3 контрольных вопроса по основным разделам дисциплины
- Решение 4 задач

Срок сдачи задания — за 2 недели до начала экзаменационной сессии (15 апреля)

Преподавателю

Новости

Графики учебного процесса (сессий)

Учебные материалы

П Расписание занятий

Проверка отчётов студентов (текущий контроль)

Проверка экзаменов / зачётов / рубежного контроля

Пиквидация академических задолженностей

Журнал преподавателя

Объявления студентам

Консультационный форум

Медиатека

Авторам АПИМов

Нормативные документы

Службы ИнЭО для преподавателей

Главная - Преподавателю - Учебные материалы

УЧЕБНЫЕ МАТЕРИАЛЫ

В данном разделе размещаются кейсы с учебно-методическими материалами по дисциплина пособия, методические указания по изучению дисциплины, рабочие программы, индивид лабораторные и курсовые работы, виртуальные лабораторные комплексы, ссылки на записи ве

Чтобы посмотреть учебно-методические материалы онлайн из фильтров выберите нужную дисциплину, архив с учебно-методическими материалами по дисциплине на Ваш компьютер, кликните на ссылку "Скача"

Внимание! Для просмотра файлов в формате PDF (.pdf) на Вашем компьютере должно быть устано Рекомендуемая программа - Adobe Reader X (версия 10), которую можно бесплатно скачать в Интернете.

С вопросами обращайтесь в Службу поддержки пользователей >>

Дисциплина:
Техника высоких напряжений ▼
Группа:
3-5A10 - Электроэнергетика и электротехника ▼
Семестр:
8 ▼
Показать

Группа: 3-5А10 (КЗФ); Курс:4; Текущий семестр:7; Текущая сессия: зимняя

Техника высоких напряжений (140400) (Авторы: Мытников А.В.)
 Скачать пособие

Материалы предназначены для использования в учебных целях студентами Института дистанционного образования ТПУ

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1. Важов В.Ф. Техника высоких напряжений: учеб. пособие / В.Ф. Важов [и др.]. Томск: Изд-во ТПУ, 2013. 232 с.
- Техника высоких напряжений / под ред. Д.В. Разевига. М.: Энергия, 1976. – 488 с.
- 3. Техника высоких напряжений / под ред. М.В. Костенко. М.: Высшая школа. 1973.—528 с.
- 4. Шваб А. Измерения на высоком напряжении. М.: Энергия, 1973. 233 с.
 - Мирдель Г. Электрофизика. М.: Мир, 1972. 608 с.
- Важов В.Ф. Руководство к лабораторным работам по технике высоких напряжений / В.Ф. Важов [и др.]. – Томск: Изд. ТПУ, 2000.– 76 с.
- 7. Байер М. Техника высоких напряжений: теоретические и практические основы применения / М. Байер [и др.]. М.: Энергоатомиздат, 1989. 555 с.
- 9. Ларионов В.П., Базуткин В.В., Пинталь Ю.С. Техника высоких напряжений. Энергоатомиздат, 1986. 464 с.

6.2. Литература дополнительная

- 11. Куртенков Г.Е. Основы проектирования изоляции высоковольтного оборудования: учебное пособие. – Томск: Изд-во НТЛ, 1999. – 276 с.
- 12. Леонтьев Ю.Н. Высоковольтные испытательные и электрофизические установки. Высоковольтные измерения. Томск, ТПУ, 1993. 93 с.

Материалы предназначены для использования в учебных целях студентами Института дистанционного образования ТПУ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

Директор ИДО С.И. Качин «____» _____ 2013 г.

ТЕХНИКА ВЫСОКИХ НАПРЯЖЕНИЙ

Методические указания и индивидуальные задания для студентов ИДО, обучающихся по направлению 140400 «Электроэнергетика и электротехника», профиль «Электроэнергетические системы и сети»

Составитель

А.В. Мытников

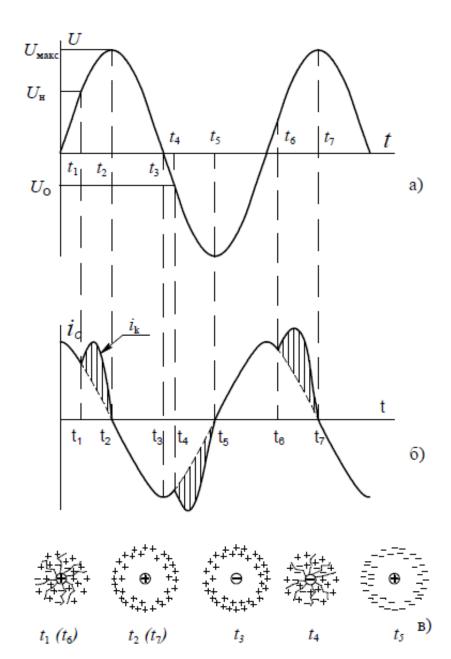
Семестр	8
Кредиты	4
Лекции, часов	8
Лабораторные работы, часов	6
Индивидуальные задания	1
Самостоятельная работа, часов	94
Формы контроля	зачет

Издательство Томского политехнического университета 2013

Материалы предназначены для использования в учебных целях студентами Института дистанционного образования ТПУ

ОГЛАВЛЕНИЕ

1. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
Результаты освоения дисциплины	5
2. СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ	6
Тема 1. Введение	6
ТЕМА 2. ЭЛЕКТРОФИЗИЧЕСКИЕ ПРОЦЕССЫ В ДИЭЛЕКТРИЧЕСКИХ СРЕДАХ	
ТЕМА 3. Получение и измерение высоких напряжений	
ТЕМА 4. Изоляция высоковольтного оборудования и контроль ее состояния	8
ТЕМА 5. Перенапряжения в электрических системах	9
3. СОДЕРЖАНИЕ ПРАКТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ	10
3.1. ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ	10
4. ИНДИВИДУАЛЬНЫЕ ДОМАШНИЕ ЗАДАНИЯ	11
4.1. Общие методические указания по выполнению индивидуального задания	11
4.2. Варианты индивидуальных заданий	
4.3. Вопросы и задачи по теме «Электрофизические процессы в газах, изоляции	
ЭЛЕКТРИЧЕСКИХ УСТАНОВОК, ВЫСОКОВОЛЬТНОЕ ОБОРУДОВАНИЕ»	13
ЗАДАЧА 1	25
ЗАДАЧА 2	28
ЗАДАЧА 3	30
ЗДДАЧА 4	31
5. ПРОМЕЖУТОЧНЫЙ КОНТРОЛЬ	34
5.1. Вопросы для подготовки к зачёту	34
5.2. Образец билета к зачету по дисциплине «Техника высоких напряжений»	
6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	39
6.1. Основная литература	39
6.3. Burrey par apparature use	



Задача 1

Определить потери энергии на корону и среднегодовую мощность потерь для трехфазной линии переменного напряжения с горизонтальным расположением проводов

	Наименование	Значение в соответствии с
	T	номером варианта
U _{ном,} кВ	номинальное напряжение линии	500
	Число и марка проводов в фазе	2 x AC-400
r ₀ , см	радиус одиночного провода	1,36
D _P , cM	расстояние между проводами фазы	40
а, м	расстояние между соседними фазами	10,5
h _{х.п} , час	продолжительность хорошей погоды	7235
h _т , час	продолжительность тумана	375
h _и , час	продолжительность инея, гололёда и изморози	225
h _д , час	продолжительность дождя и мокрого снега	425
h _{сн} , час	продолжительность сухого снега	500
J _Д , мм/ч	средняя интенсивность дождя и мокрого снега	0,2
3J _{сн} , мм/ч	средняя интенсивность сухого снега	0,8

Коронный разряд

Развитие короны при переменном напряжении

	Характеристика провода	2rp Dp	2rp	2rp
	Число проводов в фазе п	2	3	4
2	Эквивалентный радиус гэ	$\sqrt{r \cdot D_p}$	$\sqrt[3]{r \cdot D_p^2}$	$\sqrt[8]{2} \cdot \sqrt[4]{r \cdot D_p^3}$
1	Радиус расщеп- ления г _Р	$\frac{D_p}{2}$	$\frac{D_p}{\sqrt{3}}$	$\frac{\sqrt{2}}{2}D_p$
3	$\kappa_{\mathbf{y}} = \frac{E_{\text{max}}}{Ecp}$	$1+2\frac{r}{D_p}$	$1 + 2\sqrt{3} \frac{r}{D_p}$	$1 + 3\sqrt{2} \frac{r}{D_p}$

4
$$E_K = 23.3 \cdot m \cdot \delta \cdot \left[1 + \frac{0.62}{(r \cdot \delta)^{0.38}} \right],$$

Коэффициент гладкости провода:

m = 0,85 — хорошая погода; m = 0,7 — туман; m = 0,6 - иней;

Дождь и снег – по графику в зависимости от интенсивности

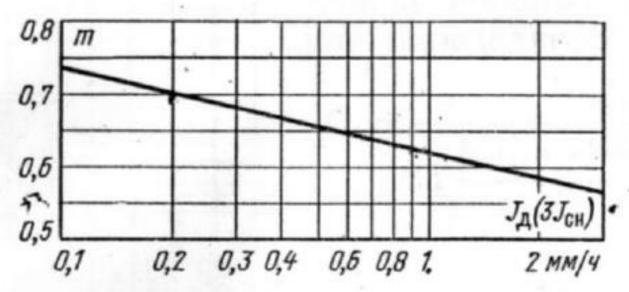


Рис. 3-10. Зависимость коэффициента гладкости m от средней интенсивности дождя J_{π} или сухого снега $J_{\text{сн}}$.

Средне геометрическое расстояние между фазами:

$$d = \sqrt[3]{2a^3}$$

Рабочая емкость фаз (C₁ = C₃, C₂ = 0,05 * C₁):

$$C = \frac{2 \cdot \pi \cdot \epsilon \cdot \epsilon_0}{\ln \frac{d}{r_0}}$$
, Внимание на размерность d и r - в метрах или сантиметрах!

Критическое напряжение начала короны:

$$U_K = \frac{2 \cdot \pi \cdot \varepsilon \cdot \varepsilon_0 \cdot n \cdot r_0 \cdot E_K}{K_V \cdot C},$$

Эквивалентная емкость объемного заряда короны:

$$C_{\mathfrak{I}} = \frac{2 \cdot \pi \cdot \varepsilon \cdot \varepsilon_{0}}{\ln \frac{\sqrt{r_{p}^{2} + 2.5 \cdot K \cdot C \cdot U_{\kappa} / \delta \cdot \varepsilon \cdot \varepsilon_{0} \cdot \omega}}{r_{\mathfrak{I}}}},$$

$$U_{\Phi} = \frac{U_{HOM} \cdot \sqrt{2}}{\sqrt{3}}$$

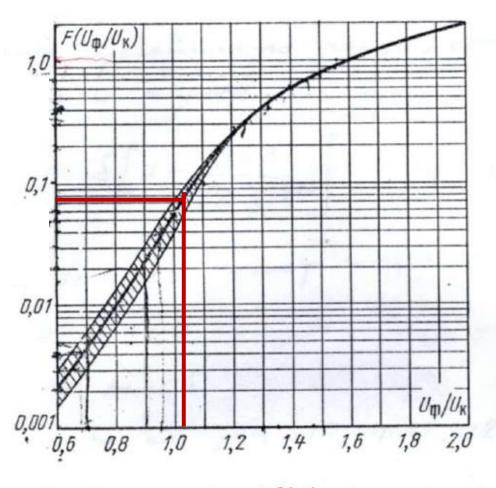


Рис. 3-11. Функция $F\left(\frac{U_{\Phi}}{U_{\kappa}}\right)$ в формуле лля определения потерь на корону (3-19).

Потери на корону:

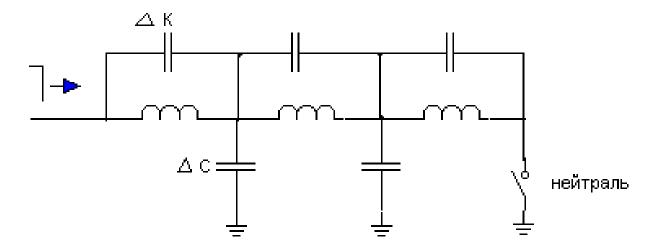
10

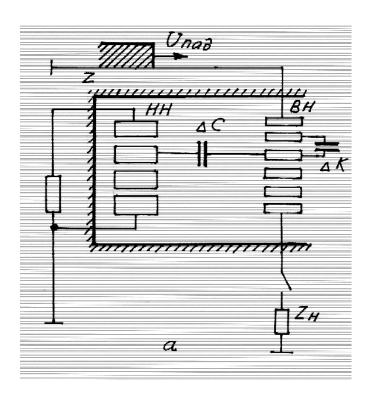
$$P = 350 \cdot \omega \cdot \frac{C^2}{C_{\mathfrak{I}} - C} \cdot U_K^2 \cdot F(U_{\mathfrak{I}} / U_K),$$

Потери на корону линии за год:

$$A = P_{X.\Pi.} \cdot h_{X.\Pi.} + P_T \cdot h_T + P_{II} \cdot h_{II} + P_{II} \cdot h_{II} + P_{CII} \cdot h_{CH}$$

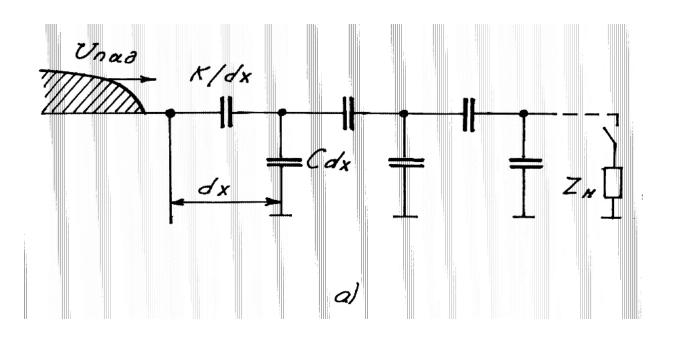
Средняя за год мощность потерь:


$$P_{CP} = A/8760.$$



Задача 2

Рассчитать и построить кривую ёмкостного (начального) распределения напряжения (U_c) кривую максимальных потенциалов ($U_{\rm MAKC}$) вдоль обмотки трансформатора в координатах U_o , n/N, при воздействии прямоугольной, бесконечно длинной волны напряжения с амплитудой U_o .


- Общее число элементов схемы замещения обмотки трансформатора N,
- Число элементов, где определяется величина U_C и U_{MAKC} –n.
- Ёмкость одного элемента на землю ΔC ,
- Собственная ёмкость каждого элемента вдоль трансформатора ΔK
- Режим нейтрале трансформатора: заземленная / изолированная

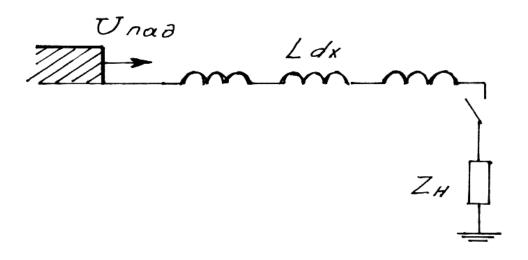
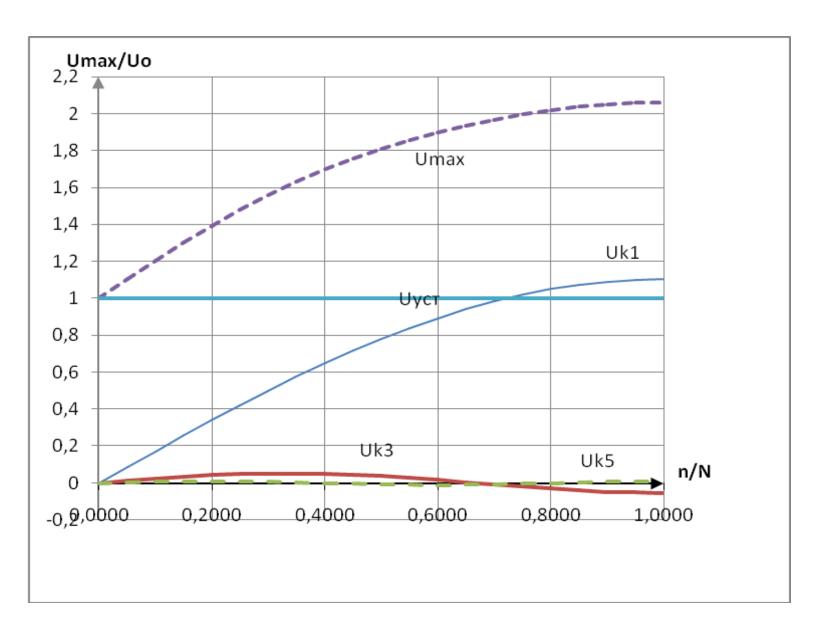
Конструктивная схема однофазной катушечной обмотки (a) и электрическая схема замещения (δ) высоковольтного трансформатора; Z_H – сопротивление нейтрали трансформатора

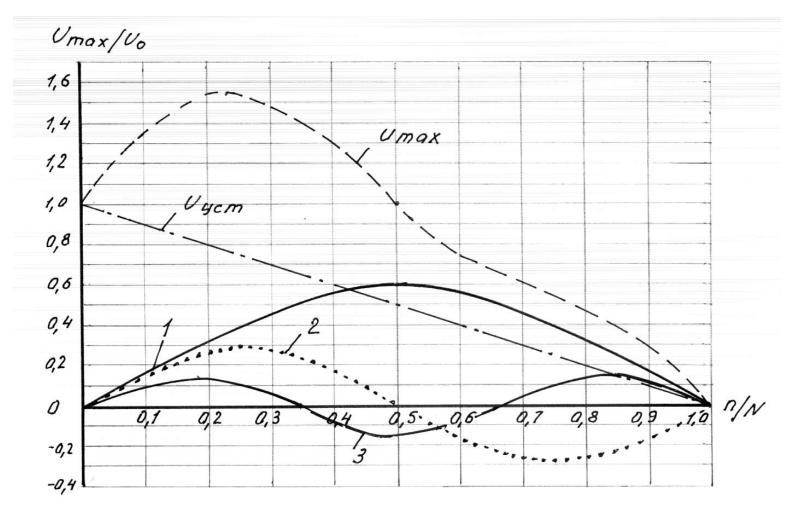
1. Начальное распределение напряжения вдоль обмотки трансформатора в начальный момент (t=0)

Начальное распределение напряжения по обмотке трансформатора:

- a) электрическая схема замещения для начального процесса (t = 0);
- (6) распределение напряжения вдоль обмотки для t=0.

2. Установившийся режим (или принуждённый режим) для импульсной прямоугольной волны напряжения этот режим соответствует длительному времени приложения $t \to \infty$.


Схема замещения обмотки трансформатора в установившемся режиме

РАСЧЕТЫ ГАРМОНИК:

$$U_k = U_{k max} \cdot \sin(\omega \cdot n)$$

$$\omega = \frac{2\pi}{T}$$

Изолированная нейтраль (K = 1, 3, 5)	Заземленная нейтраль (K = 1, 2, 3)
1 гармоника - $T = 4 \cdot N$	1 гармоника - $ { m T} = { m 2} \cdot { m \emph{N}} $
3 гармоника - $ { m T} = {4 \over 3} \cdot N $	2 гармоника - $ { m T} = { m \emph{N}} $
5 гармоника - $T=rac{4}{5}\cdot extbf{ extit{N}}$	3 гармоника - $T = \frac{2}{3} \cdot N$

Построение кривой максимальных потенциалов:

- 1- начальное распределение напряжения; 2- установившееся распределение напряжения;
- 3- огибающая максимальных потенциалов;

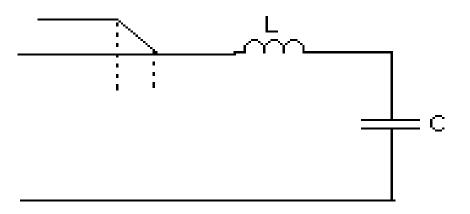
 U_{vcm} – установившееся напряжение;

 U_{max} – максимальное напряжение

Распределение напряжения вдоль обмотки трансформатора в разных стадиях:

- a сопротивление нейтрали равно нулю (нейтраль заземлена);
- δ сопротивление нейтрали равно бесконечности (нейтраль изолированна).

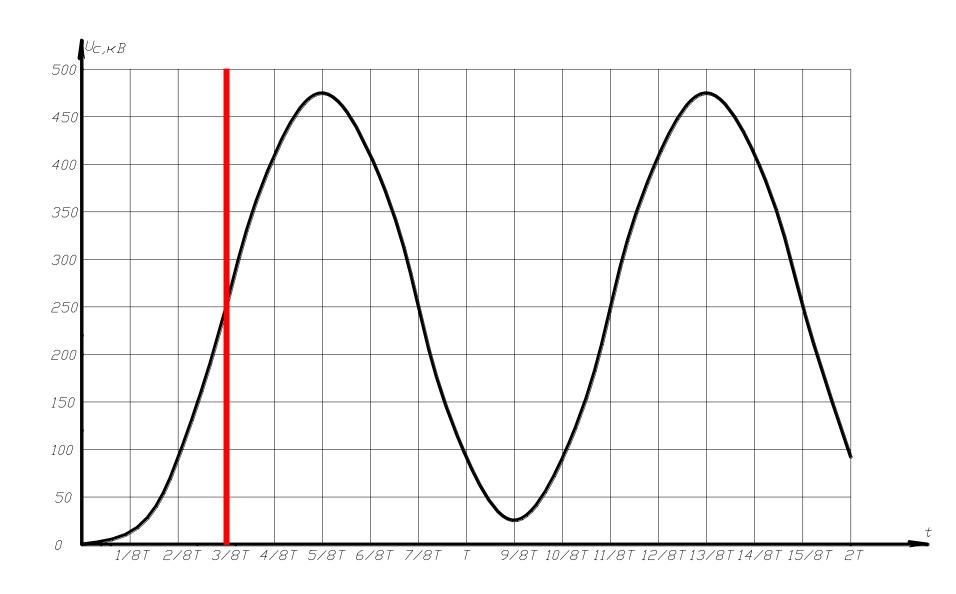
Перенапряжения в переходном режиме **опасны** для главной изоляции, поэтому главная изоляция трансформатора должна быть усилена:


- для заземлённой нейтрали в начальной части обмотки (1/3 от начала обмоток);
- •для **изолированной нейтрали** усиление необходимо производить по всей длине, но особенно в конце обмотки.

Задача 3

Рассчитать и построить форму волны на шинах подстанции, схема замещения которой содержит последовательно соединенные индуктивность L и ёмкость C. Набегающая волна имеет косоугольный фронт $\mathbf{t}_{\mathbf{0}}$ и постоянную амплитуду $\mathbf{U}_{\mathbf{0}}$.

Значение времени t задавать от 0 до 2T с шагом 1/8T.



Напряжение при косоугольной волне для времени $t \le t_{d}$ находим по формуле

$$U_C = a \cdot t - \frac{a}{\omega} \sin \omega t$$

Для значений времени $t \geq t_{\phi}$ расчёт U_c ведём по формуле

$$U_{c} = U_{0} \left[1 - \frac{\sin \frac{\pi \cdot t}{T}}{\frac{\pi \cdot t}{T}} \cos \omega \left(t - \frac{t}{2} \right) \right]$$

Задача 4

Рассчитать удельное число отключений линии на железобетонных опорах.

№ варианта	Значение согласно номеру варианта
U _{ном.} линии, кВ	110
Средняя высота троса в пролете, м	15
Защитный угол, град.	30
Сопротивление заземления опоры, Ом	10
Длина пролета, м	200
Расстояние трос-провод в пролете, м	4
Число тросов	1
Высота опоры, м	19

$$n = 0.18h(0.5V_{\Pi EP 1} \cdot \eta_1 + 0.5V_{\Pi EP 2} \cdot \eta_2 + V_{\alpha} \cdot V_{\Pi EP 3} \cdot \eta_1),$$

- 1) Перекрытие при ударе в опору
- 2) Перекрытие при ударе в провод (в пролете)
- 3) Перекрытие трос-провод при ударе в пролете

 $V_{\it \Pi E P}$ - вероятность перекрытия изоляции

 вероятность импульсного перекрытия в устойчивую силовую дугу

$E_{PAB} = U_{PAB}/l_{\Pi EP}, \kappa B_{\Bellet EMCT}/M$	50	30	20	10
η	0,6	0,45	0,25	0,1

- Определение числа изоляторов в гирлянде на номинальное напряжение.
- Определение длины гирлянды
- Определение 50% разрядного напряжения

	8 8000	Им	ипульсные разрядные напряжения, ка _{макс}		
олятора наоляторов де		50%	-ное	при 3	мксек
Тип изоляторя	Число изол гирлянде	положи- тельная поляр- ность	отрица- тельная поляр- ность	положи- тельная поляр- ность	отрица- тельная поляр- ность
П-4,5	6	570	570	790	780
	7	665	645	905	880
	10	930	860	1 250	1 160
	12	1 000	1 000	1 450	1 340
	14	1 270	1 140	1 630	1 490
	18	1 600	1 400	1 940	1 750
П-7	6	510	560	660	630
	7	595	645	770	735
	10	850	870	1 100	1 040
	12	1 020	1 000	1 320	1 235
	14	1 190	1 130	1 540	1 425
	18	1 500	1 370	1 980	1 795
	20	1 640	1 485	2 200	1 980
П-8,5	6	610	660	800	780
	7	710	745	930	885
	10	1 000	1 000	1 300	1 170
	12	1 200	1 130	1 540	1 320
	14	1 400	1 230	1 770	1 460
	18	1 750	1 400	2 230	1 720
ПМ-4,5	6	510	525	690	690
	7	600	600	800	785
	10	870	830	1 130	1 050
	12	1 040	980	1 340	1 200
	14	1 210	1 120	1 550	1 350
	18	1 530	1 390	1 970	1 670
	20	1 690	1 520	2 170	1 820
	22	1 850	1 650	2 370	1 960
ПС-4,5*	6	480	490	510	580
	7	555	560	635	665
	10	770	750	940	900
	12	900	865	1 110	1-040
	14	1 030	980	1 260	1-170
	18	1 290	1 200	1 550	1-420
	20	1 420	1 310	1 680	1-540
	22	1 550	1 410	1 810	1-660
ПС-8,5*	6	480	500	650	640
	7	565	570	760	730
	10	820	780	1 060	990
	12	990	920	1 260	1 140
	14	1 150	1 050	1 430	1 280
	18	1 470	1 300	1 740	1 530

Вероятность перекрытия при ударе в опору

$$I_3 \cong \frac{U_{50\%}}{R + \delta \cdot h_{on}},$$

$$I_3 \cong \frac{U_{50\%}}{R + \delta \cdot h_{on}}, \qquad V_{\Pi EP1} = 10^{-\frac{I_3}{60}} = e^{-\frac{I_3}{26}},$$

Вероятность перекрытия троспровод при ударе в пролете

$$a_{\kappa p} \ge \frac{2250 \cdot S}{(1 - K_{\partial}) \cdot l}, \quad \frac{\kappa A}{M\kappa c}; \qquad V_{\Pi EP2} = 10^{-\frac{a_{KP}}{36}} = e^{-\frac{a_{KP}}{15,7}},$$

$$V_{\Pi EP2} = 10^{-\frac{a_{KP}}{36}} = e^{-\frac{a_{KP}}{15,7}}$$

Вероятность перекрытия при ударе в провод

$$I_{3 \Pi P} = U_{50\%}/100, \text{ KA}.$$

$$V_{\Pi EP3} = 10^{-\frac{I_{3 \Pi P}}{60}},$$

$$\lg V_{\alpha} = \frac{\alpha \sqrt{h_{on}}}{90} - 4,$$

<u>Главная > Персональные сайты > Соловьев Михаил Александрович > Учебная деятельность</u>

Соловьев Михаил Александрович кандидат технических наук

<u>Управление проректора по образовательной деятельности</u>, Заместитель проректора по образовательной деятельности <u>Кафедра электроэнергетических систем,</u> Доцент

Тел.: 8 (3822) 60-62-50, 60-60-26

Вн. телефон: 1011 E-mail: <u>solo@tpu.ru</u>

Студенту очной формы обучения

Студенту заочной формы обучения

Новая вкладка

- 🔁 Рабочая программа дисциплины
- 📆 Курс лекций для студентов ИДО (пособие)
- 📆 Установочная лекция
- 📆 Вопросы к экзамену по дисциплине "Техника высоких напряжений"
- 📆 Конспект лекции Внешняя изоляция (разряды в газах)
- 📆 <u>Конспект лекции Внутренняя изоляция (жидкие и твердые диэлектрики)</u>
- 📆 <u>Конспект лекции Внутренняя изоляция (осн. положения).</u>
- 🔁 <u>Конспект лекции Перенапряжения </u>