

About me	
♦ 3 rd year at TPU	
 Graduated from TSU in 2000 PhD Math 	
 Thesis title: Math model and software for research features of plastic deformation in FCC materials Research areas: 	h
 Ordinary differential equations 	
 Scientific computing and numerical methods 	
 Mathematical modeling in material science 	
Lecture 1 2	

Mathematical Modeling	
What is Mathematical Modelingand how do you spell it?	
"Mathematics consists of the study and development of methods for prediction"	
Modeling = The use of mathematics as a tool to explain and make predictions of natural phenomena	
Lecture 1 4	

One-variable optimization	
One-variable optimization problems, sometimes called maximum- minimum problems, are typically discussed in first-semester calculus. A wide variety of practical applications can be handled using just these techniques.	
Lecture 1	5

One-variable optimization	
One-variable optimization problems, sometimes called maximum- minimum problems, are typically discussed in first-semester calculus. A wide variety of practical applications can be handled using just these	
techniques.	
Lecture 1	6

One-va	ariable optimization
The purpose a review of introduce mathemat setting.	e of this lecture 1, aside from of these basic techniques, is to the fundamentals of tical modeling in a familiar
Lecture 1	7

	1.1. The Five-Step Method
rom	In this section we outline a general
is to	procedure that can be used to solve
	problems using mathematical modeling.
	We will illustrate this procedure, called
	the five-step method, by using it to
	solve a one-variable maximum-
	minimum problem.

1.1. The Five-Step Method	
Example. A pig weighing 200 pounds gains 5 pounds per day and costs 45 cents a day to keep. The market price for pigs is 65 cents per pound, but is falling 1 cent per day. When should the pig be sold?	
Lecture 1 9	

1.1. The Five-Step Me	ethod
The question must be phrase i terms. We need to define ou	n Math r terms.
Go through the problem and m variables.	ake list of
Next make a list of assumptic these variables.	ons about
Write down in explicit math lar objective of this problem.	iguage the
Lecture 1	11

1 ,	1. The Five-Step Method	
In E Ib th da pi wl re	xample the weight w of the pig (in s), the number of days t until we sell e pig, the cost C of keeping the pig t ys (in dollars), the market price p for gs (\$/lb), the revenue R obtained hen we sell to pig (\$), and out sulting net profit P (\$) are all riables .	
Lecture 1	12	

1.1. The Five-Step Method	1
The assumption inherent in our prol are as follows:	olem
Our objective in this problem is to maximize our net profit, <i>P</i> dollars.	
Lecture 1	13

1.1. The Five-Step Method	
Step 2 is to select the modeling appro Now that we have a question stated mathematical language, we need to select a mathematical approach to u to get an answer.	ach. in ıse
Our example problem will be modeled a one-variable optimization problem, or maximum-minimum problem.	as 14

1.1. The Five-Step Method	
Step 3 is to formulate the model.	
Step 4 is to solve the model.	
Lecture 1	15

	Theorem. If f attains its maximum or
	minimum at an interior point x in subset
	S of real line, then $f'(x) \neq 0$, assuming
	that f is differentiable at x. This allows
	us to rule out any interior point x in S at
	which $f'(x) \neq 0$ as a candidate for
	max/min.
L	ecture 1 16

1.1. The Five-Step Method	
Step 5 is to answer the questions.	
Lecture 1 1	7

1.2. Sensitivit	y Analysis
The preceding section step approach to ma	outlines the five- th. modeling.
We are rarely certain e things to be able to e assumptions to be ex	nough about expect all of these xactly valid.
Therefore, we need a sensitive our conclu	to consider how Isions are to each
of the assumptions v	ve have made.
Lecture 1	18

1.2. Sensitivity Analysis	
Some data are naturally known with much more certainty than others.	
The current weight of the pig, the curren price for pigs, and the cost per day of keening the pig are easy to measure and are known to a great degree of certainty.	nt
Lecture 1	19

	1.2. Sensitivity Analysis
nt	The rate of growth of the pig is a bit less certain, and the rate at which the price is falling is even less certain.
10	Lecture 1

It is most na	tural and most useful to
change or in absolute	percent change, rather than terms.

1.2	. Sensitivity Analysis
If x chai	nges by an amount Δx, the
relativ	e change in x is given by $\Delta x/x$,
and th	e percent change in x is
	100 Δx/x.
If r char	nges by Δr , resulting in the
chang	e Δx in x, then the rst£ between
the re	lative changes is $\Delta x/x$ divided b
Ar/r	

1	.2. Sensitivity Analysis
Lettir der	g Δr ->0 using the definition of the ivative, we obtain
	$\Delta x/x$: $\Delta r/r = dx/dr * (x/r)$.
We c sen it b	all this limiting quantity the sitivity of x to r, and we will denote y S(x, r).
Lecture 1	

In the our Example we have	
	In the our Example we have

An automobile manufacturer r profit of \$1,500 on the sale model. It is estimated that f \$100 of rebate, sales increas (a) What amount of rebate will maximize profit? Use the five	nakes a of a certain or every
profit of \$1,500 on the sale model. It is estimated that f \$100 of rebate, sales increas (a) What amount of rebate will maximize profit? Use the five	of a certain or every
model. It is estimated that f \$100 of rebate, sales increas (a) What amount of rebate will maximize profit? Use the five	or every
\$100 of rebate, sales increas (a) What amount of rebate will maximize profit? Use the five	- by 150/
(a) What amount of rebate will maximize profit? Use the five	5C DY 1070.
model as a one variable entimization problem	e-step method, and
 (b) Compute the sensitivity of your answer to the 15% assu the amount of rebate and the resulting profit. 	mption. Consider both
(c) Suppose that rebates actually generate only a 10% incre What is the effect? What if the response is somewhere I per \$100 of rebate?	ase in sales per \$100. Detween 10 and 15%
(d) Under what circumstances would a rebate offer cause a	reduction in profit?

	Further Reading
а	Meerschaert, Mark M. Mathematical
ertain	Modeling / M. M. Meerschaert. —
ery	Second edition. — San Diego: Academic
15%.	Press, 1999. — 351 p.
od, and	00-1219 00-1220 519 M47
nsider both	
; per \$100. and 15%	
n profit?	
25	Lecture 1 26