TOMSK POLYTECHNIC UNIVERSITY

E.A. Shutov, G.N. Klimova, G.A. Nizkodubov

COMPUTER TECHNOLOGIES OF ENERGY SUPPLY LABORATORY PRACTICE

Recommended for publishing as a study aid by the Editorial Board of Tomsk Polytechnic University

Tomsk Polytechnic University Publishing House 2014

UDC 658.26:621.31 – 52(076.5) BBC 31.29-5я73 SH978

Shutov E.A.

SH978

Computer technologies of energy supply. Laboratory practice : study guide / E.A. Shutov, G.N. Klimova, G.A. Nizkodubov; Tomsk Polytechnic University. – Tomsk: TPU Publishing house, 2014. – 88 p.

A study guide "Computer technologies of energy supply. Laboratory practice" is focused on a design of control systems of production processes; the study guide is prepared on the basis of support materials offered by TRACE MODE system made by AdAstrA company. The study guide offers an opportunity to tackle on tasks in a tool-associated system without detailed examination of all documentation.

TRACE MODE system makes it possible to control power and electricity consumption, voltage level and network frequency: data collection and storage from meters, input and control of power consumption targets, development of charts of control measurements and charts of active power, preparation of summary reports on energy consumption.

The laboratory practice has been prepared on the basis of the original Russian-language materials and it is fully consistent with the course of «Computer technologies of energy supply».

UDC 658.26:621.31 –

52(076.5)

ВВС 31.29-5я73

Reviewers

Deputy Director of Future Policy Staff Department LLC "Gorseti", Tomsk T.N. Khmelenko

Ph.D. in Technical Sciences, assistant professor, TSUAB

V.M. Pedikov

© STE HPT TPU, 2014

- © Shutov E.A., Klimova, G.N., Nizkodubov G.A.,2014
- © Design. Tomsk Polytechnic University Publishing House, 2014

INTRODUCTION

Utility metering systems (UMS) allow a user to reduce financial costs both by reduction of energy costs and above the limit consumption. UMS also allow a user to switch to a more profitable tariff system.

A package TRACE MODE was chosen as a tool for UMS implementation due to existance of the Russian version of the program, positive dynamics of program installations in Russia, high quality of the product compared to foreign analogues (Genesis); and also economic factors.

Source: AdAstra Research Group, Lta

6.06 TRACE MODE version provides an integrated tool for controllers programming (Softlogic), development of operator interface (SCADA – Supervisory Control And Data Acquisition), control of manufacturing tasks (MES – Manufacturing Execution System), human resource management (HRM – Human Resources Management) and the main funds (EAM – Enterprise Asset Management).

Laboratory works are based on support materials of AdAstrA company. Support materials were edited: their volume was reduced and errors were corrected. Some of the data required for tasks completion were replaced.

A virtual computer workshop includes tasks aimed at design of a grapchics screen of operator workstation (WS), autodesign of channels, programming, development of alarm reports, data archiving, connection a shell with means of MS Office through DDE (Dynamic Data Exchange) protocol.

This virtual laboratory workshop covers main sections of the course "Computer technologies of energy supply" for students with a major 140200 "Industrial electric power supply".

LABORATORY WORKS

Laboratory work № 1

DEVELOPMENT OF A BASIC WORKSTATION

Objective: to develop a basic workstation which will perform scanning functions, update and store data from peripheral sensors.

Technical tips

In general, control, monitoring and protection systems (CMPS) at enterprises comprise several levels:

• level of instrumentation and equipment,

• level of controllers (traditional PLCs and Softlogic),

• level of workstations (WS).

Software of SCADA level has the following functions:

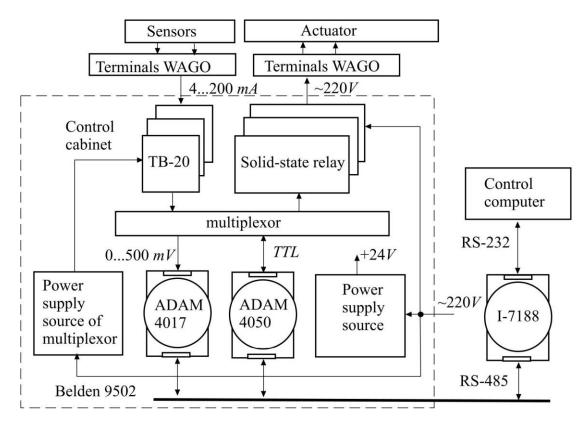
• Visualization - to display information about the process at the symbolic circuits in a form of numerical data, trends, animations, ActiveX components, etc. Control actions of operators are also provided;

• Data exchange with controllers in real time - exchange of information with controllers through a serial interface, Ethernet network;

• Archiving – storage of information;

• Process documentation – generation of reports according to preestablished patterns and their subsequent transfer through different exchange channels;

• Receiving and sending information to other software packages – exchange of operational and archival data with specialized software;


• Nonoperative data processing – calculation of statistical information, control of slow processes;

• Alarm control – a list of alarms, events filter, and acknowledgment.

The term Softlogic implies:

Use of controllers with PC-compatible architecture. Programming of these controllers is carried out in such languages as assembler or C++, it is also can be carried out with a development package in visual languages of the upper level, for instance a language of function blocks or a language of instructions that are compatible with MƏK61131-3 standard.

Block diagram of the control system can be represented as shown in the figure.

Control functions are performed by a channel controller I-7188 which has 256 KB of RAM, flash memory is 512 KB, console port, serial ports RS-232 and RS-485, a watchdog timer, real time clock and it is compatible with an operating system ROM-DOS. A controller is connected to a control computer through RS-232, and via an RS-485 cable (Belden 9502) it is connected to a control cabinet.

Analog input modules *ADAM*-4017, digital input-output module ADAM-4050 made by Advantech, a multiplexor module and registers, modules of solid-state relays (Cosmo) and power supply sources are installed in a control cabinet. Terminal plates *TB*-20 (*Fastwel*) are used to connect analog signals to a multiplexor module. A control cabinet is connected by cables to sensors and actuators.

A multiplexor (and register module) can increase the number of analog and digital inputs.

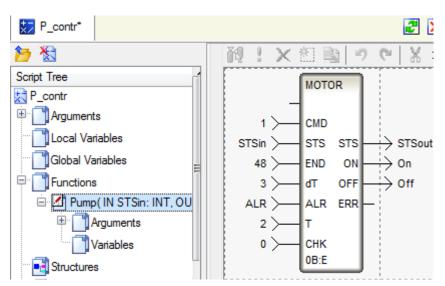
In a controller's flash memory parameters of process equipment, parameters of PID controllers, normalizers of input signals, digital filters, a table of logical channels, access keys, etc are saved during installation. Software of a controller can be written in C + + language. A control computer running under SCADA system provides a color graphic display of equipment operation.

EXAMPLE OF OBJECT DEVELOPMENT

Purpose: development of a basic WS of a pump station by the example of object development.

Technical tips

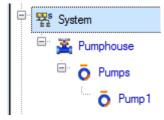
Create a template of a program **P_contr** of pump control with an argument to manage a video.


Program structure:

t P_contr*
📁 🛣
Script Tree
P_contr
Arguments
📑 IN Mun_cont: INT
🚺 OUT Status: INT
··· 📄 IN Failure: INT
🚺 OUT Video: INT
🚺 OUT P_on: INT
OUT P_off: INT
Functions
💼 🔄 Pump(IN STSin: INT, OUT STSout: INT, IN ALR: INT, OUT On: INT, OUT Off: INT)
🖶 🛄 Arguments

Function arguments of the pump control:

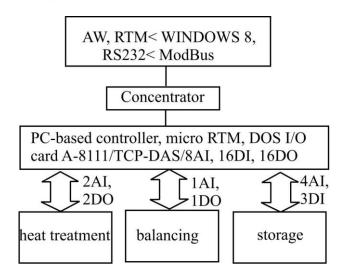
D_contr*	2	×
10	🗧 🔁 🕶 🗶 🖉) »
Script Tree	Name IO Type Dat	а Ту
	STSin 🛃 IN 👸 I	NT
OUT P_on: INT	STSout 🚹 OUT 🔡 I	NT
OUT P_off: INT	ALR 🛃 IN 👸 I	NT
Local Variables	On 🚹 OUT 🔡 I	NT
Global Variables	off 🚹 out 📆 I	NT
Functions		
🖻 📑 Pump(IN STSin: I		
🕀 🔼 Arguments		
Variables		


The most convenient way to develop a function of the pump control is a **Techno FBD** language – one block **MOTOR** is required for this purpose:

Arguments of the basic ST-program. Listing:

P_contr*	
in 🚹	第 第 🗔 🖉 👋 🤊 🔍
Script Tree P_contr Arguments IN Mun_ OUT State IN Failur	PROGRAM VAR_INPUT Mun_cont : INT; END_VAR VAR_OUTPUT Status : INT; END_VAR VAR_INPUT Failure : INT; END_VAR VAR_OUTPUT Video : INT; END_VAR VAR_OUTPUT P_on : INT; END_VAR VAR_OUTPUT P_off : INT; END_VAR
OUT Vid OUT P_ OUT P_ OUT P_ Local Variab	<pre>Pump(Mun_cont, Status, Failure, P_on, P_off); IF Status==1 THEN Video = 1; ELSE Video = 0; END_IF;</pre>

Consider creation of a **PUMP1** object. For this purpose knot **Pumphouse** with the following structure will be created in the first place.

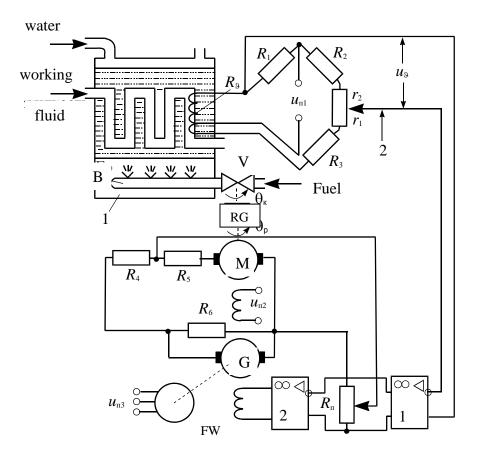

Laboratory work №3

RESEARCH OF INFLUENCE OF PROPORTIONALLY-DIFFERENTIAL-DIFFERENTIAL CONTROLLER ON QUALITY OF THE CONTROL PROCESS

Objective: develop a control and monitor system of technological process (TP) of a heat treatment cell and to estimate influence of parameters of a proportionally-differential-differential controller (PDDC) on quality of the control process.

Technical tips

The TP is carried out on three cells: heat treatment, storage and balancing. It is necessary to design the control system and TP control taking into account existing control points, actuating units and hardware automation. All cells are controlled by a PC-based controller.



Heat treatment cell uses two analog input signal – 2AI and two discrete outputs – 2DO. The technological task – to maintain constant temperature in the apparatus – a technological device that carries out a long heating of raw materials (regulation function). Temperature regulation is provided by the flow rate change of a heat-transfer agent. Control algorithm is proportional-differential-differential (PDD). Control of the actuating unit – pulse-width modulation (PWM). Analog signals in a PC-based controller are handled by a 12 bit analog-to-digital converter (ADC) and displayed in the codes (0 – 4095). Range of input codes for the measured temperature correspond to the temperature sensor (0 – 100) C for the flow rate of a heat-transfer agent – (0 – 10) m3/h.

WS controls technological parameters (monitoring function) connected to a PC-based controller and sets regulator options (control function). A PC-based controller is connected to WS via the network by a concentrator and a network protocol – TCP/IP. A usual PC-compatible computer with an input/output board I/O A-8111 with 8AI, 16DI and 16DO/ICP DAS/ integrated in a system ISA bus is used as a controller and runs under OS DOS (this product is not subject to modeling, and is replaced by a simulator).

Description of control and monitor system development

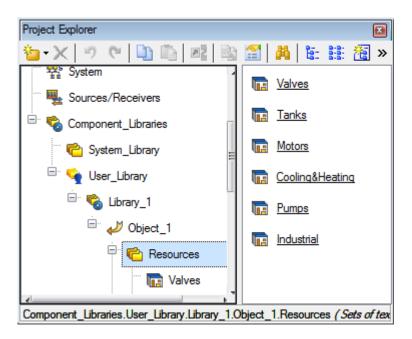
Consider the operating principle of automatic temperature control system.

Thermometer $R_{\mathcal{G}}$ changes its resistance according to the temperature of the working fluid flowing in the pipeline through the furnace 1. Move the slider of the set point 2 and break bridge balance.

When the bridge has full balance

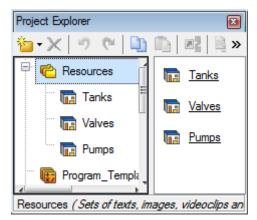
$$R_{\mathcal{G}} = \frac{(R_2 + r_2)R_3}{R_1 + r_1}$$

When you move the slider of the set point to the left r_1 decreases, r_2 increases, which leads to increase of R_g and vice versa. The bridge is supplied by an alternating current, so the amplitude of the voltage unbalance depends on the temperature \mathcal{P}_{Π} deviation from the set \mathcal{P}_3 , and the phase – the sign of this deviation.


Voltage of unbalance ${}^{u_{\mathcal{G}}}$ is proportional to furnace temperature and is fed to the input of the operational amplifier OA1. The amplified voltage after the second operational amplifier OA2 is fed to the field winding FW of a DC generator G which feeds the electric motor M. The armature through a reduction gear RG rotates the valve V changing the amount of fuel supplied to the burners B. In case of bridge balance, the error voltage is $u_{\mathcal{G}} = 0$ and the valve takes a definite position that corresponds to temperature equality of the set point \mathcal{G}_3 and the furnace \mathcal{G}_{Π} .

Tachometer feedback, as indicated in the example above, is seen as an alternative method. At the present stage PDD are used – regulators and actuating units – PWM.

Description of the virtual laboratory setup


Automation systems with "templates" design will be presented, i.e., project information base will be created – channels according to the arguments of developed screen templates and programs complementing the basic approach by the methods of autobuilding and channel bonding in the nodes of the project.

Open IDE and create a new project. Choose **Standard** as a style of development.

Move to a layer **Components_Libraries**, in the section **User_Library** open the library **Library_1**. The object **Object_1**, stored in this library, contains its own layer **Resources** that is required for further development, a set of graphical objects – images of valves, tanks, pumps, etc.

Drag the groups in the layer **Resources** of the current project by dragand-drop and rename them as shown below.

In the layer **Resources** create the group **Images** where textures will be contained. The textures will be applied in the design of graphics displays. Create a new component – **Image_Library#1** in the group **Images**.

By a double left-button (LB) click open a newly created library for editing. For its filling use the icon in with the "Import" button on the toolbar. In the dialog box of files to import specify the subdirectory ...\Lib\Texture. Select all the files and click **Open**.

In the same way as described above create a group **Animation** in the layer **Resources**. In the group create the library **Video_Library#1**. Fill it with the following content ...\Lib\Animation. After preparatory activities save

Laboratory work Nº4

ARCHIVES AND ALARM REPOR

Objective: Build a control and monitor system of technological process (TP) of storage and dozing (balancing), implement archiving and report alarms.

Technical tips

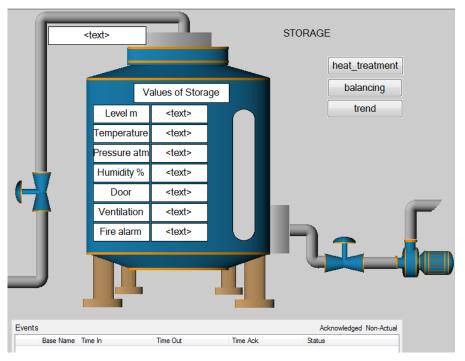
Storage cell uses three discrete input signal – 3DI and four analog input – 4AI which perform monitoring functions. Data on the status signals of the entrance door to the store (0 – Closed 1 – open), ventilation (0 – off, 1 – on) and fire alarms (0 – no smoke, 1 – smoke) are stored at the controller input. Indicators characterizing parameters such as a reservoir filling level, temperature in the storage, pressure and humidity are under control. Analog values are converted in a 12-bit analog-digital converter (code 0 – 4095), controlled values have the following ranges (0 – 5) m, (0 – 100) C and (0 – 100) %.

Dozing (balancing) cell is controlled by an analog input signal – 1AI and one output discrete – 1DO. According to the instructions received from WS, a finished product supply takes place, its control is carried out by meter readings ((codes 0 - 4095), consumption (0 - 100 l/min)), a metering pump is applied as control equipment (turn-on – supply logical "1" from the controller on a bypass isolation module, which uses a pump as load turning – off - logical "0").

A PC-based controller is connected to workstation via the network through a hub, protocol – TCP/IP is used. As a controller (not modeled) serves PC-compatible computer with the ISA bus to the system board I/O A-8111, is running DOS.

Data on storage parameters (level, temperature, pressure and humidity) must be saved during operation in a table DBMS (data base management system) MS ACCESS with a five-minute time stamp.

Two users must have an access to the system - a developer and operator. The operator, in contrast to the developer, is not able to make changes in the structure of the system.


Description of the virtual laboratory setup

Arguments for the screen template **Storage** are as follows:

System.RTM	_1.Storage.S	torage:1				
Info Flag	gs Argum	ents Attribut	es			
鞫 毀 善	8 9 C	1	A			- X i
Name	IO Type	Data Type	Def. Value	Link	Flags	Group
Level	🛃 IN	REAL 🔡				
Temperature	🛃 IN	REAL				
Pressure	🛃 IN	👪 REAL				
Humidity	🛃 IN	REAL				
Door	🛃 IN	👪 BOOL				
Ventilatoin	🛃 IN	👪 BOOL				
Fire_alarm	🛃 IN	👪 BOOL				
Event_door	🏰 IN/OUT	👪 REAL			NP	
Event_vent	🏰 IN/OUT	👸 REAL			NP	
Event_fire	🏰 IN/OUT	👸 REAL			NP	
Main_Layer	灯 IN/OUT	👸 BOOL			NP	
Trend_Layer	🛃 IN/OUT	RE BOOL			NP	

Arguments **Event_door**, **Event_vent** and **Event_fire** are designed to display and acknowledgment of Events with GE **Events** \clubsuit . Arguments **Main_Layer** and **Trend_Layer** – to control the visibility of screen layers. The first layer will be displayed mimic of a storage cell, the second – trend of storage parameter values. **NP** indicator is set to the arguments and doesn't allow creating appropriate channels for autobuilding operations.

Set one of the textures available in the library for a background of the screen. With the help of GO $\stackrel{\blacksquare}{\blacksquare}$ and GE $\stackrel{\blacksquare}{\square}$, $\stackrel{\blacksquare}{\blacksquare}$ carry out a static part of the picture as shown below.

Output storage parameters are set by GE ^{ABC}. Bind GE pattern to the arguments of the screen template. Set the format of the output values, such as level:

Object Properties	(x
	ABC Text Help	
3	3 🔂	
Property	Value	ľ
Filling		Ī
Font	MS Shell Dlg,10	
Alignment	Center	E
Text (level)	<text></text>	
Indication type	Value	
Binding	level	
Er Format	Float	
Float	%.3f	
Main Binding		

To display the status of discrete signals the opening/closing door to the storage, ventilation and fire alarm system turn-on/off apply the following color and display indication text defined for GE ABC .

ABC	Text Help
3 👷 😂	 ∰
Property	Value 1
Indication type	Arg = Const
Binding	door
On TRUE	
On FALSE	
Constant	0
Style	
Font	MS Shell Dlg,10 ≣
Alignment	Center
Text (door)	<text></text>
Indication type	Arg = Const
Binding	door
Use Library Resou	irces False
On TRUE	close
On FALSE	open
Constant	0

Properties for the rest GE are set the same way. The product level in the

capacity is displayed by a histogram of arbitrary shape which will be created by GE Oval. For this GE set a dynamic GE filling and bind it to a corresponding argument of the screen template by setting a background color and filling. Consistently copy heat_treatment from the screen template and move it to the template Storage_site GE to display current time and navigation screen button. By a LB click select the required GE (to select multiple GE press and hold Ctrl key or select the area holding LB) and use

on the toolbar. To paste use keyboard shortcuts for clipboard - **Ctrl-C** and **Ctrl-V**. After inserting GE bind them to the arguments of the current screen template.

Object	Pr	operties	E
			Oval Help
		<u>^</u>	🔨 🥞 🔅
V E	nal	ble	
Prop	ert	y	Value
Direct	tior	ı	Upwards
Layer	3		
Ē	ay.	er (level)	
		Name	level
		Binding	level
		Fill type	Color
	1	Fill color	
	I	Fill style	
MAX			5
MIN			0
MIN=	LL	, MAX=HL	False
Color	s fo	or Ranges	False
Wam	ing	1	
Alarm			
Out o	fЬ	ounds	

Place GE Events $\stackrel{\frown}{=}$ at the bottom of the screen. LB click to center it horizontally with the appropriate menu item.

Leave the main GE properties \clubsuit unchanged, in the tab Bindings set three bindings to template arguments of the screen: Event_door, Event_vent, Event_fire.

Object Prop	erties 🗵
	🔉 Events 🛛 Help
Properties	Links
Property	Value
<u>Links</u>	
Link	Event_door

An additional storage layer for a graphics screen template **Storage_site** must be created to output current trends of parameter values on the trend.

Through the point **View** of the main menu open the window of graphics layers. In the layers window an existing layer should be renamed to Layer

‱ and attached to the argument of the template Main_layer. By clicking create a new layer, rename it to Trend and link to the argument **Trend**.

Layers				X
🍅 🗙	() (
Show	Lock	Select	Name	Binding
1			layer	Layer_main
V			trend	Layer_trend

A newely created layer can be available for editing and display by clicking LB.

GS Trend \bowtie and \bowtie button should be placed in this layer (in the window it should be highlighted by LB).

Set seven new curves for the trend and define basic properties such as:

Bindings to arguments, color and line thickness, limits and headings to identify them on GS must be set for the curves. A

Object Prope	arties		
	OK Button	Help	
3	3		
Property		Value	
Access Cod	e	0	
Actions			
mouse	Pressed		
Con	firmation	False	
Bee	p	False	
⊡ <u>Sen</u>	nd Value		
	Send Type	Direct	
	Value	0	
	Destination	Layer_main	
Source			
	Restore Value	False	
⊡ <u>Sen</u>	nd Value		
	Send Type	Direct	
	Value	1	
	Destination	Layer_trend	
	Source		
	Restore Value	False	
• mouseR	Released		

tiend and define basic properties such as.					
	Object Properties	E			
r and line	🔀 Trend 🛛 He	q			
o identify					
curves. A					
property	Property	Value			
Event	<u>Curves</u>				
for GE	E Curve1 (level)				
ок	Curve2 (temperature)				
located	E Curve3 (pressure)				
	Curve4 (humidity)				
below is	Curve5 (door)				
defined	Curve6 (breating)				
in such	🗄 <u>Curve7 (fire)</u>				
a way					
that					

when you click on arguments of screen template, their bindings to graphic layers have been defined, direct sendings are carried out. The values that are sent to these arguments, control layers visibility 0 - a layer is shown, 1 (any value other than (0) – a layer is hidden.

GS Text used to display current time and name of the site is copied into a layer Trend from a layer Layer. The layer Trend of a screen template Storage_Site will look like:

Contents

INTRODUCTION	3
LABORATORY WORKS	4
Laboratory work № 1	
DEVELOPMENT OF A BASIC WORKSTATION	4
Laboratory work № 2	
EXAMPLE OF OBJECT DEVELOPMENT	.22
Laboratory work № 3	
RESEARCH OF INFLUENCE OF	
PROPORTIONALLY-DIFFERENTIAL-DIFFERENTIAL	
CONTROLLER ON QUALITY OF THE CONTROL PROCESS	.39
Laboratory work № 4	
ARCHIVES, AND ALARM REPOR	58
REFERENCES	36

Educational Edition

Национальный исследовательский Томский политехнический университет

ШУТОВ Евгений Алексеевич КЛИМОВА Галина Николаевна НИЗКОДУБОВ Гавриил Анатольевич

КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ РЕШЕНИЯ ЗАДАЧ ЭЛЕКТРОСНАБЖЕНИЯ

Учебное пособие

Издательство Томского политехнического университета, 2014

На английском языке

Published in author's version

Science Editor Doctor of Physical and Mathematical Sciences, Professor A. V. Kabyshev

Cover design Name

Printed in the TPU Publishing House in full accordance with the quality of the given make up page

Signed for the press 00.10.2012. Format 60x84/16. Paper "Snegurochka". Print XEROX. Arbitrary printer's sheet 5,0. Publisher's signature 4,52. Order 0000-12. Size of print run XXX.

Tomsk Polytechnic University Quality management system of Tomsk Polytechnic University was certified by NATIONAL QUALITY ASSURANCE on BS EN ISO 9001:2008

TPU PUBLISHING HOUSE. 30, Lenina Ave, Tomsk, 634050, Russia Tel/fax: +7 (3822) 56-35-35, www.tpu.ru