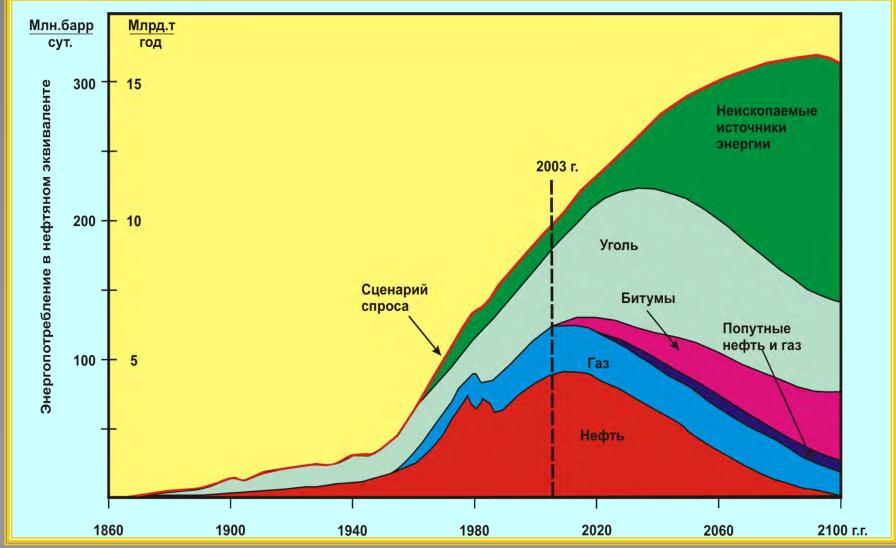

Томский политехнический университет


Закономерности накопления и распределения элементов-примесей в

Структура потребления первичных энергетических ресурсов (по Н.П. Лаверову)

Прогноз изменения доли основных видов энергосырья в обеспечении прогноз изменения доли основных на прогноз изменения и прогноз и п

СХЕМА РАЗМЕЩЕНИЯ УГОЛЬНЫХ БАССЕЙНОВ

Экологический аспект:

- 1. Около 1 млрд т. золошлаков ежегодно.
- 2. Выбросы в атмосферу (оксиды C, S, N, тяжелые металлы, U)
- 3. Загрязнение территорий и водоемов
- 4. Отчуждение территорий

Сырьевой аспект:

- 1. Ресурсы угля исчерпаемы
- 2. Угли основной источник Ge, содержат промышленные концентрации Au, Sc, U, Nb и других элементов.
- Основная задача в области углепользования комплексное использование углей с получением энергии, органических материалов и полной утилизацией отходов их переработки.
- Одно из направлений получение из углей ценных металлов. Для его реализации необходимо ясное понимание где и в каких условиях формируются угли обогащенные ценными элементами, выявление таких углей и разработка методов их переработки (Адун-Чулун и др.).

Структура сырьевой базы угля Центральной Сибири

Бассейны	Общие ресурсы, млрд.т	Балансовы е запасы, млрд.т	Прогнозные ресурсы, млрд.т	Добыча, млн.т
Кузнецкий	489	72	417	113
Канско-Ачинский	446	119	327	39
Иркутский	25,7	12,2	13,5	15
Минусинский	24,8	5,3	19,5	5
Улугхемский	19,4	4,9	14,5	0,7
Горловский	6,8	1,3	5,5	0,8
Тунгусский	1485	4,5	1480,5	0,3
Ленский	874	7	867	0,8
Таймырский	191,7	0,089	191,7	-
Западно-Сибирский	70000	1,3	70000	-
Центральная Сибирь (без Зап- Сиб)	3562,4 (<mark>87%</mark>) (25%)	226,2 (82%)	3336,2 (87%)	175 (72%)
Всего Россия (без Зап-Сиб)	4093 (28%)	277	3816	244 (5%)
Всего в мире	14500			5000

Состав органического топлива

Усредненный элементный состав твердого органического топлива

Элементы	Древесина	Торф	Бурый уголь	Каменный уголь	антрацит
С	49,7	50-60	63-77	74-92	89-98
O	43,2	31-40	16-28	2-16	До 1
Н	6,2	4,5-6,5	4,0-6,3	3,7-5,9	2-3
N	0,9	0,8-2,9	0,7-1,4	1-2,5	До 1

Ископаемый уголь — твердая горючая осадочная порода, образовавшаяся преимущественно из отмерших растений в результате их биохимических, физико-химических и физических изменений.

Кроме органического вещества, представленного различными мацералами, уголь содержит массу неорганических веществ и воду.

Если содержание органического вещества >50% - это уголь, если < 50% - углистая порода (углистый аргиллит, углистый сланец и др).

Виды угля

Бурый уголь

Каменный уголь

Антрацит

Бурый уголь — низший член углефикационного ряда. Различают мягкие и плотные разновидности бурых углей.

Мягкие разности углей с остатками и фрагментами обуглившейся древесины у нас называют лигнитами.

В западной практике *Lignite* – любой бурый уголь.

Влажность мягких бурых углей изменяется в пределах 40-60%. Влажность плотных углей 17-40 %.

Высшая теплота сгорания на сухое беззольное топливо колеблется в пределах 25,5-33,5 МДж/кг. Низшая теплота сгорания рабочего топлива: мягких - 6,1-13,8; плотных — 9,0-18,8 МДж/кг.

Каменный уголь - твердая плотная, преимущественно полосчатая, реже однородная порода черного или серо-черного цвета с блестящей полуматовой или матовой поверхностью. Содержание углерода повышается от 74 до 92%, а кислорода уменьшается от 26 до 2% со степенью углефикации. Содержание влаги снижается от 16 до 4,6%.

Высшая теплота сгорания на сухое беззольное топливо – 30,5-36,8 МДж/кг.

Каменный уголь обладает широким диапазоном свойств, поэтому его делят на марки: Д, Г, Ж, К, СС, ОС, Т и др.

Антрацит — наиболее углефицированная (содержание углерода в органическом веществе 89-98 %) разновидность ископаемого угля. Плотная порода серовато-черного или черносерого цвета с ярким металловидным блеском. Обладает высокой плотностью (1,42-1,8 г/см³), низким удельным электросопротивлением, высокой микротвердостью. Широкий диапазон применения. Горит почти без пламени и без дыма в потоке воздуха.

Высшая теплота сгорания на сухое беззольное топливо – 33,5-35,2 МДж/кг.

Марочный состав углей

Бассейны	Марки угля
Кузбасс	52 - A
Канско-Ачинский	Б2 - Г
Иркутский	Б2 - Г
Минусинский	Д-Г
Улугхемский	ГЖ-Ж
Горловский	A
Тунгусский	Б-А
Ленский	Б-Ж
Таймырский	Б-А
Западно Сибирский	Б1 - Г

Новые оценки кларков элементов-примесей в углях, г/т (расчеты М.П. Кетрис по состоянию на 1 декабря 2005 г.)

2		Угли		3	Золы углей					
Элемент	Бурые	Каменные	Bce	Бурые	Каменные	Bce	осадоч- ных по- род, г/т	Золь- ный КК		
		Типичн	ые каті	оногенные	литофилы					
Li	10±1.0	14±1	12	49±4	82±5	66	33	2.0		
Rb	10±0.9	18±1	14	48±5	110±10	79	94	0.84		
Cs	0.98±0.10	1.1±0.12	1.0	5.2±0.5	8.0±0.5	6.6	7.7	0.86		
TI	0.68±0.07	0.58±0.04	0.63	5.1±0.5	4.6±0.4	4.9	0.89	5.5		
Sr	120±10	100±7	110	740±70	730±50	740	270	2.7		
Ba	150±20	150±10	150	900±70	980±60	940	410	2.3		
	Катионо-	и анионоге	нные ли	тофилы с п	остоянной і	валентн	остью			
Be	1.2±0.1	2.0±0.1	1.6	6.7±0.5	12±1	9.4	1.9	4.9		
Sc	4.1±0.2	3.7±0.2	3.9	23±1	24±1	23	9.6	2.4		
Y	8.6±0.4	8.2±0.5	8.4	44±3	57±2	51	29	1.8		
La	10±0.5	11±1	11	61±3	76±3	69	32	2.2		
Ce	22±1	23±1	23	120±10	140±10	130	52	2.5		
Pr	3.5±0.3	3.4±0.2	3.5	13±2	26±3	20	6.8	2.9		
Nd	11±1	12±1	12	58±5	75±4	67	24	2.8		
Sm	1.9±0.1	2.2±0.1	2.0	11±1	14±1	13	5.5	2.4		
Eu	0.50±0.02	0.43±0.02	0.47	2.3±0.2	2.6±0.1	2.5	0.94	2.7		
Gd	2.6±0.2	2.7±0.2	2.7	16±1	16±1	16	4.0	4.0		
Tb	0.32±0.03	0.31±0.02	0.32	2.0±0.1	2.1±0.1	2.1	0.69	3.0		
Dy	2.0±0.1	2.1±0.1	2.1	12±1	15±1	14	3.6	3.9		
Но	0.50±0.05	0.57±0.04	0.54	3.1±0.3	4.8±0.2	4.0	0.92	4.3		
Er	0.85±0.08	1.00±0.07	0.93	4.6±0.2	6.4±0.3	5.5	1.7	3.2		
Tm	0.31±0.02	0.30±0.02	0.31	1.8±0.3	2.2±0.1	2.0	0.78	2.6		
Yb	1.0±0.05	1.0±0.06	1.0	5.5±0.2	6.9±0.3	6.2	2.0	3.1		
Lu	0.19±0.02	0.20±0.01	0.20	1.10±0.10	1.3±0.1	1.2	0.44	2.7		
Ga	5.5±0.3	6.0±0.2	5.8	29±1	36±1	33	12	2.8		
Ge	2.0±0.1	2.4±0.2	2.2	11±1	18±1	15	1.4	11		
	Катионо-	и анионогет	ные ли	тофилы с п	еременной	валенти	юстью			
Ti	720±40	890±40	800	4000±200	5300±200	4650	3740	1.2		
Zr	35±2	36±3	36	190±10	230±10	210	170	1.2		
Hf	1.2±0.1	1.2±0.1	1.2	7.5±0.4	9.0±0.3	8.3	3.9	2.1		
Th	3.3±0.2	3.2±0.1	3.3	19±1	23±1	21	7.7	2.7		
Sn	0.79±0.09	1.4±0.1	1.1	4.7±0.4	8.0±0.4	6.4	2.9	2.2		
V	22±2	28±1	25	140±10	170±10	155	91	1.7		
Nb	3.3±0.3	4.0±0.4	3.7	18±1	22±1	20	7.6	2.6		
Ta	0.26±0.03	0.30±0.02	0.28	1.4±0.1	2.0±0.1	1.7	1.0	1.7		
Mo	2.2±0.2	2.1±0.1	2.2	15±1	14±1	14	1.5	9.3		
W	1.2±0.2	0.99±0.11	1.1	6.0±1.7	7.8±0.6	6.9	2.0	3.5		

Содержание элементовпримесей в углях (угольные кларки по Кетрис, Юдовичу, 2005)

		Угли		3	Золы углей					
Элемент-	Бурые	Каменные	Bce	Бурые	Каменные	Все	ных по- род, г/т			
U	2.9±0.3	1.9±0.1	2.4	16±2	15±1	16	3.4	4.7		
	NO EST ASS	Типичные а	анионо	генные лит	офилы	THE PLAN	OSLEE!			
В	56±3	47±3	52	410±30	260±20	335	72	4.7		
P	200±30	250±10	230	1200±100	1500±100	1350	670	2.0		
F	90±7	82±6	88	630±50	580±20	605	470	1.3		
Cl	120±20	340±40	180	770±120	2100±300	1440	2700*	0.53		
Br	4.4±0.8	6.0±0.8	5.2	32±5	32±9	32	44	0.73		
I	2.3±0.4	1.5±0.3	1.9	13±2	12.2±5.4	12.6	1.1	11		
DUBOKAN		Мета	аллы-с	ульфофиль	ı		NIPA EGI	ESIN		
Cu	15±1	16±1	16	74±4	110±5	92	31	3.0		
Ag	0.090±0.020	0.100±0.016	0.095	0.59±0.09	0.63±0.10	0.61	0.12	5.1		
Аи, мг/т	3.0±0.6	4.4±1.4	3.7	20±5	24±10	22	6.0	3.7		
Zn	18±1	28±2	23	110±10	170±10	140	43	3.3		
Cd	0.24±0.04	0.20±0.04	0.22	1.10±0.17	1.20±0.30	1.2	0.80	1.5		
Hg	0.10±0.01	0.10±0.01	0.10	0.62±0.06	0.87±0.07	0.75	0.068	11		
In	0.021±0.002	0.040±0.020	0.031	0.11±0.01	0.21±0.18	0.16	0.043	3.7		
Pb	6.6±0.4	9.0±0.7	7.8	38±2	55±6	47	12	3.9		
Bi	0.84±0.09	1.1±0.1	0.97	4.3±0.8	7.5±0.4	5.9	0.26	23		
	Witten a nepos	Неме	галлы-	сульфофил	ы					
As	7.6±1.3	9.0±0.7	8.3	48±7	46±5	47	7.6	6.2		
Sb	0.84±0.09	1.00±0.09	0.92	5.0±0.4	7.5±0.6	6.3	1.2	5.3		
Se	1.0±0.15	1.6±0.1	1.3	7.6±0.6	10.0±0.7	8.8	0.27	33		
	Tomat semire	10. parts 1, 50	Сидер	офилы	FLE Pencoun					
Cr	15±1	17±1	16	82±5	120±5	100	58	1.7		
Mn	100±6	71±5	86	550±30	430±30	490	830	0.59		
Co	4.2±0.3	6.0±0.2	5.1	26±1	37±2	32	14	2.3		
Ni	9.0±0.9	17±1	13	52±5	100±5	76	37	2.1		
Pd		0.0013±0.0022	0.0074	0.066±0.027	0.007±0.011	0.037				
Ir	0.0024±0.0057	0.0014±0.0003	0.0019	0.013±0.031	0.0070±0.0025	0.010		100		
Pt	0.065±0.018	0.0050±0.0032	0.035	0.22±0.04	0.038±0.018	0.13	736	13.		

^{*} Оценки кларка СІ в осадочных породах, по А.Б. Ронову, 1980 г.

Содержание элементовпримесей в углях (угольные кларки по Кетрис, Юдовичу, 2005)

Минимальные содержания малых элементов, определяющие возможную промышленную значимость товарных энергетических углей и продуктов обогащения как источников рудного сырья

Элемент (по алфавиту)		жание тов, г/т	Элемент (по алфавиту)	Содержание элементов, г/т			
в углях в золах углей			8. 3 4 (8) while section	в углях	в золах углей		
Бериллий	5	20	Ниобий	10	50		
Бор 7-10 МАЗА	2000	10000	Олово	20	100		
Ванадий	100	500	Палладий	0,005	0,025		
Висмут	1,77,80	000.5	Платина	0,005	0,025		
Вольфрам	30	150	Рений	0,1	0,5		
Галлий (20	100	Рубидий	35	175		
Гафний	5	25	Ртуть	rithing the	5 KU 5 KU Y		
Германий	эн. 30	150	Селен	aracl	5		
**************************************	кокс. 3,5	1000/ 1	Серебро	torod 14.7	5		
Золото	0,02	0,1	Свинец	240	1200		
Индий	0,2	50.61	Скандий	10	50		
Иттрий	15	000 75	Стронций	400	2000		
Иттербий	1,5	7,5	Сурьма	30	150		
Кадмий	1	5 10	Таллий	1	5		
Кобальт	20	100	Тантал	1	5		
Лантан	150	750	Теллур	1	-5		
Литий	35	175	Титан	1500	7500		
Марганец	2000	10000	Хром	1400	7000		
Медь	100	500	Цезий	30	150		
Молибден	6	30	Цинк	400	2000		
Никель	100	500	Цирконий	120	600		

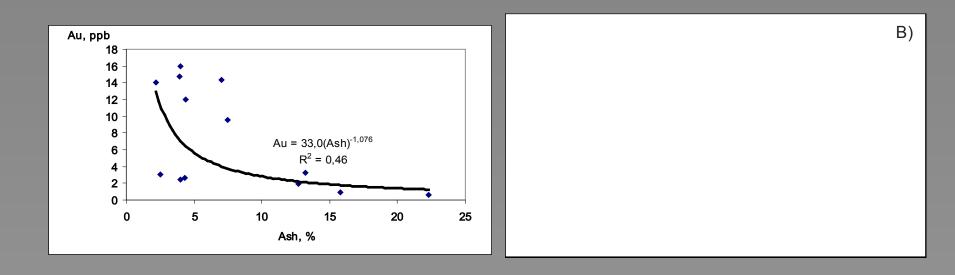
Содержание ценных элементовпримесей в углях

Элемент (по алфавиту)	Содержание элемента, г/т
Бериллий	50
Ванадий	100
Кобальт	100
Кадмий	1,2
Марганец	1000
Мышьяк	300
Никель	100
Ртуть	e liosi centre
Свинец	50
Селен	1000
Сурьма	6 1000
Таллий	0,3
Цинк	200
Фтор	500
Хром	100
Хлор	6000

Токсичные и потенциально токсичные элементы: Порог токсичности содержания малых элементов в товарных углях и продуктах их обогащения

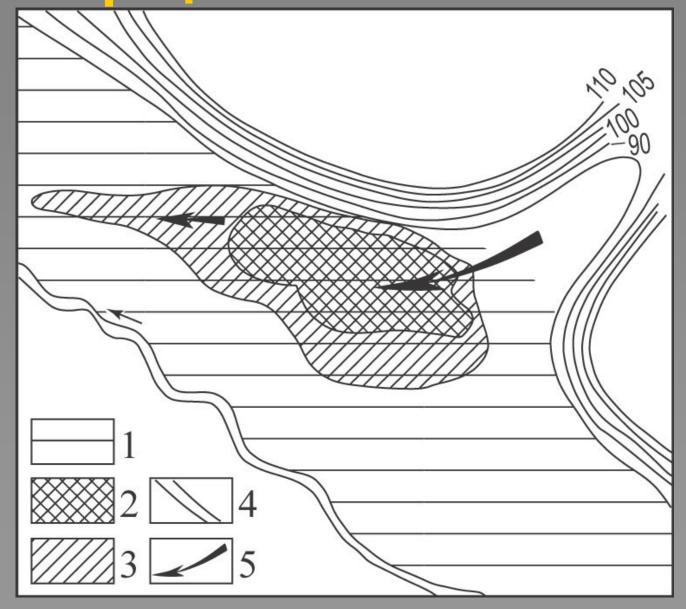
Cl – промышленно вредный элемент

Механизмы накопления элементов


— Примесей в углях Сингенетичное накопление элементов:

- Биогенное (Au)
- Сорбционное (U)
- Терригенно-кластогенное
- Вулканогенно-кластогенное

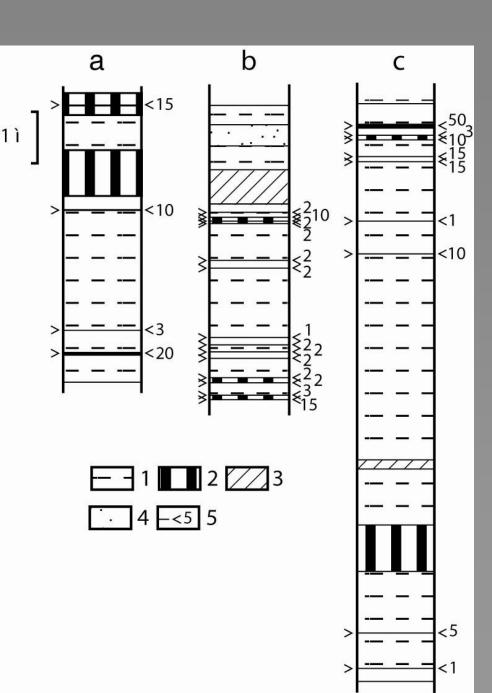
Эпигенетическое концентрирование:


- Сорбционное из вод зоны гипергенеза
- Окислительно-восстановительное из вод зоны гипергенеза
- -//- из гидротермальных растворов
- Диффузионное при диагенезе и катагенезе.
- В основном накопление элементов-примесей в углях обусловлено разными причинами (комплексом факторов) с преобладанием в аномальных углях того или иного фактора.

Биогенное накопление

Зависимость содержания Аи в торфе и золе торфа от зольности

Сорбционное сингенетичное


Вятское месторождение урана в торфе (по А.В. Коченову)

Вулканогенно-кластогенное

При извержении вулкана Кракатау 26 августа 1883 года 19 кубических километров пепла было выброшено на высоту 70 км. Аэрозольный слой окутал всю планету и существовал до начала 1886 года, что привело к понижению температуры, которое продолжалось почти два десятилетия (Ярмолюк В. В., 1993).

Извержение вулкана Пинатубо на Филлипинах в 1991 году сопровождалось выбросами пыли и 20 млн. т диоксида серы на высоту до 40 км, что вызвало, снижения температур в регионе на 0,5° (Добрецов Н. Л. и др., 1995).

Распределение тонштейнов в угольных пластах Черногорского месторождения Минусинского бассейна (по Л.А. Адмакину, 1992):

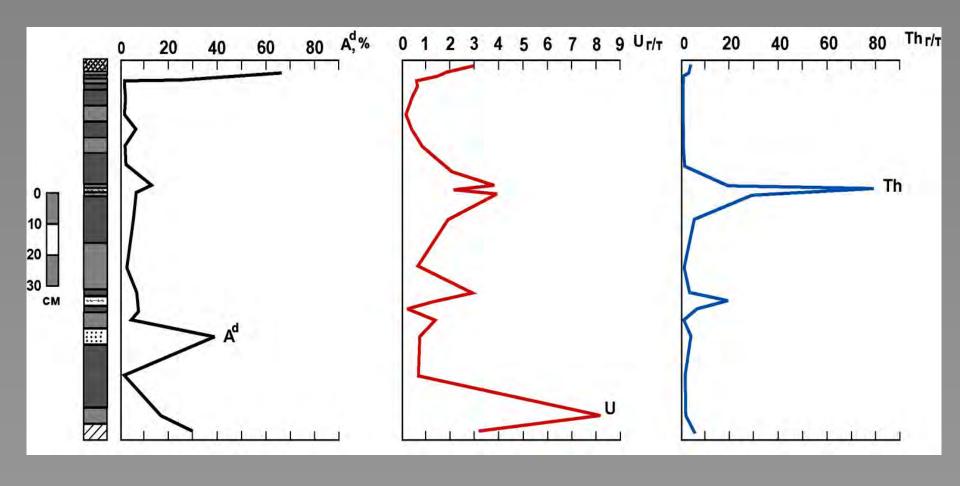
а - пласт «Великан», b - «Мощный», с - «Гигант»;

1 - уголь, 2 - углистый аргиллит, 3 - аргиллит, 4 - песчаник, 5 - прослои тонштейнов (цифры - мощность, мм).

Тонштейны в угольном пласте ХХХ

Тонштейны в угольном пласте П Азейского месторождения Иркутского бассейна

Тонштейны в угольном пласте Мощный месторождения Нурс Хотгор (Фото В.С. Машенькина, 2009)

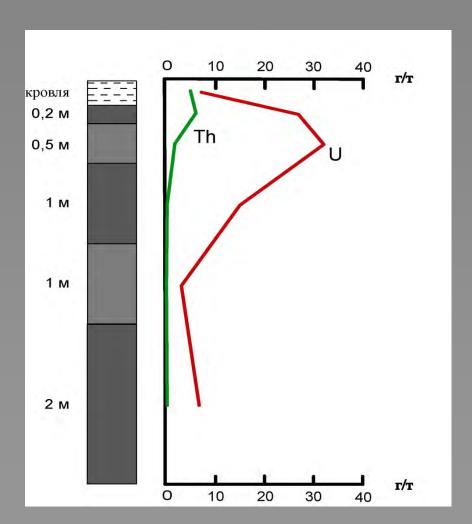


Содержание редких элементов в тонштейнах из позднепалеозойских угленосных отложений провинций Юннань и Гуайджоу (Китай), пласта Fire Clay западного Кентукки (США), Кузнецкого и Минусинского бассейнов Сибири, г/т


Элемен-	Тонц	ітейнь	ы плас	та Fire	Clay ¹	Тонц	штейны	ы из уг	ольны <u>;</u> Китая	х пласт	ов юж	НОГО	Кузн	Гонште нецког	ейны и: о и Ми	з уголь нусинс	ных п <i>г</i>	астов ассейн	НОВ	К ларк для
ТЫ	1	2	3	4	5	C _{1a}	C _{2±2}	C _{4b}	C _{7a}	C ₁₉	K _{3a}	K _{1c}	XI	XXIIa	XXXIV	Дв1	Дв2	ВелІ	XXX	глин ³
Cs	1,0	0,8	0,6	0,6	0,7	Н.д.	Н.д.	8,2	1,5	8,0	1,7	1,0	6,3	8,1	6,9	0,46	<0,3	0,2	2,0	10
Sc	9,0	7,0	9,0	10,0	9,0	23,2	14,4	12,9	10,5	12,5	3,6	6,0	8,2	18,2	7,8	3,6	0,9	2,3	11,4	15
La	110	90	100	100	100	70,2	57,3	25,3	21,2	61,2	33,7	591	154	168	89,0	31,5	5,1	72,3	121	48
Се	200	190	190	210	200	153	115	54,3	42,9	138	62,2	1091	264	393	139	66,1	148	184	242	75
Sm	19	19	1	20	20	13,3	9,1	5,4	1,9	17,9	3,9	64,4	26,2	50,0	13,0	6,5	3,8	12,2	19,4	8,0
Eu	1,0	1,0	20	1,0	1,0	2,2	0,58	1,2	0,28	2,0	0,78	5,1	3,0	3,4	1,3	1,4	0,44	1,8	3,3	1,2
Tb	2	2,0	13,0	3,0	2,0	1,9	1,4	1,1	0,46	2,5	0,67	6,9	3,5	1,6	0,6	0,81	0,21	0,94	2,8	0,83
Yb	4,0	5,0	4,0	6,0	4,0	5,8	5,0	4,0	0,5	4,2	1,6	21,3	10,9	5,5	5,3	1,7	2,9	2,7	4,4	2,5
Lu	Н.д.	Н.д.	Н.д.	Н.д.	Н.д.	1,0	0,91	0,73	0,45	0,74	0,28	3,4	1,6	0,7	0,7	0,26	0,09	0,13	0,94	0,39
U	17	17	18	21	24	10,7	9,8	11,1	6,0	17,2	9,0	23,7	25,1	8,3	12,0	1,3	3,3	13,2	8,2	4,5
Th	66	48	76	72	77	85	77,1	47,4	50,5	93,6	41,0	109	72,3	77,4	37,3	19,7	78,5	111	17,6	10
Zr	700	700	614	570	630	514	473	394	225	253	605	3576	1600	300	200	200	80	200	520	190
Hf	20	20	20	20	20	22,1	15,7	10,0	9,7	7,9	23,8	109	52,2	8,6	10,7	2,8	3,6	4,9	19,1	5,0
Та	3,0	4,0	3,0	3,0	3,0	3,1	4,3	1,7	2,4	1,5	28,0	32,4	46,0	2,7	3,3	1,6	1,8	0,6	5,1	1,4
Со	7,0	5,0	5,0	11,0	0,0	15 ,9	18,3	2,8	0,9	5,2	0,5	11,4	5,1	8,3	2,4	4,6	9,1	2,5	6,5	19
Cr	142	173	172	128	0,0	Н.д.	7,0	6,0	6,1	3,0	4,1	Н.д.	143	144	27	12,6	67,7	12,8	38	76
Sb	2,0	2,0	2,0	2,0	2,0	0,4	0,52	0,3	0,58	1,0	0,17	0,66	1,4	10,2	2,0	<0,2	<0,2	0,1	0,1	1,0
Rb	31	23	14	17	18	Н.д.	Н.д.	Н.д.	Н.д.	Н.д.	Н.д.	Н.д.	77	123	45,4	<7	<7	10	18	130
Th/U	3,9	2,8	4,2	3,4	3,2	7,9	7,9	4,3	8,4	5,4	4,6	4,6	2,9	9,3	3,1	15,2	23,8	8,4	2,1	2,2

Примечание: 1- по J.S. Hower et al., 1999; 2 - по Y. Zhou et al., 2000; 3 – по H. A. Григорьеву, 2003; выделены содержания, превышающие кларк для глин и глинистых сланцев

Пласт Двухаршинный, Черногорское месторождение, уголь

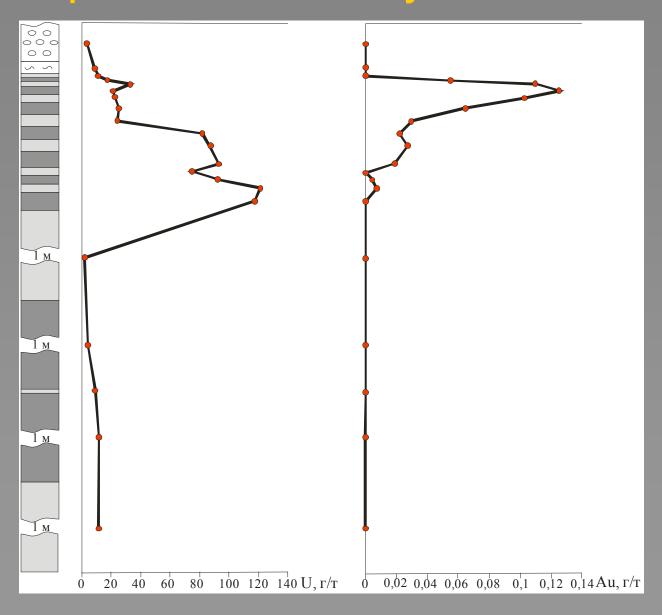


Среднее содержание U, Th (г/т) и зольность (A^d, %) некоторых углей, содержащих пирокластический материал*

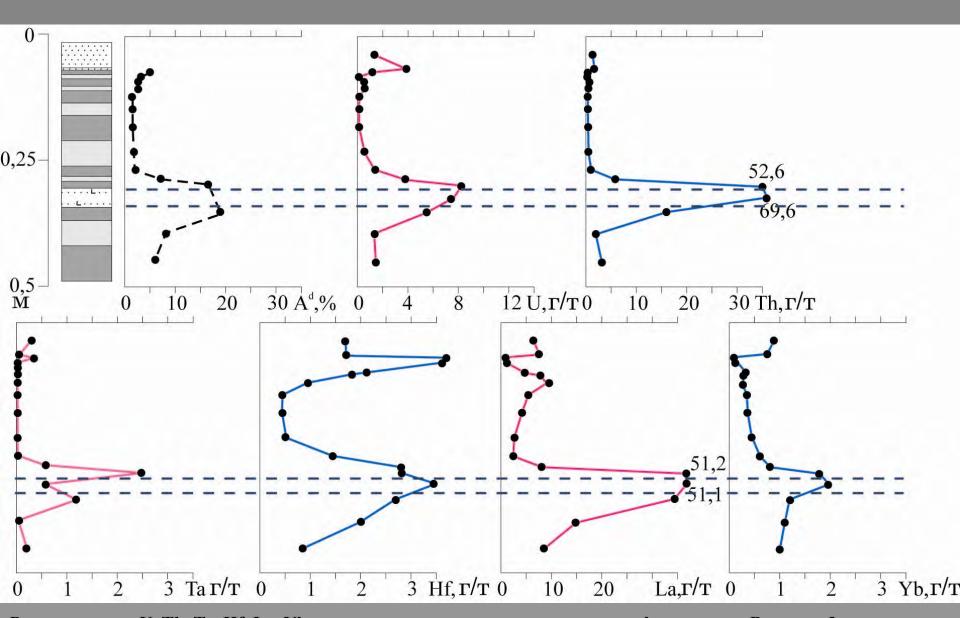
Угольный пласт	В сре	днем для пласта		Участки вне зоны влияния пирокластики					
	A ^d , % U		Th	A ^d , %	U	Th			
Двухаршинный	5,0 1,5		3,1	2,5	0,4	0,8			
Великан-І	4,4	1,1	3,1	2,0	0,2	0,5			
I	3,3	1,0	0,8	3,3	1,0	0,8			

Примечание: Приведены средние данные по отдельным детальным сечениям, а не средние оценки по пластам.

Эпигенетическое накопление урана в зоне гипергенного окисления угольных пластов



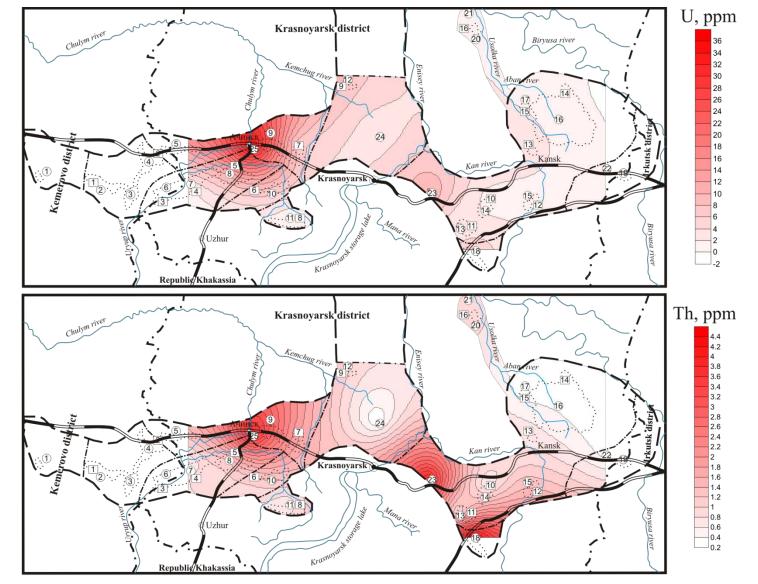
кровля 0,1 M 0,2 M 0,2 M 0,15 M 0,2 M 1 M 3 M 3 M 2 M 0,5 M 0,4 M ___ 1,5 M 10 15 20 25 30 %


ПЛАСТ ИТАТСКИЙ, ИТАТСКОЕ МЕСТОРОЖДЕНИЕ

ПЛАСТ МОЩНЫЙ, КАНСКИЙ РАЗРЕЗ

Эпигенетическое накопление урана и золота в зоне гипергенного окисления угольного пласта

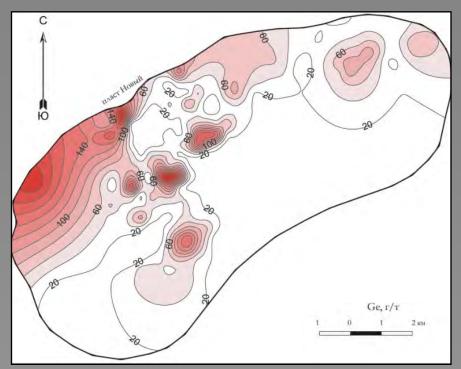
Диффузионное накопление при диагенезе и катагенезе


Распределение U, Th, Ta, Hf, La, Yb и зольности в углях вертикальном профиле пласта Великан-I

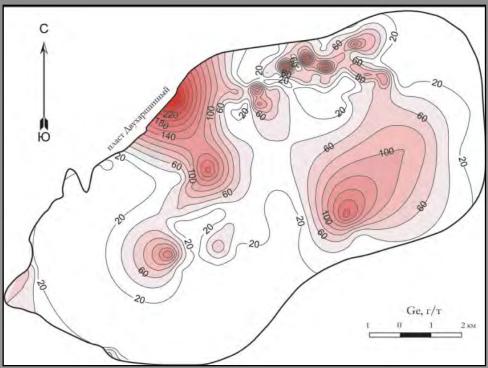
Закономерности распределения

- 1. Латеральные
- 2. В вертикальном профиле

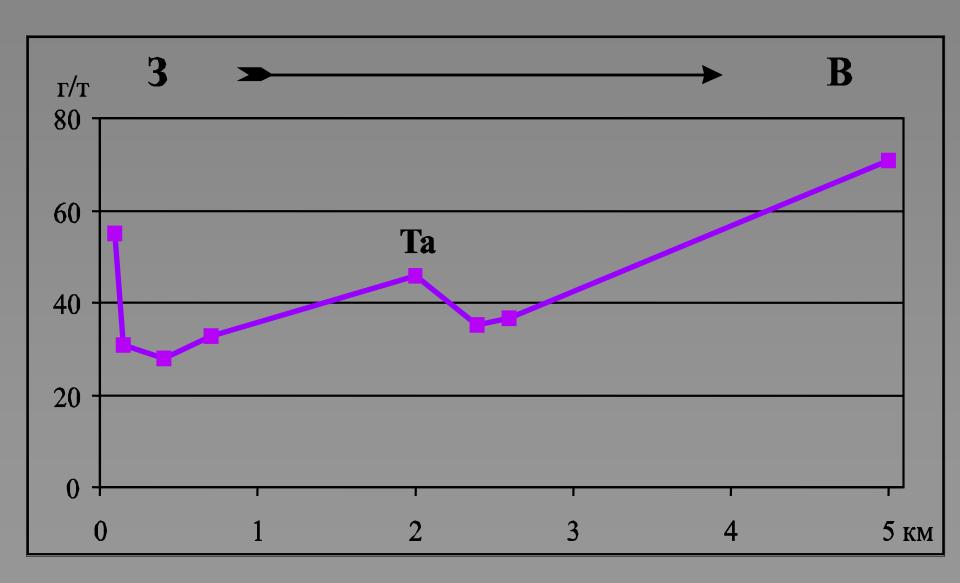
Содержание урана и тория в углях и золах углей Северной Азии


	Число	Ad, %	Содер	жание элем	чентов, г	-/т	Th/U						
Этап, эпоха угленакопления	проб		угс	о ль	30,	ла*							
			U	Th	U	Th							
Сибирский регион													
Девонская эпоха	20	35,3	7,2 ±0,8	3,8±0,5	20,4	10,8	0,5						
Карбон-пермская эпоха	1921	12,4	3,1±0,7	3,5±0,5	24,8	27,9	1,1						
Мезозойская эпоха	782	10,5	1,2±0,3	2,3±0,3	11,4	21,9	1,9						
Палеогеновая эпоха	102	30,7	4,6±0,4	3,5±0,2	15,0	11,4	0,8						
Современная эпоха торфонакопления	1927	7,3	0,4±0,1	0,6±0,1	5,1	8,5	1,7						
,	Дальнево	сточный ј	регион										
Позднеюрская-нижнемеловая эпоха	91	22,7	1,7±0,3	5,1±1,4	7,6	22,6	3,0						
Палеоген-неогеновая эпоха	79	18,8	1,7±0,3	3,9±0,7	8,9	20,9	2,3						
	Ка	азахстан											
Карбоновая эпоха	15	20,9	0,8±0,4	1,1±0,3	3,8	5,3	1,4						
	M	онголия											
Карбоновая эпоха	58	17,8	1,3±0,2	3,0±0,6	7,2	16,7	2,3						
Юрская эпоха	29	н.д	14,7±5,6	6,2±2,1	н.д	н.д	0,4						
Нижнемеловая эпоха	29	9,8	10,1±7,6	2,2±0,8	103	22,3	0,2						
Кларк для углей**	** - по К е	tris, Yudov	ich, 2009 2,4	3,3	16	21	1,4						

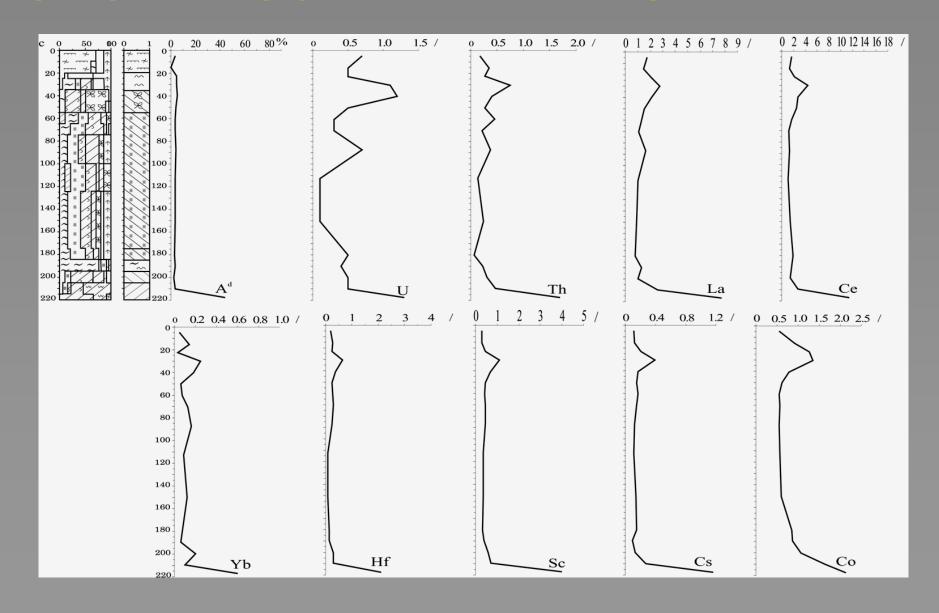
O Deposits: 1 – Ampalykskoe, 2 – Tisulskoe, 3 – Barandatskoe, 4 – Itatskoe, 5 – bogotolskoe, 6 – Uryupskoe, 7 – Beryozovskoe, 8 – Nazarovskoe, 9 – Borovsko-Sobolevskoe, 10 – Sereozhskoe, 11 – Bolshesyrskoe, 12 – Yasnopolyanskoe, 13 – Pereyaslovskoe, 14 – Borodinskoe, 15 – Latyntsevskoe, 16 – Abanskoe, 17 – Stepanovskoe, 18 – Sayano-Partizanskoe, 19 – Uralo-Klyuchevskoe, 20 – Sukhovskoe, 21 – Krivlyakskoe, 22 – Sharbyshskoe, 23 – Balayskoe, 24 – Sukhobuzimskoe, 25 – Uluyskoe.

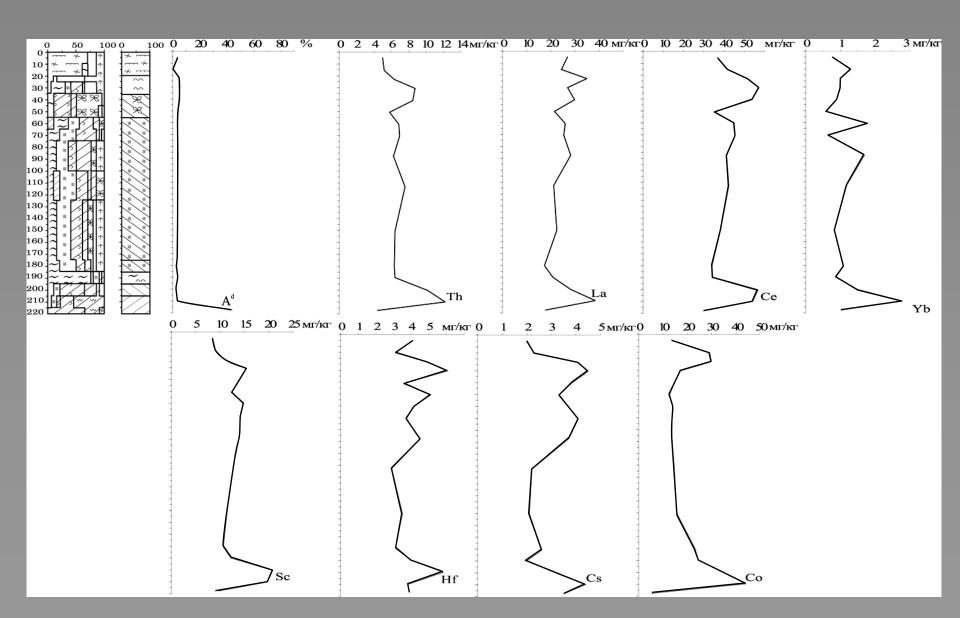

[☐] Open-pit mines: 1 – Kaychakskiy, 2 – Itatskiy, 3 – Beryozovskiy, 4 – Novoaltaiskiy, 5 – Nazarovskiy, 6 – Sereulskiy, 7 – Kozulskiy, 8 – Balakhtinskiy, 9 – Yasnopolyanskiy, 10 – Borodinskiy, 11 – Pereyaslovskiy, 12 – Irbeyskiy, 13 – Kanskiy, 14 – Abanskiy, 15 – Stepanovskiy, 16 – Taseevskiy. — — • – basin boards.

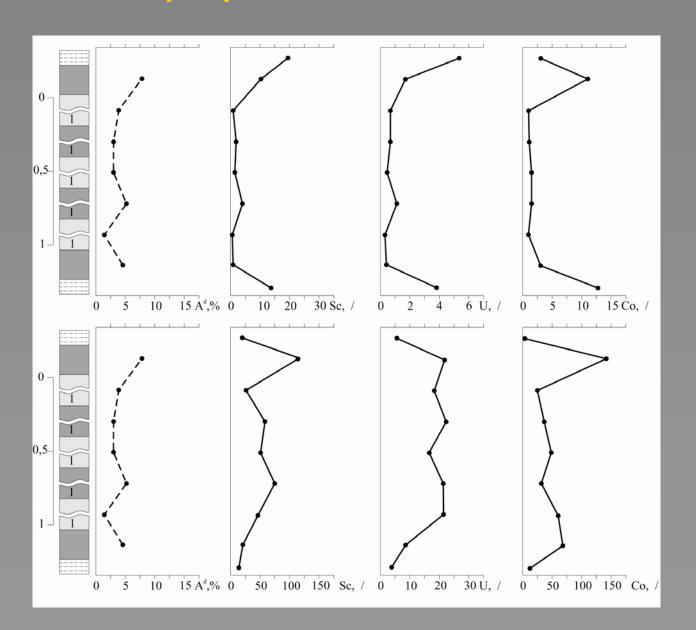
Карты распределения Ge в золах углей Черногорского месторождения Минусинского бассейна



пласт Новый


пласт Двухаршинный

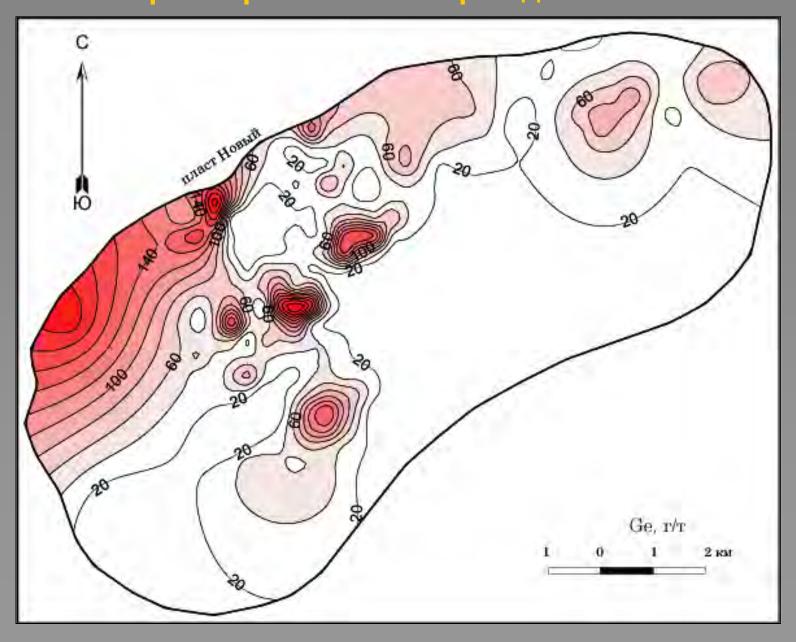

График изменения содержания Та в прослое пласта XI по латерали


Распределение редких элементов в разрезе торфяной залежи верхового типа

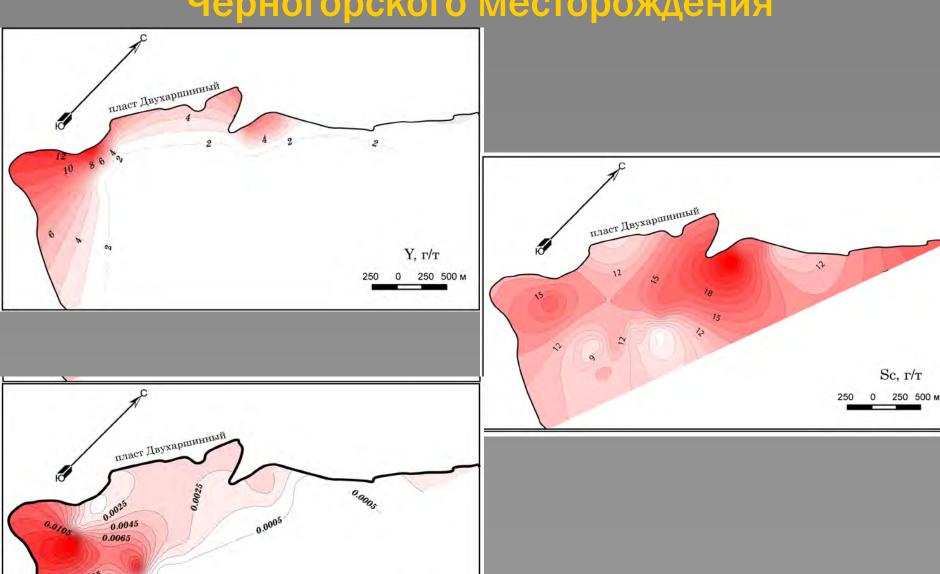
Распределение редких элементов в разрезе торфяной залежи верхового типа (зола торфа)

Распределение A^d, Sc, U и Co в антраците в разрезе пласта Новый

Основные факторы, контролирующие накопление редких элементов в углях

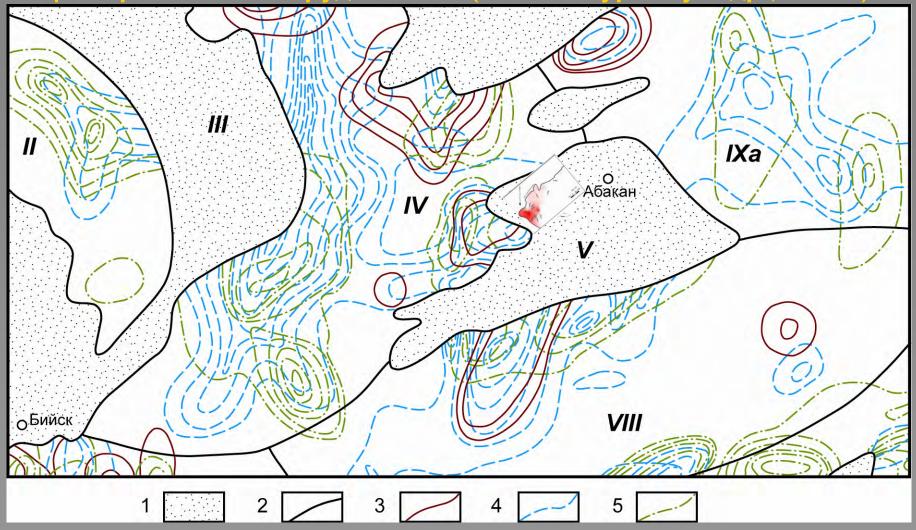

- ✓ Геотектонический фактор
- ✓ Фактор петрофонда
- ✓ Фациальный фактор
- ✓ Климатический фактор
- ✓ Фактор синхронного вулканизма
- ✓ Фактор угольного метаморфизма
- ✓ Фактор эпигенеза

Содержание редких элементов в углях бассейнов различных геодинамических типов*, г/т

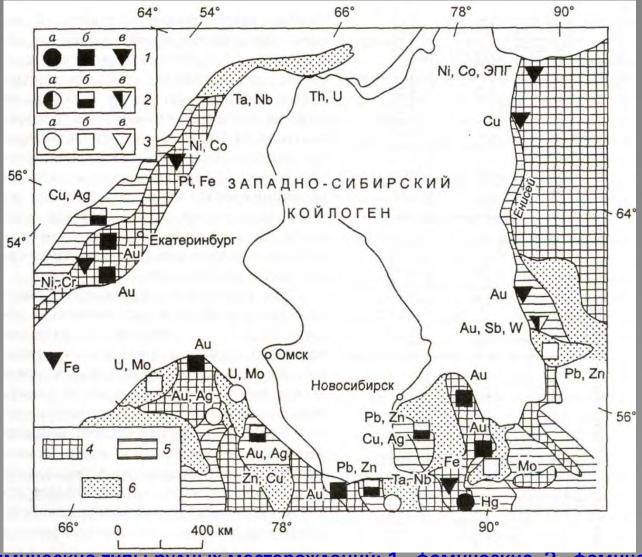

		Оро	генные бассеі	йны		Эпейро	огенные бассей	Рифтогенные бассейны		
Элементы	прогибах ак конти	си внутренних стивных окраин тинентов	Зоны аккре	еции континента	альных плит	Надрифтовые синеклизы древних платформ		ные впадины ых областей	Грабены областей ареального рифтогенеза	
	Иркутский	Канская часть Канско- Ачинского	Кузнецкий	Минусинский	Горловский	Тунгусский	Улугхемский	Кузбасс, юрский уголь	Западно-Сибирский, юрский уголь	
Li	Н.д	2,8±0,3	14,8±2,8	10,1±0,9	Н.д.	6,7±2,5	1,6 ±0,8	Н.д.	4,2±2,1	
Ве	2,0±0,5	1,1±0,2	4,6±0,9	2,5±0,2	Н.д.	2,0±0,3	1,7 ±0,5	0,6±0,3	5,4± 1 ,0	
Sc	5,7±0,8	3,3±0,8	3,9±0,1	8,2±0,6	2,9±0,5	3,9±1,4	2,3±0,5	6,4±1,4	16,0±2,1	
V	0,9±0,9	9,1±4,4	14,7±2,4	25,1±3,7	Н.д.	12,2±3,6	7,7±1,3	6,0±3,0	15,6±6,9	
Ga	0,6±0,4	2,4±0,9	7,0± 1 ,0	2,9±0,2	Н.д.	4,2±0,8	1,4±0,1	3,0	2,1±0,6	
Ge	Н.д.	<1,0	0,9±0,4	5,7±0,5	Н.д.	0,2±0,1	0,3±0,2	Н.д.	2,7±1,3	
Rb	Н.д.	1,2±1,0	15,0±1,3	3,8±1,5	6,3±2,7	7,4±2,7	1,8±0,9	10±10	3,5±1,4	
Sr	Н.д	432±113	248±24	288±49	195±28	239±4	250±41	450±100	213±43	
Υ	7,3±3,8	7,0±2,4	15,4±2,6	13,6±1,3	Н.д.	4,8±1,2	5,1±0,8	3,0±1,0	17,0±3,0	
Zr	40±4	39±12	138±24	63±4	Н.д.	43±10	21±3 30		126±42	
Nb	Н.д.	4,1±1,5	11,0±2,2	7,4±0,8	Н.д.	2,8±2,3	0,1±0,1 7,0±1,0		5,5±2,2	
Ag	Н.д	0,03±0,02	0,05±0,02	0,011±0,002	Н.д.	Н.д.	<0,01	<0,01	0,006±0,004	
Sb	0,7±0,3	0,21±0,08	0,26±0,03	1,2±0,1	0,11±0,08	0,8±0,2	0,27±0,17	0,49±0,29	7,1±1,8	
Cs	0,06±0,06	0,05±0,02	1,6±0,1	0,67±0,09	0,39±0,1	0,8±0,2	0,55±0,15	0,6±0,4	1,1±0,2	
Ba	Н.д	206±64	259±22	225±19	251±40	228±26	480±66	280±76	280±35	
La	12,3±4,0	2,9±0,6	12,3±0,6	14,4±1,5	8,2±1,4	8,5±1,9	4,3±0,7	7,0±1,9	8,2±1,1	
Се	14,9±2,9	7,4±1,9	24,7±0,9	37,0±3,4	21,0±2,7	19,7±3,6	8,2±1,4	13,3±1,5	16,6±2,4	
Sm	2,9±0,7	0,77±0,23	2,6±0,1	2,2±0,2	1,8±0,2	1,9±0,5	1,0±0,2	2,2±0,5	2,5±0,3	
Eu	0,66±0,08	0,31±0,09	0,64±0,03	0,76±0,05	0,39±0,06	0,5±0,1	0,34±0,06	0,64±0,09	0,83±0,1	
Tb	0,45±0,10	0,20±0,07	0,43±0,03	0,70±0,09	0,19±0,04	0,4±0,1	0,19±0,04	0,73±0,13	0,67±0,11	
Yb	1,4±0,3	0,43±0,13	1,3±0,05	1,1±0,1	0,77±0,15	0,8±0,2	0,40±0,07	0,88±0,21	2,1±0,4	
Lu	0,28±0,07	0,11±0,03	0,34±0,06	0,45±0,04	0,18±0,03	0,24±0,08	0,11±0,01	0,28±0,06	0,47±0,08	
Hf	0,98±0,20	0,55±0,08	2,1±0,1	2,6±0,3	1,1±0,1	2,3±0,4	0,68±0,14	0,41±0,06	3,3±0,6	
Ta	0,22±0,13	0,01±0,01	0,47±0,05	0,32±0,06	0,08±0,03	0,5±0,1	0,07±0,02	<0,005	0,05±0,02	
Аи,мг/т	3,5±2,0	7,1±2,0	7,5±1,7	2,8±0,2	7,9±3,5	4,1±3,4	2,5±2,5	2,4±2,4	30±8	
Th	2,8±1,0	1,0±0,4	3,3±0,2	3,1±0,2	1,9±0,2	3,7±0,6	1,2±0,2	2,2±0,5	2,3±0,3	
U	1,9±0,5	2,0±0,5	2,4±0,2	3,0±0,3	1,0±0,1	3,3±0,8	1,2±0,4	2,1±1,0	1,2±0,3	

^{* -} по А.С. Тараканову, 1998

Распределение германия в золе угля пласта Новый Черногорского месторождения



Распределение Y, Sc и Au в пласте Двухаршинный Черногорского месторождения


Au, r/T

Фрагмент карты плотности распределения полихронного фанерозойского оруденения (по В.С. Суркову и др., 1986)

1 - PZ-MZ субплатформенный комплекс; 2 - границы регионов: II - Салаирский, III - Кузнецкий, IV - Кузнецко-Алатаусский, V - Минусинский, VIII - Западносаянский, IXa - Кембросаянский; 3-5 - плотности распределения различных рудных формаций (в усл. баллах): 3 - салические (W, Nb, Ta, REE и др.), 4 - фемические (Cr, Fe, Mn,Ni), 5 - салическофемические с комплексом полигенных металлов (полиметаллы, Mo, Sb, Hg, Co, W и др.)

Геохимическая схема обрамления Западно-Сибирского койлогена (по Н.А. Рослякову и др., 2001):

1-3 - геохимические типы рудных месторождений: 1 - фемические, 2 - фемически — сиалические, 3 - сиалические; фации: а - апикальная, б - равновесная, в - корневая; 4 - 6 - геохимические типы структурно-формационных комплексов: 4 - фемические,

5 - фемически - сиалические, 6 - сиалические

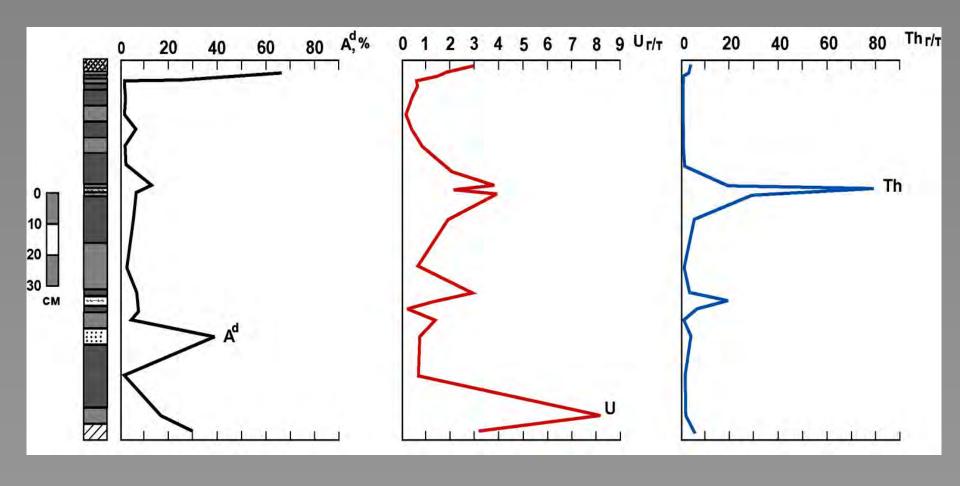
Среднее содержание скандия и золота в золах углей юрского возраста Западно-Сибирского бассейна

Месторождение,	A ^d , %	Содержание элементов				
проявление угля	A , 70	Sc, г/т	Au, мг/т			
Ай-Пимское	15,2	245	7,9			
Арчинское	12,1	94	<10			
В.Тромъеганское	2,2	975	1900			
Герасимовское	8,8	172	250			
Григорьевское	11,7	383	<10			
Кавринское	15,7	256	<10			
Конитлорское	6,6	305	123			
Лугинецкое	19,5	129	208			
Нижне-Табаганское	11,5	2,4	750			
Приграничное	18,6	80	<10			
Северо-Калиновое	3,3	555	1700			
Ступечатое	3,9	226	1200			
Трассовое	13,4	233	283			
Широтное	4,6	114	902			
Южно-Табаганское	28,0	57	265			
Среднее	11,7±1, 8	255	260			

Содержание редких элементов в месторождениях торфа разного генетического типа, г/т

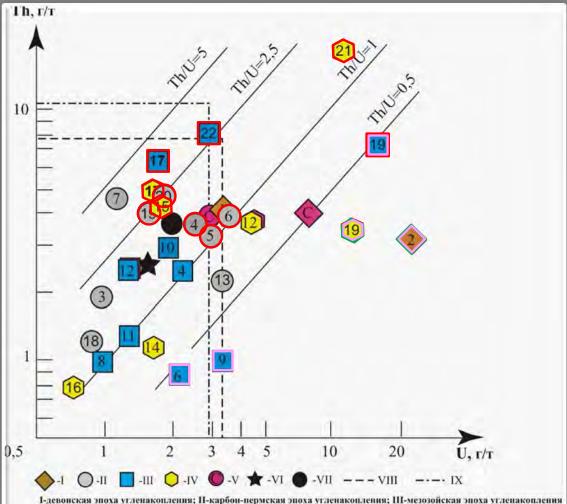
	Pos	AVADI 10	Низинные и переходные							
Элементы	Del	оховые	соврем	енные	погребенные					
	Васюганское	Водораздельное-II	Березовая Грива	Пуховское	Кижирово	Обское				
La	0,75	1,8	6,5	12,5	6,0	7,2				
Ce	1,62	2,1	12,7	22,4	10,8	11,5				
Sm	0,14	0,29	1,3	2,4	1,0	2,2				
Eu	0,35	0,07	0,17	0,56	0,27	0,61				
Tb	0,03	0,04	0,12	0,36	0,2	0,43				
Yb	0,09	0,14	0,29	0,80	0,6	1,2				
Lu	0,01	0,04	0,028	0,16	0,09	0,23				
Hf	0,08	0,23	0,77	0,74	0,89	1,3				
Th	0,22	0,34	1,3	2,9	1,7	1,9				
U	0,13	0,15	1,2	0,87	2,7	3,9				
Sc	0,34	0,53	1,1	4,4	3,7	7,0				
Rb	1,4	<0,6	4,2	27,2	22,1	33,3				
Cs	0,08	0,17	0,3	1,6	1,8	3,3				
Au	0,002	0,015	0,0096	0,018	н. д.	0,0008				
Sb	0,03	0,21	0,13	0,49	0,38	0,61				
Со	0,4	0,75	3,9	3,5	5,2	6,2				
Cr	1,6	7,8	24,8	19,1	18,4	18,6				
Fe	0,1	0,14	0,9	0,73	1,8	1,8				
Ca	0,39	0,95	1,2	0,57	2,7	5,3				
Ba	24	25,3	102	187	173	258				
A ^d ,%	4,0	3,9	7,5	17,8	27,7	40,9				

Тонштейны в угольном пласте ХХХ



Тонштейны в угольном пласте Мощный месторождения Нурс Хотгор

Пласт Двухаршинный, Черногорское месторождение, уголь



Содержание редких элементов в тонштейнах из позднепалеозойских угленосных отложений провинций Юннань и Гуайджоу (Китай), пласта Fire Clay западного Кентукки (США), Кузнецкого и Минусинского бассейнов Сибири, г/т

Элемен-	Тонш	тейнь	ы плас	та Fire	Clay ¹	Тоні	штейны	ы из уг	ольны Китая	х пласт	ов юж	ного					ных п <i></i> кого б		НОВ	К ларк для
ТЫ	1	2	3	4	5	C _{1a}	C _{2±2}	C _{4b}	C _{7a}	C ₁₉	K _{3a}	K _{1c}	XI	XXIIa	XXXIV	Дв1	Дв2	ВелІ	XXX	глин ³
Cs	1,0	0,8	0,6	0,6	0,7	Н.д.	Н.д.	8,2	1,5	8,0	1,7	1,0	6,3	8,1	6,9	0,46	<0,3	0,2	2,0	10
Sc	9,0	7,0	9,0	10,0	9,0	23,2	14,4	12,9	10,5	12,5	3,6	6,0	8,2	18,2	7,8	3,6	0,9	2,3	11,4	15
La	110	90	100	100	100	70,2	57,3	25,3	21,2	61,2	33,7	591	154	168	89,0	31,5	5,1	72,3	121	48
Се	200	190	190	210	200	153	115	54,3	42,9	138	62,2	1091	264	393	139	66,1	148	184	242	75
Sm	19	19	1	20	20	13,3	9,1	5,4	1,9	17,9	3,9	64,4	26,2	50,0	13,0	6,5	3,8	12,2	19,4	8,0
Eu	1,0	1,0	20	1,0	1,0	2,2	0,58	1,2	0,28	2,0	0,78	5,1	3,0	3,4	1,3	1,4	0,44	1,8	3,3	1,2
Tb	2	2,0	13,0	3,0	2,0	1,9	1,4	1,1	0,46	2,5	0,67	6,9	3,5	1,6	0,6	0,81	0,21	0,94	2,8	0,83
Yb	4,0	5,0	4,0	6,0	4,0	5,8	5,0	4,0	0,5	4,2	1,6	21,3	10,9	5,5	5,3	1,7	2,9	2,7	4,4	2,5
Lu	Н.д.	Н.д.	Н.д.	Н.д.	Н.д.	1,0	0,91	0,73	0,45	0,74	0,28	3,4	1,6	0,7	0,7	0,26	0,09	0,13	0,94	0,39
U	17	17	18	21	24	10,7	9,8	11,1	6,0	17,2	9,0	23,7	25,1	8,3	12,0	1,3	3,3	13,2	8,2	4,5
Th	66	48	76	72	77	85	77,1	47,4	50,5	93,6	41,0	109	72,3	77,4	37,3	19,7	78,5	111	17,6	10
Zr	700	700	614	570	630	514	473	394	225	253	605	3576	1600	300	200	200	80	200	520	190
Hf	20	20	20	20	20	22,1	15,7	10,0	9,7	7,9	23,8	109	52,2	8,6	10,7	2,8	3,6	4,9	19,1	5,0
Ta	3,0	4,0	3,0	3,0	3,0	3,1	4,3	1,7	2,4	1,5	28,0	32,4	46,0	2,7	3,3	1,6	1,8	0,6	5,1	1,4
Со	7,0	5,0	5,0	11,0	0,0	15,9	18,3	2,8	0,9	5,2	0,5	11,4	5,1	8,3	2,4	4,6	9,1	2,5	6,5	19
Cr	142	173	172	128	0,0	Н.д.	7,0	6,0	6,1	3,0	4,1	Н.д.	143	144	27	12,6	67,7	12,8	38	76
Sb	2,0	2,0	2,0	2,0	2,0	0,4	0,52	0,3	0,58	1,0	0,17	0,66	1,4	10,2	2,0	<0,2	<0,2	0,1	0,1	1,0
Rb	31	23	14	17	18	Н.д.	Н.д.	Н.д.	Н.д.	Н.д.	Н.д.	Н.д.	77	123	45,4	<7	<7	10	18	130
Th/U	3,9	2,8	4,2	3,4	3,2	7,9	7,9	4,3	8,4	5,4	4,6	4,6	2,9	9,3	3,1	15,2	23,8	8,4	2,1	2,2

Примечание: 1- по J.S. Hower et al., 1999; 2 - по Y. Zhou et al., 2000; 3 – по H. A. Григорьеву, 2003; выделены содержания, превышающие кларк для глин и глинистых сланцев

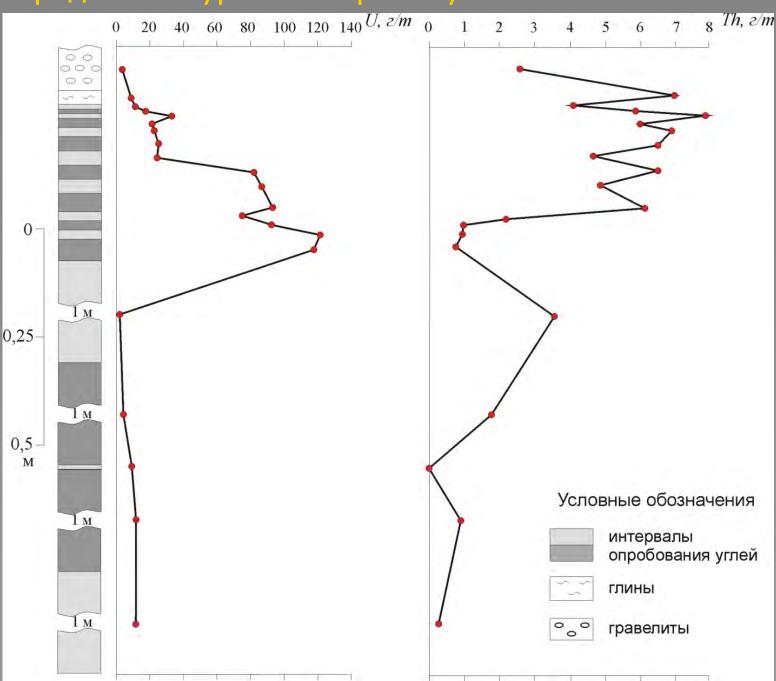
I-девонская эпоха угленакопления; II-карбон-пермская эпоха угленакопления; III-мезозойская эпоха угленакопления IV-кайнозойская эпоха торфо-угленакопления; V-среднее для эпохи; VI-среднее для Сибири;

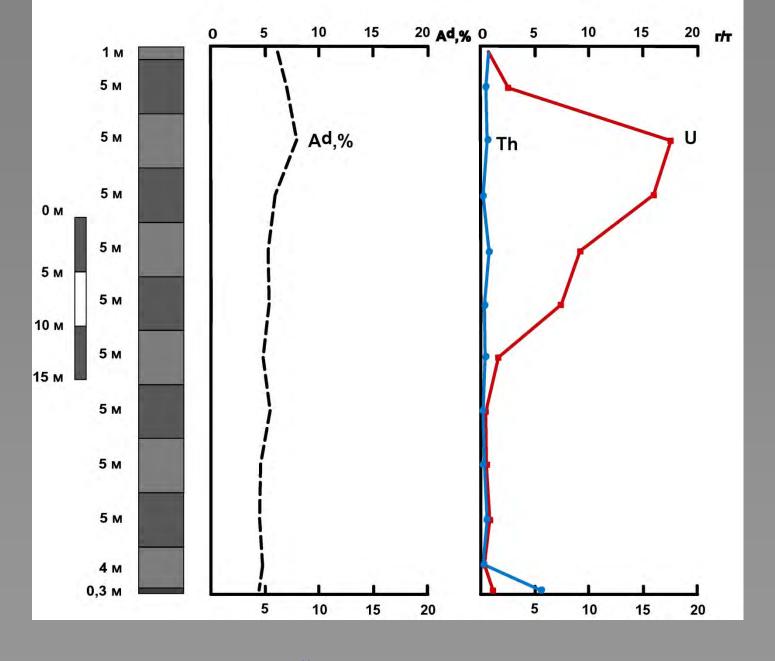
VII-угольный кларк; VIII-среднее для осадочных пород (по Н.А. Григорьеву, 2003); IX-среднее для континентальной земной коры (Тейлор, Мак-Леннан, 1988).

Угольные бассейны и месторождения: 1-Барзасское, 2-Убрусское, 3-Горловский, 4-Кузнецкий, 5-Минусинский,

6-Тунгусский, 7-Курайское, 8-Пыжинское, 9-Канско-Ачинский, 10-Иркутский, 11-Улутхемский,

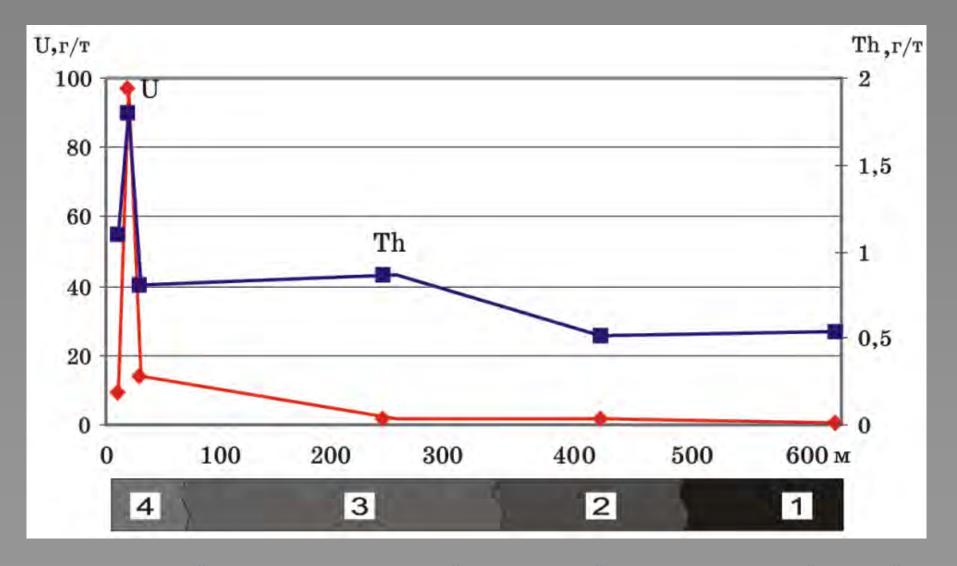
12-Западно-Сибирский, 13-Таймырский, 14 - Талду-Дюргунское, 15-Возновское, 16 - торф современный,

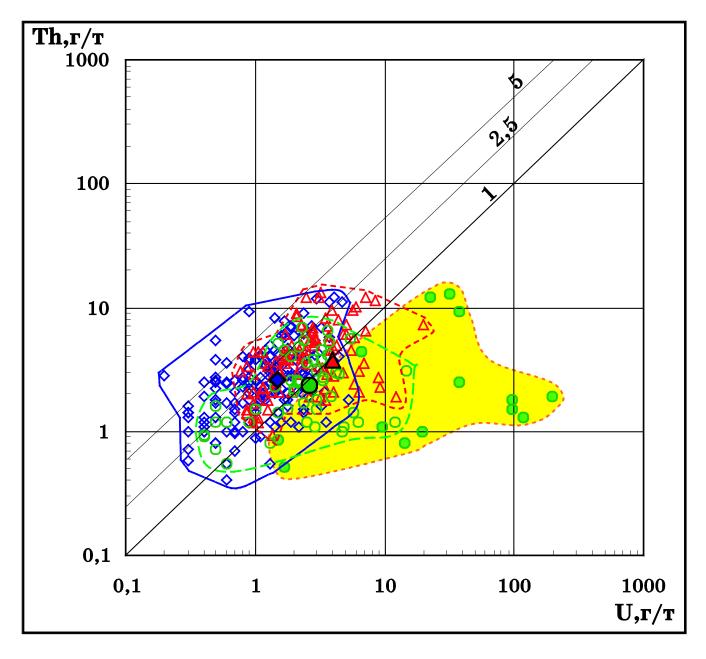

17-Дальний Восток, 18-Казахстан, 19-Монголия, 20-Нурс-Хотгор, 21-Павловское, 22-Ургальское.


Среднее содержание U, Th и зольность (Ad) некоторых углей, содержащих пирокластический материал*

Угольный пласт	В сре	Эднем для пласта		Участки вне зоны влияния пирокластики					
	A ^d , % U		Th	A ^d , %	U	Th			
Двухаршинный	5,0	1,5	3,1	2,5	0,4	0,8			
Великан-І	4,4	1,1	3,1	2,0	0,2	0,5			
I	3,3	1,0	0,8	3,3	1,0	0,8			

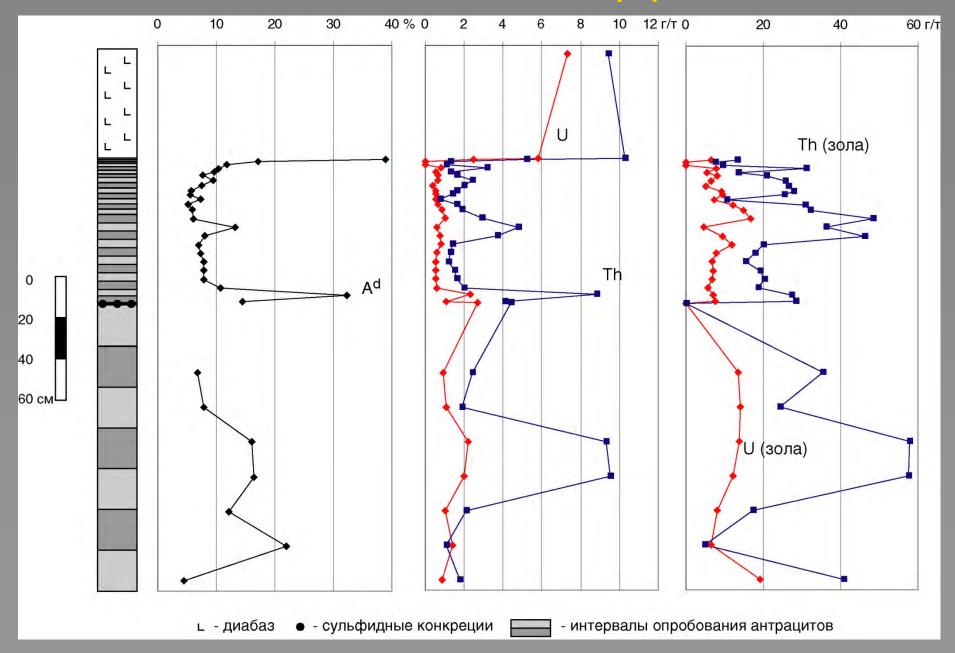
Примечание: Приведены средние данные по отдельным детальным сечениям, а не средние оценки по пластам.


Распределение урана и тория в углях пласта Итатский



ПЛАСТ БЕРЁЗОВСКИЙ, БЕРЁЗОВСКОЕ МЕСТОРОЖДЕНИЕ

Изменение содержания U, Th в угле в зоне окисления ПЛАСТ 19/а (Бейское месторождение)



- ♦ Черногорское месторождение, △ Изыхское,
- Бейское, окисленные угли пластов 19 и 19

Апофиза Сыркашевского силла в пласте XXXI (Кузбасс)

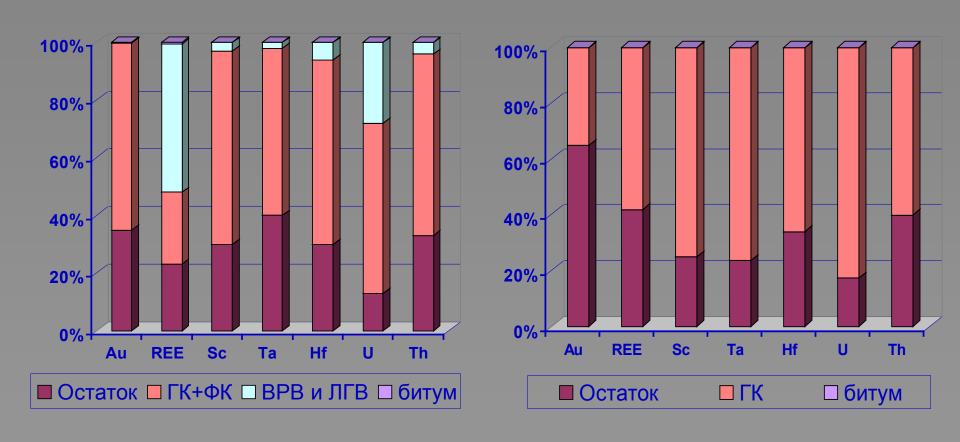
Контактовый метаморфизм

Изменение значения факторов накопления ценных элементов в углях Сибири по эпохам

Эпохи торфо(угле)накопления	Основные факторы
Девонская	Фациальный,
	синхронного вулканизма
позднепалеозойская	Синхронного вулканизма
мезозойская	Климатический,
	фациальный,
	эпигенеза
кайнозойская	Климатический,
	фациальный,
	эпигенеза

Вероятные формы нахождения отдельных элементов в углях (Finkelman, 1982; 1993) Probable Modes of Occurrence of Selected Elements in Coal (Finkelman, 1993 Modified from Finkelman, 1982)

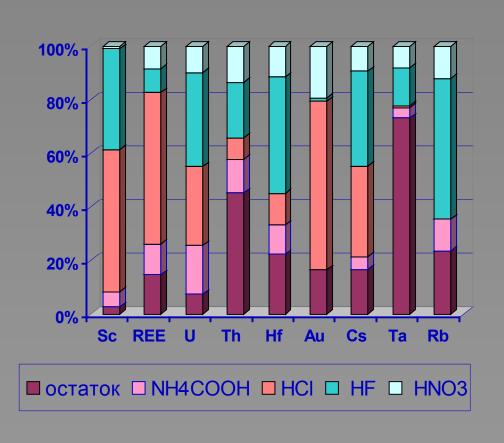
Element	Probable modes of occurrence
Antimony	Accessory sulfide, some organic association
Arsenic	Solid solution in pyrite
Beryllium	Organic association, clay
Cesium	Clays, feldspar, mica
Gallium	Clays, organics, sulfides
Germanium	Organic association
Gold	Native gold
Hafnium	Zircon
Lithium	Clays
Mercury	Solid solution in pyrite
Niobium	Oxides
Platinum	Native alloys, perhaps some organic association
Rare earths	Phosphates, some organic association
Rubidium	Probably illite
Scandium	Unclear; clays, phosphates, or organics
Selenium	Organic association, pyrite, PbSe
Silver	Perhaps silver sulfides
Tantalum	Oxides
Thorium	Rare earths phosphates
Uranium	Organic association, zircon
Yttrium	Rare earths phosphates
Zirconium	Zircon

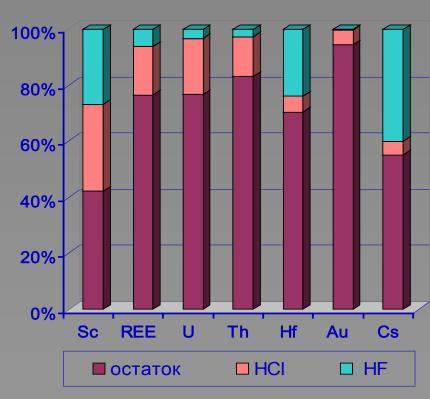

Методы изучения форм нахождения элементов-примесей в углях Косвенные методы: Methods of investigation

- >Озоление и анализ химического состава золы и углевмещающих пород
- **Желективное выщелачивание различными реагентами и анализ продуктов выщелачивания и соответствующих остатков после выщелачивания**
- >Гравитационное фракционирование угля и анализ полученных фракций
- **Ж**сследование корреляционных связей между зольностью и содержанием элементов-примесей в угле и в золе угля
- Жорреляционный, факторный, кластерный анализ с выделением ассоциаций элементов и взаимосвязей между химическими элементами и различными компонентами угля.
- ▶Экспериментальное моделирование сорбции редких элементов из растворов на торфе, буром и каменном угле и гуминовых кислотах
- ≻Деструкция органического вещества угля и торфа и анализ полученных фракций.

Прямые методы:

- >Оптическая микроскопия
- **Э**лектронная микроскопия
- **Жадиографические** методы
- **Рентгеноструктурный анализ угля и низкотемпературной золы угля**
- **Другие редко используемые в угольной минералогии методы** (люминесцентные методы, рентгенорадиография, ядерный магнитный резонанс и др.).

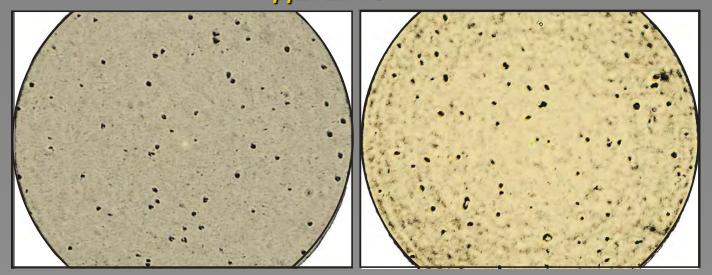

Распределение редких элементов по фракциям группового состава



групповой состав торфа

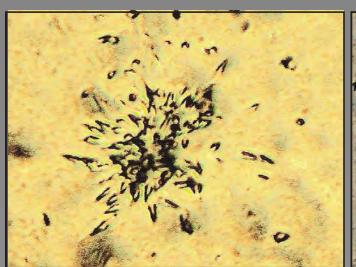
групповой состав бурого угля

Выход редких элементов в продукты ступенчатой деминерализации

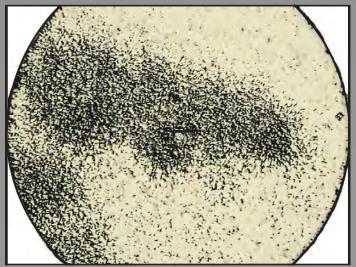



бурый уголь

каменный уголь

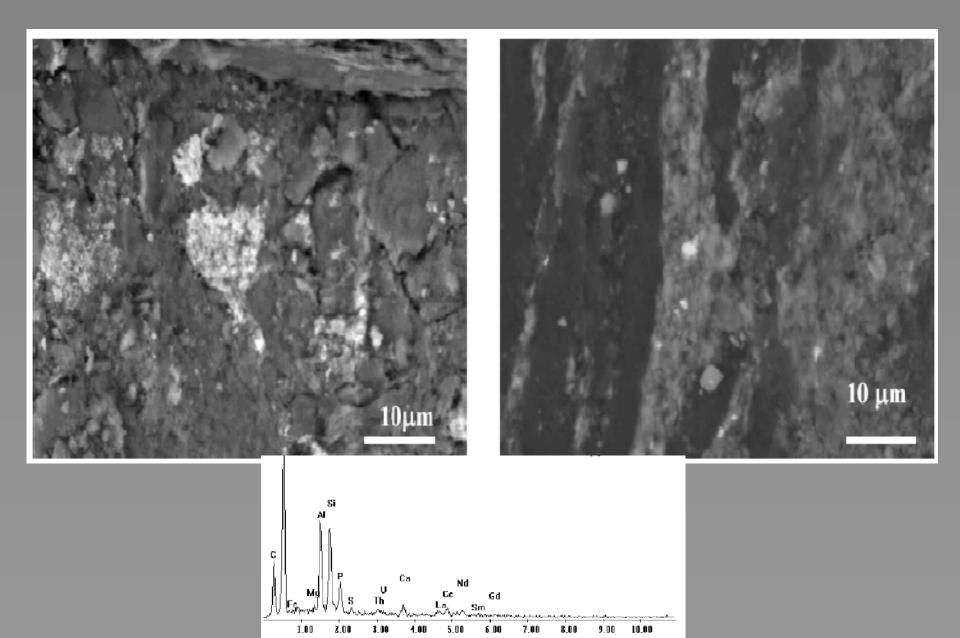

РАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ – УВ. 150-200. ЛАВСАНОВЫЙ ДЕТЕКТОР

РАВНОМЕРНОЕ РАССЕЯНИЕ С РАЗНОЙ, НО ВЫСОКОЙ ПЛОТНОСТЬЮ—УВ. 250. ЛАВСАНОВЫЙ ДЕТЕКТОР



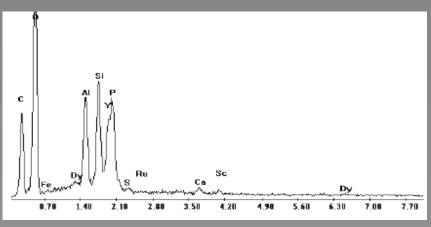
ВКЛЮЧЕНИЕ УРАНОСОДЕРЖАЩИХ АКЦЕССОРИЕВ В УГЛЕ—УВ. 300. ЛАВСАНОВЫЙ ДЕТЕКТОР

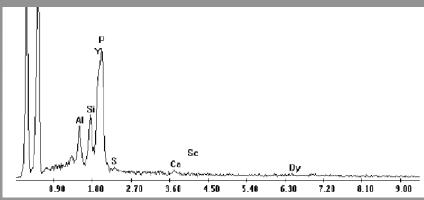
СКОПЛЕНИЕ ТРЕКОВ С ОЧЕНЬ ВЫСОКОЙ ПЛОТНОСТЬЮ –УВ. 100, 150. ЛАВСАНОВЫЙ ДЕТЕКТОР



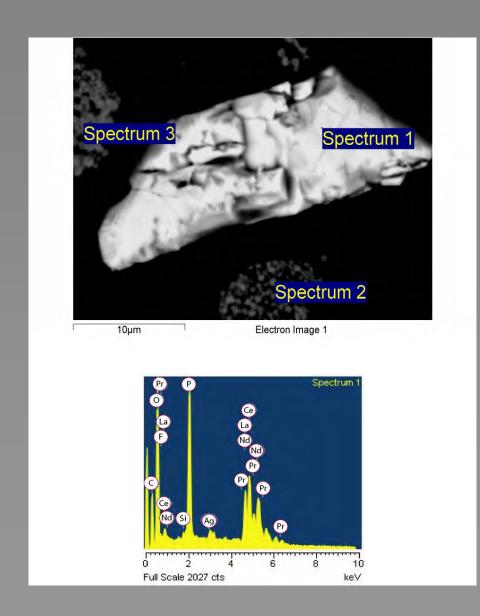
Монацит в углях и глинистых включениях в пласте Великан

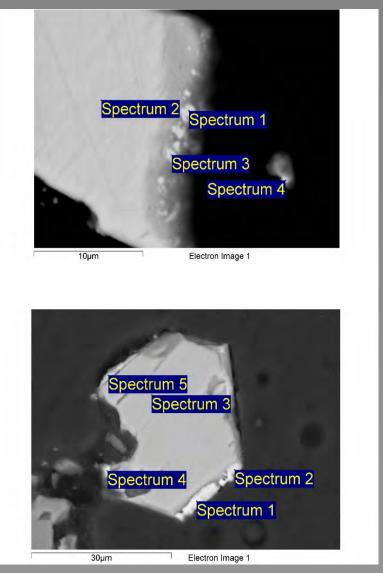
Монацит – яркие белые точки на темном фоне

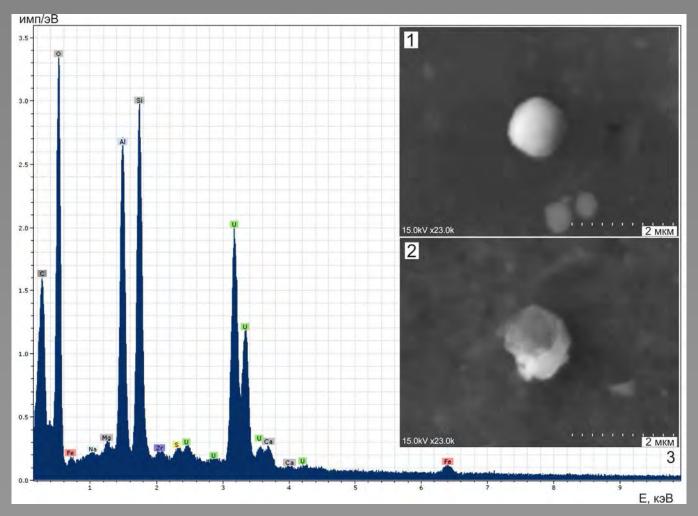

Монацит в углях пласта Двухаршинный

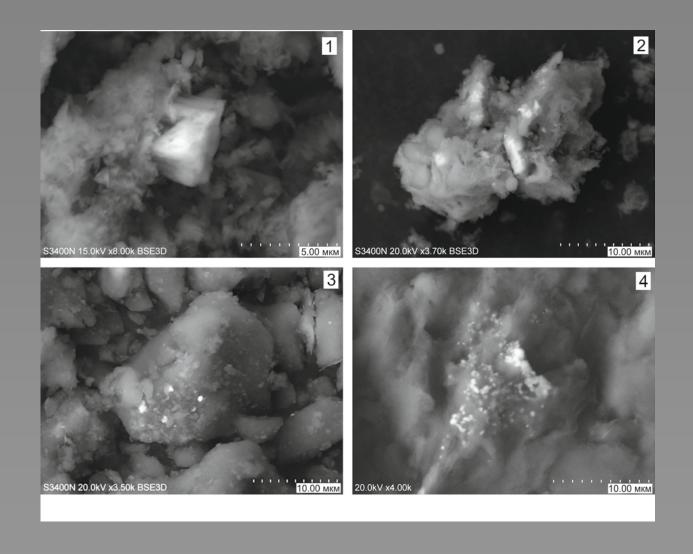


Выделение ксенотима в углях пласта Великан



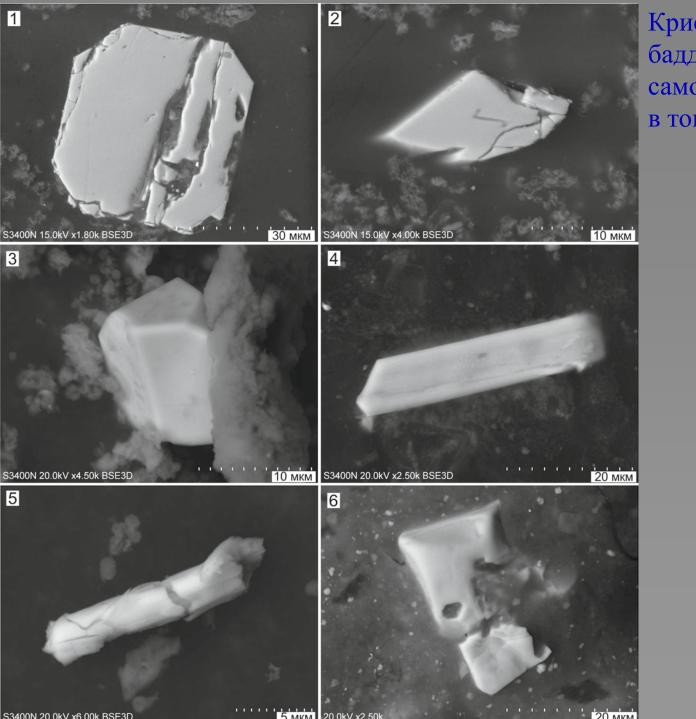

Спектр элементного состава


Редкоземельные минералы в углях



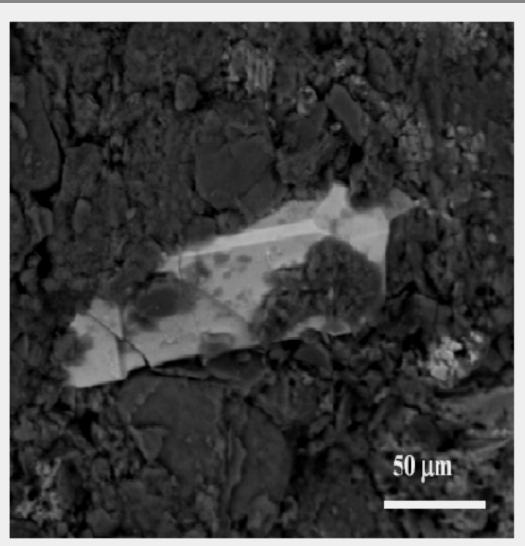
Новообразования ксенотима (Spectrum 1) на цирконе

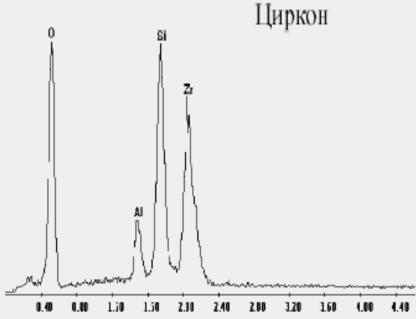
Монацит



Фотографии и аналитический спектр сферических образований уранинита из тонштейна

Включения торийсодержащих минералов (яркие светлые выделения) в углях и золах углей:


1 – чералит, зола угля, Азейское месторождение; 2 - монацит, зола угля, Азейское месторождение; 3 – монацит, уголь, Азейское месторождение; 4 - монацит, графитизированный уголь, Фатьянихинское месторождение, Тунгусский бассейн.


Кристаллы циркона (1–3), бадделеита (4, 5) и самородного кремния (6) в тонштейне

Циркон в угле пласта Великан

Label A:

Установлено, что в процессе углефикации происходит изменение форм нахождения элементов - примесей. На ранних стадиях углеобразования при седиментогенезе диагенезе в торфах, бурых углях и основная ИХ **Macca** редких металлов накапливается в составе органического вещества, главным образом в гуминовых веществах в виде комплексных гуматов ионообменной форме. В зрелых каменных углях преобладает минеральная форма нахождения основной редких металлов. Природа массы многих токсичных металлов изучена слабо. Это область исследований для ВАС!