Test 1

1. Construct a truth table for $(p \vee(\neg r \rightarrow q))$.
2. Given the fragment of the truth table for expression F .

x 1	x 2	x 3	x 4	x 5	x 6	x 7	F
1	1	0	1	1	1	1	0
1	0	1	0	1	1	0	0
0	1	0	1	1	0	0	1

Which of the statements listed below may be F?
a) $\neg \mathrm{x} 1 \wedge \mathrm{x} 2 \wedge \neg \mathrm{x} 3 \wedge \mathrm{x} 4 \wedge \mathrm{x} 5 \wedge \neg \mathrm{x} 6 \wedge \neg \mathrm{x} 7$
b) $\mathrm{x} 1 \wedge \neg \mathrm{x} 2 \wedge \mathrm{x} 3 \wedge \neg \mathrm{x} 4 \wedge \mathrm{x} 5 \wedge \mathrm{x} 6 \wedge \neg \mathrm{x} 7$
c) $\neg \mathrm{x} 1 \vee \mathrm{x} 2 \vee \neg \mathrm{x} 3 \vee \mathrm{x} 4 \vee \neg \mathrm{x} 5 \vee \neg \mathrm{x} 6 \vee \mathrm{x} 7$
d) $x 1 \vee \neg \mathrm{x} 2 \vee \mathrm{x} 3 \vee \neg \mathrm{x} 4 \vee \neg \mathrm{x} 5 \vee \mathrm{x} 6 \vee \neg \mathrm{x} 7$
3. If $A=\{1,2\}, B=\{x, y\}, C=\{\alpha, \beta, \gamma\}$ what is Cartesian product of sets

$$
A \times B \times C ?
$$

4. Compute the composite of functions $g \bullet f \bullet h$ where

$$
f: \mathrm{R} \rightarrow \mathrm{R}, f(x)=x^{3}+2, g: \mathrm{R} \rightarrow \mathrm{R}, g(x)=1 / x \text { and } h: \mathrm{R} \rightarrow \mathrm{R}, g(x)=5 x .
$$

5. The i-th term of a sequence is given by $a_{i}=(2 i+3) / 5$. Which term of the sequence is equal to 3 ?
a) The third term
c) The sixth term
b) The eighth term
d) The tenth term
6. Given the following Venn diagram, paint over the $\mathrm{A} U(\mathrm{~B}-\mathrm{C})$.

7. Find an estimation of the algorithm's complexity (in term big-O):
```
void f(;
{
for (int k = 0; k < m2_col; ++k)
    for (int i = 0; i < m1_row; ++i)
        for (int j = 0; j < m1_col; ++j)
            m3[i][k] += m1[i][\overline{j] * m2[j][k];}
}
```

8. How many different solutions can the equation

$$
\mathrm{J} \wedge \neg \mathrm{~K} \wedge \mathrm{~L} \wedge \neg \mathrm{M} \wedge(\mathrm{~N} \vee \neg \mathrm{~N})=0
$$

have? J, K, L, M, and N are logical variables.

