Test 1

- 1. Construct a truth table for $(p \lor (\neg r \rightarrow q))$.
- 2. Given the fragment of the truth table for expression F.

x1	x2	x3	x4	x5	x6	x7	F
1	1	0	1	1	1	1	0
1	0	1	0	1	1	0	0
0	1	0	1	1	0	0	1

Which of the statements listed below may be F? a) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7$ b) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7$

c) ¬x1 ∨ x2 ∨ ¬x3 ∨ x4 ∨ ¬x5 ∨ ¬x6 ∨ x7 d) x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7

3. If $A = \{1, 2\}, B = \{x, y\}, C = \{\alpha, \beta, \gamma\}$ what is Cartesian product of sets

 $A \times B \times C?$

- 4. Compute the composite of functions $g \bullet f \bullet h$ where $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 2, g: \mathbb{R} \to \mathbb{R}, g(x) = 1/x$ and $h: \mathbb{R} \to \mathbb{R}, g(x) = 5x$.
- 5. The *i*-th term of a sequence is given by $a_i = (2i+3)/5$. Which term of the sequence is equal to 3?
 - a) The third term

c) The sixth term

b) The eighth term

d) The tenth term

6. Given the following Venn diagram, paint over the A U (B - C).

7. Find an estimation of the algorithm's complexity (in term big-O):

void f(;
{
for (int k = 0; k < m2_col; ++k)
 for (int i = 0; i < m1_row; ++i)
 for (int j = 0; j < m1_col; ++j)
 m3[i][k] += m1[i][j] * m2[j][k];
}</pre>

8. How many different solutions can the equation $J \land \neg K \land L \land \neg M \land (N \lor \neg N) = 0$

have? J, K, L, M, and N are logical variables.