ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УTI	ВЕРЖД	ĮАЮ
		Директор ИДО
		С.И. Качин
«	>>	2009г.

ГИДРАВЛИКА И ГИДРОПНЕВМОПРИВОД

Методические указания по выполнению курсовой работы для студентов специальностей 151001 «Технология машиностроения» и 240801 «Машины и аппараты химических производств» Института дистанционного образования

Гидравлика и гидропневмопривод: метод. указа. по выполнению курсовой работы для студентов спец. 151001 «Технология машиностроения» и 240801 «Машины и аппараты химических производств» ИДО / сост. С. А. Смайлов. – Томск: Изд. ТПУ, 2009. – 27 с.

		-			сурсовой работы ра ческим семинаром	
ры	автома	тизации	И		машиностроении	-
Зав.	Кафедро	ой проф.,	д-р	техн. наук	 П. Я. Кра	ауиньш

Аннотация

Методические указания по выполнению курсовой работы по дисциплине «Гидравлика и гидропневмопривод» предназначены для студентов специальностей 151001 «Технология машиностроения» и 240801 «Машины и аппараты химических производств» ИДО. Курсовая работа для студентов специальности 15100 выполняется в восьмом, а для 240801 — в девятом семестре. Форма отчетности — дифференцированный зачёт.

Приведено содержание основных этапов курсовой работы, указан состав текстового и графического разделов курсовой работы. Приведены варианты заданий для курсовой работы.

1. ЦЕЛЬ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ

Необходимо обратить внимание на последовательность и систематическую работу над курсовой работой. Для прочного закрепления изучаемых вопросов, анализа просмотренной литературы, расчетов и др. вопросов. Рекомендуется вести рабочую тетрадь — обязательная принадлежность любого инженера проектировщика.

Целью данной курсовой работы является приобретение навыков самостоятельного расчета и проектирования гидравлических схем современных технологических машин.

К основным задачам, решаемым в данной курсовой работе относятся:

- 1. Обоснование выбора элементов, необходимых для работы данной гидросхемы.
- 2. Проведение необходимых расчетов гидросхемы: путевые и местные потери: расчет мощностей; коэффициентов полезного действия; расчет механических характеристик системы регулирования скоростей.
- 3. Подбор элементов гидросхемы из каталогов и прочей справочной литературы с четким их обоснованием.

Критическая оценка результатов проектирования и расчета разработанной гидросхемы.

Данная курсовая работа является частью специальных дисциплин, изучаемых на старших курсах, и тесно связана с последующими курсовыми проектами и ВКР.

2. ТЕМАТИКА КУРСОВОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ «ГИДРАВЛИКА И ГИДРОПНЕВМОПРИВОД»

Широкое применение гидропривода в технологических машинах требует от эксплуатационника и проектировщика специальных навыков по анализу гидравлических схем оборудования, умению проводить необходимые гидравлические расчеты, выбирать по каталогам гидроэлементы, а также отыскивать неисправности в гидросистемах. С учетом данной специфики и составлены задания на проектирование гидросистемы. Обычно гидравлический привод технологического оборудования включает источник гидроэнергии (насосную станцию), один или несколько исполнительных механизмов и аппаратуру регулирования, распределения, управления и контроля.

К типовым объектам проектирования гидросхем для студентов любых специальностей можно отнести:

- 1. Фрезерно-центровальные станки.
- 2. Пилы отрезные.
- 3. Станки продольно-строгальные.
- 4. Станки шлифовальные.
- 5. Манипуляторы, контаватели.
- 6. Станки агрегатные, станки газоплазменного раскроя материала.
- 7. Машины для стыковки сварки.

- 8. Станки с программным управлением.
- 9. Гидропрессовое оборудование.
- 10. Термопластавтоматы и линейные машины.
- 11. Промышленные роботы.

Кроме перечисленных объектов проектирования гидросхем, по согласованию с руководителем проекта студент может получить задание по реальной тематике лаборатории гидроавтоматики кафедры «Автоматизация и роботизация в машиностроении».

3. СОДЕРЖАНИЕ И ОБЪЕМ КУРСОВОЙ РАБОТЫ

В курсовой работе необходимо подробно рассмотреть следующие вопросы:

- 1. Составить принципиальную схему гидравлического привода:
- 1.1. Составить участки гидросхем для каждого исполнительного механизма на основании исходных данных и рекомендаций [1].
- 1.2. На основании изучения гидросхем [1, 2] провести объединение отдельных участков гидросхем в общую гидросхему.
- 1.3. Выбрать и обосновать необходимые элементы блокировки, контроля, защиты и др.
- 2. Рассчитать потребные расходы для отдельных исполнительных механизмов и гидросистем в целом:
- 2.1. Выбрать рабочее давление, руководствуясь справочными данными [2].
 - 2.2. Рассчитать характерные размеры исполнительных механизмов.
- 2.3. Рассчитать необходимые расходы и давления для обеспечения заданных скоростей и усилий исполнительных механизмов.
- 3. Подобрать по каталогу необходимые гидроэлементы, ознакомиться с их устройством, принципом действия: в пояснительной записке провести все гидравлические конструктивные параметры выбранного гидравлического элемента или агрегата.
- 4. Выбрать источник гидравлической энергии (насосную станцию) по каталогу; ознакомиться с ее работой, назначением и др.; в пояснительной записке привести все гидравлические и конструктивные параметры насосной станции.
- 5. Рассчитать путевые и местные потери энергии с учетом проходных сечений, выбранных гидроэлементов в заданных длин соединительных магистралей. (Конкретный тип местных потерь согласовать с руководителем работы).
- 6. Рассчитать основные энергетические параметры привода (общую потребляемую мощность КПД, распределение потерь по элементам гидросхемы). (Конкретные параметры уточнить у руководителя).
- 7. Рассчитать семейство механических и регулировочных характеристик для одного из исполнительных механизмов (по заданию руководителя).

- 8. Оформить графически: гидросхему, расчетные графики, таблицы характеристик гидроагрегатов и др. (Форматы согласовать с руководителем работы, руководствуясь ЕСКД для технического проекта).
- 9. Оформить текстовую часть расчетно-пояснительной записки (руководствуясь ЕСКД). В расчетно-пояснительной записке обязательно должны содержаться следующие разделы:
 - 1. Техническое задание.
 - 2. Аннотация.
 - 3. Содержание.
 - 4. Обзорная часть (анализ технического задания).
- 5. Основная часть (в последовательной необходимой для конкретного задания).
 - 6. Выводы и критическая оценка спроектированной гидросхемы.
 - 7. Список литературы.
 - 8. Приложения (графический материал).

Объем работы: текстовая часть (разделы: 4, 5, 6) – 20 – 25 стр.

4. УКАЗАНИЕ ПО ВЫПОЛНЕНИЮ ОТДЕЛЬНЫХ РАЗДЕЛОВ КУРСОВОЙ РАБОТЫ

Курсовая работа по гидравлике базируется на курсе «Гидравлика и гидропневмопривод» (лекции и лабораторные работы) и связана с дисциплинами соответствующих специальностей: либо металлорежущие станки, либо оборудование сварочного производства и машины и аппараты химических производств.

Основное внимание при выполнении курсовой работы и подготовке к ее защите необходимо обратить внимание на выяснение вопросов по физическим процессам, происходящим в данной конкретной гидросхеме, и усвоению всех использованных в работе методик расчета гидроэлементов и гидросхемы в целом. Следует также обратить особое внимание на изучение выбранных в каталогах, либо справочниках [1, 2] гидравлических элементов и их основных параметров.

Рассмотрим коротко выполнение каждого из перечисленных в разделе 3 вопросов, подлежащих разработке в курсовой работе.

- 4.1. Составляется принципиальная схема гидравлического привода заданной технологической машины. В данной части курсовой работы на основе исходных данных:
 - количества и типов исполнительных механизмов;
- количества (золотников) распределителей с электрическим или электрогидравлическим управлением, дросселей (в некоторых заданиях с встроенным регулятором) и другой контрольной аппаратуры, необходимой для правильного функционирования одного исполнительного механизма;
- заданного способа регулирования скорости (дроссельного: на входе, на выходе, либо параллельно);

• необходимо первоначально составить гидросхему (участок общей гидросхемы) для каждого исполнительного механизма технологической машины, с использованием ГОСТ 2.780-95, ГОСТ 2.785-95 (Обозначения условные графические в гидравлических и пневматических схемах).

Например, один из приводов машины содержит линейный или вращательный исполнительные механизмы, которые нагружаются во время рабочего цикла различными нагрузками и должны иметь различные скорости перемещения или вращения.

Линейное перемещение

Усилия: $F_1: F_2: F_3$ и скорости $V_1: V_2: V_3$.

Исполнительный механизм, чаще всего, гидроцилиндр с односторонним потоком.

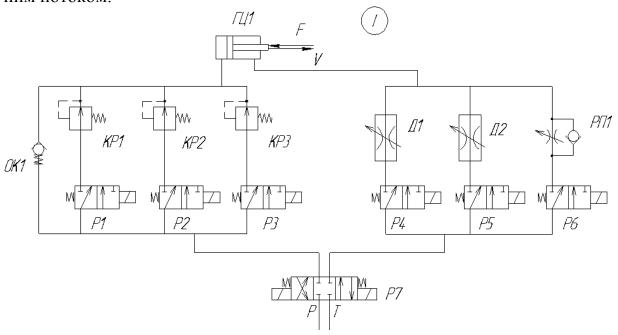


Рис. 1. Принципиальная гидравлическая схема привода линейного перемещения

Редукционные клапаны КР1, КР2, КР3 обеспечивают необходимые давления на исполнительном механизме ГЦ для создания усилия F_1 , F_2 и F_3 согласно технологического процесса. Причем каждый редукционный клапан работает при включенном распределителе Р1, Р2 и Р3, работающими в крановом режиме. Заданные скорости движения штока гидроцилиндра ГЦ обеспечиваются дросселями Д1, Д2 и регулятором потока РП. Последний также служит для обеспечения реверса движения поршня ГЦ. Соответственно, это происходит при включенном том или ином распределителе Р4, Р5 и Р6.

Распределитель Р7 обеспечивает рабочее и холостое движения штока ГЦ. При холостом движении включается Р7 в крайнее правое положение, Р6

в штоковой полости ГЦ, из поршневой полости жидкость через обратный клапан ОК поступает на распределитель Р7 и далее в насосную установку.

Среднее положение распределителя Р7 обеспечивает давление в других приводах установки при фиксированном положении рассматриваемого привода.

Аналогично составляются схемы для двух других приводов установки, и составляется общая схема.

Пусть в установке имеется еще привод вращения и привод фиксации.

Привод вращения нагружен моментами M_1 и M_2 и имеет скорость вращения ω .

Привод фиксации нагружен силой F и имеет скорость V.

В первом приближении общая схема будет выглядеть следующим образом.

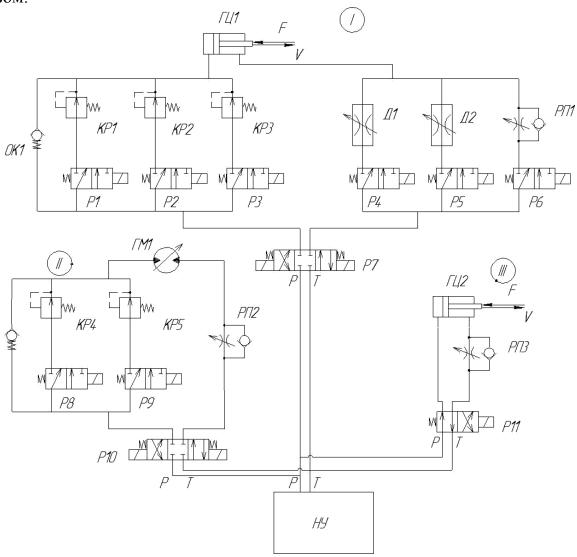


Рис. 2. Принципиальная гидравлическая схема установки

На рис. 2 повторен первый привод установки (рис. 1) и представлены II привод вращения с двумя моментами на валу гидромотора ГМ и привод III

фиксации с гидроцилиндром ГЦ2. Необходимо отметить, что распределитель Р11 двухпозиционный, так как фиксация, зажим или тормоз не могут иметь промежуточного положения.

Представленная схема на рис. 2 является не окончательной и может быть уточнена в результате расчетов.

4.2. Следующим этапом выполнения курсовой работы является выбор параметров исполнительных двигателей (гидроцилиндров и гидромоторов).

При линейных перемещениях заданы усилия F и скорость V. Расчет сводится к выбору гидроцилиндра, которые должны обеспечивать заданное условие.

Из всех заданных значений F максимальное значение $F_{\rm max}$ для должного привода. Определяется площадь S поршня по следующей зависимости

$$S = \frac{F_{\text{max}}}{0.7 \cdot p},$$

где 0,7 – коэффициент, учитывающий потери на трение и утечки в гидроцилиндре.

р – давление, воздействующее на поршень.

Давление p выбирается из ряда номинальных давлений, используемых в гидроприводах технологического оборудования [1].

Например, фрагмент из этого ряда: 2,5; 4,5; 6,3; 10; 12,5: 16; 20; 25; 32 [МПа].

По площади поршня S определятся его диаметр D.

$$D = \sqrt{\frac{4S}{\pi}} .$$

Необходимо стремиться к тому, чтобы 32 < D < 150 в мм. Это дает возможность выбирать стандартные гидроцилиндры, широко используемые в технологических машинах. Если диаметр D не попал в диапазон, указанный выше, то выбирают другое давление p и производят расчет снова.

Если диаметр D попал в указанный диапазон, то выбирают гидроцилиндр из справочника [1] или каталога, но выбранный диаметр $D_{\rm B}$ должен быть ближайшим из ряда стандартных значений D. Например: D=58 мм, выбирают $D_{\rm B}=63$ мм и записывают марку гидроцилиндра 1-63х32хL по ОСТ 2Г21-1-73.

Рассчитывается потребный расход Q_1

$$Q_1 = \frac{\pi D_{-s}^2}{4} \cdot V_{\text{max}}$$

где $V_{\rm max}$ — максимальная скорость из заданных значений по рассчитываемому приводу.

Если есть несколько приводов линейного перемещения, то по ним про-изводится положенный расчет.

В некоторых заданиях применяется привод вращения, то тогда рассчитывается величина рабочего объема q или характерного объема ψ.

$$q = \frac{M_{\text{max}}}{0.7 \cdot p},$$

где M_{max} — максимальный момент, имеющий место в данном приводе. p — давление, выбранное из номинального ряда.

Из справочников и каталогов выбирается гидромотор с ближайшим большим давлением $q_{\rm B}$ и вычисляются следующие параметры гидромотора.

Момент M при заданном давлении $p_{\scriptscriptstyle \rm M}$ максимальное и минимальное допустимое число оборотов вала.

Если выбранный гидромотор по всем этим параметрам соответствует заданным, то выписывается марка гидромотора. В противном случае выбирается другой тип гидромотора с новым расчетом q при другом давлении p. Чаще всего выбранный гидромотор не соответствует по моменту M и минимальному числу оборотов вала.

Выходом из данной ситуации может быть установка механического редуктора после гидромотора с передаточным отношением *I*, который обеспечивает необходимое число оборотов на приводе, и, естественно возрастает момент.

Редуктор выбирается из справочника [3].

Рассчитывается потребный расход Q

$$Q = n_{\text{max}} \cdot q_{\scriptscriptstyle H}$$

где n_{max} — максимальное число оборотов на валу гидромотора из задания; $q_{\text{н}}$ — рабочий объем вибрационного гидромотора.

После расчета и выбора гидродвигателя по всем приводам задания и сводится в таблицу:

p_1	p_2	p_3
•••		•••
Q_I	Q_2	Q_3
•••	•••	•••

 p_1, p_2, p_3 – выбранное давление в приводах;

 Q_1, Q_2, Q_3 – расходы в приводах, полученные в результате расчета.

Из трех значений давления выбирается максимальное, хотя они могут быть равными, и также максимальный расход из трех:

$$P_{\text{max}}$$
 и Q_{max}

Определенные значения P_{\max} и Q_{\max} являются исходными данными для выбора насосной установки, которая выбирается из справочника [3].

Рассчитанные значения Q_1 , Q_2 , Q_3 , а также выбранные давления p_1 , p_2 , p_3 являются основанием для выбора гидравлических элементов в составленной ранее схеме.

Определяются типы всех элементов и основные их характеристики.

Расчет трубопроводов

Приведем пример расчета трубопроводов данный в [1].

При выборе диаметра трубопровода необходимо учитывать рекомендацию СЭВ РС 3644-72, регламентирующую скорость $V_{\rm M}$ потоков рабочей жидкости в трубопроводах в зависимости от их назначения и номинального давления $p_{\rm HOM}$:

$P_{\text{ном}}$, МПа	 2,5	6,3	16	32	63	100
$V_{\rm M}$, м/с, не бо-	 2	3,2	4	5	6,3	10
лее						

Для сливных линий обычно принимают $V_{\rm M}=2$ м/с, а для всасывающих $V_{\rm M}\leq 1,6$ м/с.

Внутренний диаметр d (мм) трубопровода, через который проходит расход масла Q (л/мин):

$$d=4.6\sqrt{\frac{Q}{V_{\rm M}}}.$$

Минимально допустимая толщина стенки δ (мм) трубопровода

$$\delta = \frac{\rho d}{2\sigma_{\rm Bp}} \cdot K_{\rm B},$$

где $\sigma_{\mbox{\tiny BP}}$ - предел прочности на растяжение материала трубопровода;

 $K_{\rm B}$ - коэффициент безопасности; для участков с плавно изменяющимся давлением рекомендуется $K_{\rm B} \ge 2$, для участков с ненапряженным режимом работы $K_{\rm B} \ge 3$, при пульсациях и пиках давления $K_{\rm B} \ge 6$.

Размеры дренажных линий следует выбирать с большим запасом по расходу.

После выбирают стандартные трубопроводы из [3].

К расчетному диаметру добавляется две толщины стенки δ и получают наружный диаметр D

$$d + 2\delta = D$$
.

 δ выбирается из стандартного ряда. Выбирают стандартное значение $D_{\scriptscriptstyle \rm B}$ больше чем D.

Далее рассчитывается выбранный диаметр отверстия трубы

$$d_{\rm\scriptscriptstyle B} = D_{\rm\scriptscriptstyle B} - 2\delta$$
.

И так по всем приводам для нагнетательных и силовых магистралей.

Теперь можно приступить к расчету потерь давления Свешников, Усов.

Различаются два режима течения жидкости: ламинарный, когда частицы жидкости движутся параллельно станкам трубопровода, и турбулентный, когда движение частиц приобретает беспорядочный характер.

Режим течения определяется безразмерным числом Рейнольдса Re. Для трубопроводов (каналов) круглого сечения

$$Re = 21200 \frac{Q}{d_{\rm B} v},$$

где Q – π /мин;

d - MM; $v - MM^2/c.$

Ламинарный режим течения переходит в турбулентный при определенном. критическом значении: $Re_{\kappa p}$ = 2100÷2300 для круглых гладких труб и $Re_{\text{KD}} = 1~600$ для резиновых рукавов.

Если режим течения ламинарный, то потери давления (МПа) в трубопроводе длиной L (м) при внутреннем диаметре $d_{\rm B}$ (мм)

$$\Delta p = 0.62 \frac{vQL}{d^4},$$

если турбулентный режим, то

$$\Delta p = 7.85 \frac{LQ^2}{d^5}.$$

При расчете потерь сначала по величине Re определяют режим течения, а затем пользуются соответствующей формулой.

Рассмотрим пример расчета потерь давления в трубопроводе с внутренним диаметром $d_{\rm B}$ =10 мм и с длиной 2 м, через который проходит поток минерального масла Q = 12,5 л/мин, причем вязкость масла v = 20 мм²/с (сСт). Тип масла задается преподавателем, обычно это И-20, ИП-20.

$$Re = 21200 \frac{12,5}{10 \cdot 20} = 1325 < 2100.$$

Поскольку Re меньше критической величины, поток масла в трубопроводе ламинарный, поэтому потери давления

$$\Delta p = 0.62 \frac{20 \cdot 12.5 \cdot 2}{10^4} = 0.031 \text{ M}\Pi a.$$

При увеличении потока до 40 л/мин $Re = 4240 > Re_{\kappa p}$ и

$$\Delta p = 7.85 \frac{2 \cdot 40^2}{10^5} = 0.251 \text{ M}\Pi a.$$

Таким образом, при увеличении потока в 3,2 раза потери давления возросли в 8,1 раза.

Расчет регулировочных и механических характеристик привода

Характеристики рассчитывают для того привода, который рекомендуется преподавателем.

Для студентов ИДО – это второй привод.

Так как жидкость может походить только по одной подводящей и отводящей магистралям, то схему можно упростить.

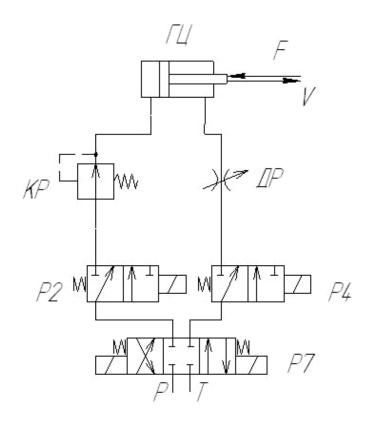


Рис. 3. Упрощенная гидравлическая схема привода линейных перемещений

Схему можно представить следующим образом с энергетической точки

зрения.

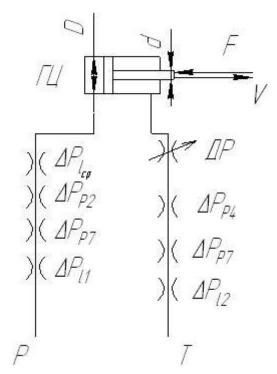


Рис. 4. Схема заменитель

Здесь $\Delta p_{\rm kp}$ — потери давления на редукционных клапанах выбирают из справочника [1].

 $\Delta p_{\rm p2};\,\Delta p_{\rm p4};\,\Delta p_{\rm pz}$ – потери на распределителях выбираются из справочника [1].

 $\Delta p l; \ \Delta p l_2$ — потери давления по длине в трубопроводах рассчитаны в предыдущем разделе.

В подводящей линии

$$\Sigma \Delta p_n = \Delta p_{cp} + \Delta p_{p2} + \Delta p_{p7} + \Delta p l_1.$$

В отводящей линии

$$\Sigma \Delta p_{om} = \Delta p_{p_4} + \Delta p_{p_7} + \Delta p l_2.$$

Схема упрощается

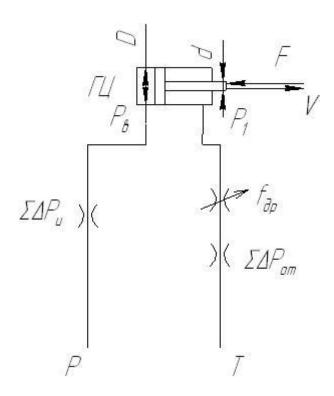


Рис. 5. Упрощенная схема привода

Баланс расходов

$$Q_{\text{II}} = Q_{\text{II}}$$

$$Q_{\text{II}} = V\pi \left(\frac{D^2 - d^2}{4}\right)$$
 — расход выходящей из гидроцилиндра.

$$Q_{\text{II}} = \mu f_{\text{AP}} \sqrt{\frac{2}{\rho}} \cdot \sqrt{p_1 - \Sigma p_{\text{ot}}} :,$$

Баланс сил на штоке ГЦ.

$$p_{\rm B} \frac{\pi D^2}{4} = F + p_1 \frac{\pi (D^2 - d^2)}{4}$$

отсюда

$$V = \mu \frac{4f_{\pi p}}{\pi (D^2 - d^2)} \cdot \sqrt{\frac{2}{\rho}} \cdot \sqrt{p_B \frac{D^2}{D^2 - d^2} - \frac{4F}{\pi (D^2 - d^2)} - \sum p_{\text{ot}}}.$$

Из этой зависимости рассчитываются и строятся регулировочные и механические характеристики.

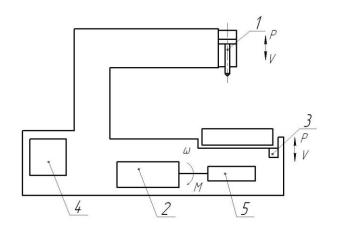
Регулировочная характеристика

$$V = \frac{f(f_{\text{Ap}})}{F} = \text{const.}$$

Механическая характеристика

$$V = \frac{f(F)}{p_{\rm np}} = \text{const.}$$

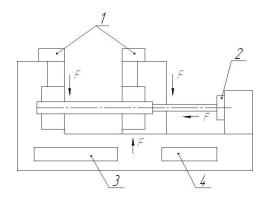
Для каждой характеристики три фиксированных значения параметров. Для регулировочной характеристики три значения F в пределах $0...F_{\rm max}$.


Для механической характеристики три значения $f_{\rm дp}$ от 0 до $f_{\rm дp\ max}$. Причем $f_{\rm max}$ определяется исходя из реальных скоростей движения привода.

$$f_{\text{max}} = \frac{V_{\text{max}} \cdot \pi \left(D^2 - d^2\right)}{4\mu \cdot \sqrt{\frac{2}{\rho} \cdot \sqrt{p_{\text{B}} \frac{D^2}{D^2 - d^2} - \frac{4F_{\text{max}}}{\pi \left(D^2 - d^2\right)} - \Sigma p_{\text{OT}}}}}.$$

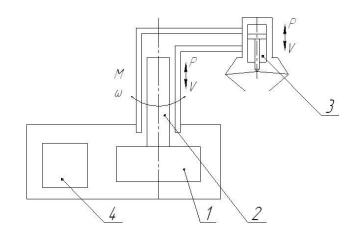
На основании расчетов делается вывод по всей работе.

Выбор варианта курсовой работы осуществляется по двум последним цифрам зачетной книжки. Последняя цифра означает номер задания, а предпоследняя цифра – номер варианта задания.


ЗАДАНИЕ № 1 Спроектировать гидросхему автомата сверления

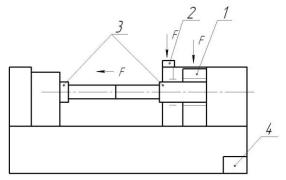
- 1. Привод подачи.
- 2. Привод вращения стола.
- 3. Привод фиксации.
- 4. Гидростанция.
- 5. Редуктор.

	Цикл рабо-	Вели-	Размер-	1	2	3	4	5	6	7	8	9	10
No	ты	чина	ность										
Π/Π													
1		F_1		63	32	250	50	200	160	200	32	250	90
	P .	F_2	, AF	50	125	40	80	120	80	63	200	160	125
		F_3	КΓ	80	80	63	120	320	250	320	400	320	160
	P5 P3 P4	F_4		125	160	400	250	300	320	400	800	500	320
	P1 P2 P3	$V_{\rm xx}$	см/с	1,25	1,6	0,8	0,6	1	1,25	0,8	1,6	2,5	2
2		$F_{\rm max}$	кг∙м/рад	0,60	0,80	1,25	0,40	1,60	0,32	2,00	1,60	0,63	0,80
		ω _{max}	201/2	25	32	24	12,5	8	16	20	25	30	2,5
		ω_{\min}	рад/с	5	4	3	2,5	5	2,5	2,5	1	1	1
3		F_{cpmax}	КГ	200	160	500	400	320	160	400	500	320	400
		V	см/с	10	0,8	1,6	6,3	2	1,6	12,5	1	1,6	12,5
Длин	а магистрали	L	M	2,5	3	4	3,5	2	5	4,5	3	4	3,5
				Последо	вательност	гь работы	механизмо	ов: 1-3-2-3	-1				


3 А Д А Н И Е № 2 Спроектировать гидросхему приводов автомата стыковой сварки

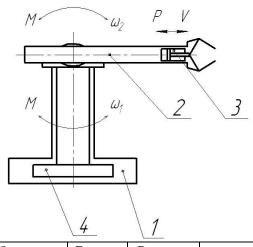
- 1. Привод зажима заготовки.
- 2. Привод поджима.
- 3. Привод механизма установки и снятия заготовки.
- 4. Гидростанция.
- 5. Редуктор.

№	Цикл работы	Вели-	Размер-	1	2	3	4	5	6	7	8	9	10
п/п		чина	ность										
1	V	V_1		4	16	3,2	5	10	3,2	0,8	2,5	1,25	0,33
		V_2	см/с	12,5	2,5	2,5	6,3	2,5	5	1,6	3,2	2,5	0,63
		V_3	CM/C	2,5	3,2	1,6	1,6	6,3	6,3	2,5	1	5	1,6
		V_4		3,2	6,3	8	12,5	16	4	6,3	5	8	10
	V1 V2 V3 V4	$F_{\rm max}$		1000	2000	1600	800	630	1200	1600	1200	2000	630
	$V_{xx} = 2.5V_{\perp}$ V_{xxx}	F_{\min}	ΚΓ	25	10	20	25	20	25	25	10	25	20
	7χχ-2,272												
2		$F_{\rm max}$	Y4E	250	320	400	250	630	320	500	400	320	250
		F_{xx}	КГ	50	50	50	50	50	50	50	50	50	50
		$V_{\rm max}$	см/с	1	1,2	1,6	0,8	1,2	20	1,2	2,5	1,6	2
3		$V_{\rm max}$	27.5/2	12	16	20	10	16	20	16	20	25	25
		$V_{ m min}$	см/с	1	1,6	2	1	1,6	2	1,6	2	2,5	2,5
		$F_{\rm max}$	кг	50	100	160	200	60	160	250	320	80	100
Длин	а магистрали	L	M	2,5	3	4	3,5	2	5	4,5	3	4	3,5
Посл	едовательность р	аботы ме	ханизма: 3-	1-2-3									


3 А Д А Н И Е № 3. Спроектировать гидросхему манипулятора-кантователя

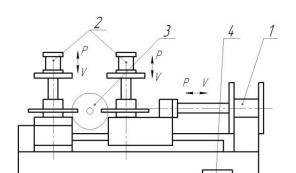
- 1. Привод вращения.
- 2. Привод подъемника.
- 3. Привод захвата.
- 4. Гидростанция.

$N_{\underline{0}}$	Цикл работы	Вели-	Размер-	1	2	3	4	5	6	7	8	9	10
Π/Π	_	чина	ность										
1	Поворот	ω_1	Dog/o	1,25	1,6	2,5	3,2	16	40	63	0,8	1	1,25
		ω_2	Рад/с	2	3,2	4	5	8	5	4	1	2	2,5
	Остановка	$M_{\rm max}$	X45 X4/207	1,25	2,50	5,00	0,60	10,00	10,00	5,00	2,50	5,00	2,00
		$M_{ m min}$	кг∙м/рад	0,60	1,25	2,00	0,2	1,00	5,00	2,50	1,25	2,50	1,00
2	Опускание	$F_{\rm max}$	IAE	2000	2500	3200	1600	4000	6300	4000	5000	2500	8000
		F_{\min}	КΓ	1000	1250	1600	800	2000	3200	2000	2500	1250	4000
	Подъем	V_1		0,8	1	1,2	1,6	2,5	0,	2,5	4	1,2	1,6
		V_1	см/с	4	5	3,2	0,8	1	3,2	0,1	1,6	5	0,63
		$V_{\rm xx}$		32	20	25	40	25	16	40	32	20	25
3	Разжим	$V_{ m max}$	см/с	2,5	3,2	4	6,3	1,6	1,2	2	1,6	1	1,2
	Зажим	$F_{\rm max}$	КГ	1000	1250	2000	800	2500	5000	3200	4000	1600	6300
Длин	а магистрали	L	M	2,5	3	4	3,5	2	5	4,5	3	4	3,5
Посл	едовательность	работы ме	ханизмов: 3	3-1-2-2-3-2	-1-2-3							_	


ЗАДАНИЕ № 4 Спроектировать гидросхему привода для сварки трением

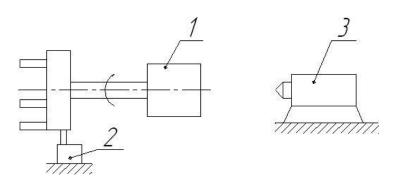
- 1. Привод сжатия.
- 2. Привод тормоза.
- 3. Привод захватов.
- 4. Гидростанция.

№	Цикл работы	Вели-	Раз-										
Π/Π		чина	мер-	1	2	3	4	5	6	7	8	9	10
			ность										
1		F_1		250	800	630	1000	160	400	500	1000	190	500
	P	F_2	ICE	320	1200	400	1600	250	800	1200	2500	800	630
	* †	F_3	КГ	800	2500	1600	2500	400	1600	1600	6300	2500	1250
		F_4		1250	3200	5000	4000	630	2500	6300	8000	4000	3200
	[] P4	V_1	0) (/0	3	1,6	2,5	1,6	2,5	1,6	2,5	3,2	2	4
	P1 P2 P3 P4	V_2	см/с	1,6	0,8	2,5	1,6	3,2	1,6	2,5	3,2	2	4
	V _{xxx} 7	$V_{ m xx}$	см/с	200	150	200	200	150	300	200	200	300	120
2		$F_{\rm max}$	ΚΓ	200	250	320	400	80	250	630	800	250	100
		F_{\min}	КГ	50	50	50	20	60	50	50	50	50	20
		V	см/с	12	16	20	25	40	20	16	10	20	32
3		$F_{\rm max}$	КГ	2500	6300	10 000	8000	1250	5000	12500	16000	8000	6300
		V_1	см/с	2	2	1,6	1,2	1	2	2,5	2	3	10
		V_2	см/с	1,5	0,8	5,0	2,0	3,0	2,0	0,6	1,5	5	2,0
Длин	а магистрали	L	M	2,5	3	4	3,5	2	5	4,5	3	4	3,5
Посл	едовательность раб	оты меха	анизмов: 3	-1-2									


3 А Д А Н И Е № 5 Спроектировать гидросхему привода кантователя-транспортера

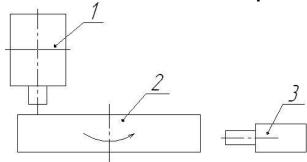
- 1. Привод вращения.
- 2. Привод кантователя.
- 3. Привод захвата.
- 4. Гидростанция.

№ п/п	Цикл работы	Вели-	Размер-	1	2	3	4	5	6	7	8	9	10
1	ω	ω_{11}		1,25	0,8	40	1,25	3,2	2,5	1,25	0,8	1,6	3,2
		ω_{12}	Рад/с	0,8	0,6	20	0,6	0,8	50	2,5	0,6	0,6	0,8
	ω_2 ω_4	ω_{13}	Гад/С	0,6	0,4	25	0,8	1,25	4	0,6	1,25	1	0,25
		ω_{14}		1	1,6	3,2	1,6	4	1,25	3,2	2,5	1,25	6
		$M_{ m min}$,	0,60	0,80	0,50	4,00	0,32	0,40	0,50	0,63	0,25	0,32
	,	$M_{\rm max}$	кг∙м/рад	1,0	1,2	1,6	5,0	3,2	5,0	4,0	6,3	3,2	4,0
2		ω_{21}	Dow/o	12,5	1,6	4	5	3,2	2,5	3,2	2,5	4	6,3
		ω_{21}	Рад/с	0,6	0,8	0,1	1,25	1	1,25	1,6	0,8	2	1,25
		$M_{ m min}$	KE M/20 H	5,0	2,0	2,5	4,0	5,0	3,2	2,5	4,0	6,3	3,2
		$M_{\rm max}$	кг∙м/рад	3,2	5,0	8,0	12,5	8,0	12,5	5,0	3,2	5,0	8,0
3		F_{max}	КГ	630	500	400	630	500	560	320	160	250	400
		$V_{ m max}$	см/с	3,2	4	6	2	5	2	3,2	8	6,3	2,5
Длин	а магистрали	L	M	2,5	3	4	3,5	2	5	4,5	3	4	3,5
Посл	едовательность раб	оты меха	анизмов: 3-	2-11-3	3-2-1-3								


3 А Д А Н И Е № 6 Спроектировать гидросхему привода стыковой машины

- 1. Привод подачи.
- 2. Привод захвата.
- 3. Привод выталкивателя.
- 4. Гидростанция.

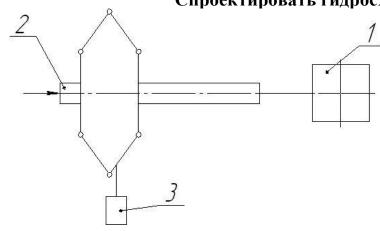
№ п/п	Цикл р боты	a-	Вели- чина	Размер- ность	1	2	3	4	5	6	7	8	9	10
1			F_1	IAT	200	600	1200	2000	2500	4000	3000	4000	600	8000
			F_2	КГ	630	1800	1800	6000	6000	8000	8000	10000	12000	16000
			$V_{1\max}$	см/с	6	6	4	3	4	3	3	2	2	2,5
			$V_{2\mathrm{max}}$	CM/C	8	8	8	6	6	8	5	4	6	6
2			F_{max}	КГ	2000	3000	5000	6000	8000	10000	8000	6000	12000	16000
			V	см/с	10	0,6	1,2	0,8	1,6	0,6	1	0,8	0,4	0,4
3			F	КГ	320	800	1200	1600	1000	1200	630	10000	800	200
			V_1	см/с	8	6	6	8	6	8	6	10	10	4
Длиг рали		Г-	L	M	2,5	3	4	3,5	2	5	4,5	3	4	3,5
Посл	педовател	ЬН(ость рабо	ты механиз	мов: 2-1-	-3-2-1-3.	••							


З А Д А Н И Е № 7 Спроектировать гидросхему привода револьверной головки

- 1. Привод вращения револьверной головки.
- 2. Привод фиксации.
- 3. Привод задней бабки.

№ π/π	Цикл ра- боты	Вели-	Размер-	1	2	3	4	5	6	7	8	9	10
1	Привод	$M_{ m max}$,	0,2	0,25	0,3	0,1	0,15	0,5	0,6	0,35	0,8	1
	вращения	$M_{ m min}$	кг∙м/рад	0,3	0,4	0,5	0,4	0,3	0,2	0,3	0,63	0,6	1,25
		ω_{max}	Рад/с	2	5	6	10	8	12	3	9	12	8
2	Привод	$F_{\rm max}$	КГ	100	300	400	200	400	500	250	350	450	150
	фиксации	$V_{ m max}$	см/с	10	12	15	16	8	12,5	6	4	5	6
3	Привод	F_1	ICE	200	250	400	300	350	500	450	600	550	400
	задней	F_2	КГ	300	350	500	400	500	600	600	300	250	200
	бабки	$V_{ m max}$	см/с	2	3	4	5	8	9	10	6	7	8
Дли рали		L	M	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5
Пос.	педовательн	ость рабо	ты механиз	мов: 3-1-	-21-3-	-2							

3 А Д А Н И Е № 8 Спроектировать гидросхему привода пресса

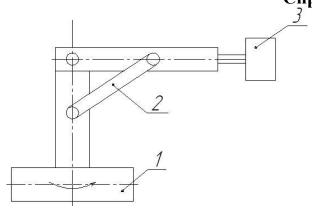


- 1. Привод сжатия.
- 2. Привод вращения стола.

3. Привод фиксации

No	Цикл ра-	Вели-	Размер-	1	2	3	4	5	6	7	8	9	10
Π/Π	боты	чина	ность	1		3	•	3	O	,	0		10
1	Привод	F_1		10000	12000	8000	5000	16000	9000	1000	18000	15000	20000
	сжатия	F_2	КГ	13000	8000	9000	12000	14000	3000	1200	2200	13000	25000
		F_3		15000	1000	6000	8000	10000	4000	2000	3000	9000	15000
		V_1		9	12	8	2,5	4	6	10	4	3	1
		V_2	см/с	4,5	8	6	4,5	5	5	8	3,5	4	1,5
		V_3		5	10	7	3	6	5	12	2	2,5	2
2	Привод	M_1	145 14/20 H	0,5	0,6	0,8	0,9	1,0	1,5	3	0,25	0,8	0,25
	вращения	M_2 кг·м/рад	0,8	0,9	1,2	1,1	1,2	1,0	3,2	0,4	1,0	0,5	
		ω_1	Рад/с	3	2	4	2,5	1,5	2,5	1	5	3,5	2
		ω_2	Гад/С	4	4	3	3,5	3	4,5	6	3,5	4	6
3	Привод	$F_{\rm max}$	КГ	500	600	400	700	450	900	1000	400	600	850
	фиксации	$V_{ m max}$	см/с	5	4	3	3	4	5	8	6	9	10
Длина магист- рали		L_1	M	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5
Последовательность работы механизмов:													

3 А Д А Н И Е № 9 Спроектировать гидросхему привода термопластавтомата



- Привод вращения шнека.
 Привод смыкания формы.

3. Привод фиксации

No	Цикл ра-	Вели-	Размер-	1	2	3	4	5	6	7	8	9	10
Π/Π	боты	чина	ность	1	2	3	7	3	O	,	O		10
1	Привод	M_{III}	кг·м/рад	1	1,25	0,8	1,5	2	2,5	4	5	6,3	3
	вращения	ω_1		1	2	4	5	5	4	6	2	1	10
	шнека	ω_2	Рад/с	4	4	2	5	2	3	2	3	2	6
		ω_3		2	3	2	5	3	5	4	2	3	2
2	Привод	$F_{\rm max}$	КГ	500	1000	800	600	1000	1500	1800	2000	1000	2500
	смыкания												
	формы	$V_{ m max}$	см/с	10	12	16	10	8	5	4	6	5	3
3	Привод	F	КГ	200	400	600	500	350	450	250	450	550	800
	фиксации	V	см/с	4	5	3	4	6	8	5	3	4	2
Дли	на магист-	L	M	4	4	4	4	4	4	4	4	4	4
рали	Ī		M	4	4	4	4	4	4	4	4	4	4
Посл	Последовательность работы механизмов: 2-3-13-2												

3 А Д А Н И Е № 10 Спроектировать гидросхему привода крана

- Привод вращения.
 Привод подачи стрелы.
- 3. Привод выдвижения.

№ п/п	Цикл ра- боты	Вели- чина	Размер- ность	1	2	3	4	5	6	7	8	9	10
1	Привод	$M_{\rm max}$	кг·м/рад	2,0	3,0	1,0	1,2	1,8	5	4	6	3,2	10
	вращения	ω	Рад/с	20	10	30	40	25	12	10	8	15	5
2	Привод	F_1	ICE	1200	800	9000	6000	8000	15000	10000	16000	15000	20000
	подачи	F_2	КΓ	14000	10000	12000	8000	10000	18000	15000	20000	18000	25000
	стрелы	V_1	015/0	10	12	8	25	15	8	15	10	12	5
		V_2	см/с	12	20	12	30	20	12	20	14	16	8
3	Привод	$F_{\rm max}$	КГ	1000	1200	1500	1800	2000	800	3000	2500	2400	3060
	выдвиже- ния	$V_{\scriptscriptstyle ext{HOM}}$	см/с	10	12	16	18	20	8	10	6	12	8
Длиг		L	M	5	5	5	5	5	5	5	5	5	5
Посл	Последовательность работы механизмов: 3-2-1												

7. ЛИТЕРАТУРА

- 1. Свешников В. К., Усов А. А. Станочные гидроприводы. Справочник. М.: Машиностроение, 1982. 464 с., ил. (Б-ка конструктора).
- 2. Гидравлическое оборудование. Каталог ВНИИГидропривод, 1973, 1975, 1977 и т.д.
- 3. Анурьев В.И. Справочник конструктора-машиностроителя в 3 т., Л.: Машиностроение, 1982.

ГИДРАВЛИКА И ГИДРОПНЕВМОПРИВОВД

Методические указания по выполнению курсовой работы

Составитель: Смайлов Садык Арифович

Рецензент: А. Н. Гаврилин, к.т.н., доцент кафедры АРМ МСФ

Подписано к печати

Формат 60х84/16. Бумага «Классика».

Печать RISO. Усл.печ.л. 1,57. Уч.-изд.л. 1,42.

Заказ

. Тираж

ЭКЗ

Томский политехнический университет
Система менеджмента качества
Томского политехнического университета сертифицирована
NATIONAL QUALITY ASSURANCE по стандарту
ISO 9001:2000

изаательство тиу. 634050, г. Томск, пр. Ленина, 30.