Лекция 5 Химическая термодинамика

План лекции

- 1. Основные понятия
- 2. Классификация химических процессов
- 3. 1-й закон термодинамики
- 4. Термохимия
- 5. 2-й закон термодинамики

Основные понятия

- ■Термодинамика (ТМД) это наука взаимных превращениях различных видов энергии. Та часть ТМД, которая изучает химические реакции, называется химической ТМД.
- ■Система это вещество или совокупность веществ, мысленно или реально отграниченных от внешней среды

Разновидности систем

- ■Открытые системы имеют массообмен и теплообмен с окружающей средой
- Закрытые системы обмениваются энергией, но не обмениваются веществом
- ■Изолированная системы тепло- и массообмена нет

ФАЗА

Это часть системы с одинаковыми физическими и химическими свойствами и отделенная от других частей системы поверхностью раздела

- ■Гомогенные (однофазные) системы
 - все в-ва системы в одном агрегатном состоянии

$$H_2(\Gamma) + CI_2(\Gamma) = 2HCI(\Gamma)$$

■Гетерогенные (многофазные) системы - в-ва находятся в разных агрегатных состояниях

$$Fe(κ) + 2H2O(Γ) = H2(Γ) + Fe2O3(κ)$$

- ■Параметры состояния -это свойства системы. Изменение параметров ведет к изменению состояния системы (P, T, V, C)
- Функции состояния т/д величины, характеризующие энергетические изменения системы
- ■Функции состояния:
 внутренняя энергия (U)
 энтальпия (H)
 энтропия (S)
 свободная энергия (G)

Классификация процессов по условиям протекания

Параметры	Процесс
температура (Т)	изотермический
давление (Р)	изобарный
объем(V)	изохорный

Классификация процессов по знаку

■ Эндотермический процесс - система получает тепло (+)

Экзотермический процесс - система отдает тепло (-)

Классификация процессов по принципу самопроизвольности

- ■Изобарно-изотермический потенциал (△G) критерий направления процессов
- **∆G < 0 -** самопроизвольный процесс
- **∆G > 0** несамопроизвольный процесс
- $\Delta G = 0$ состояние равновесия

1-й закон термодинамики

- ■Кол-во энергии, выделяющейся или поглощающейся в процессе, равно изменению ее внутренней энергии
- ■Если энергия (△U) выделяется (поглощается) в виде тепловой (Q) и нетепловой энергии (A), то:

$$Q = \Delta U + A$$

 $\Delta U = U_2 - U_1 - изменение внутренней энергии системы$

Тепловой эффект и работа

- ■Тепловой эффект (Q) р-ции может быть измерен при пост. объеме (Qv) или пост. давлении (Qp) и обычно измеряется в изотерм-х условиях
- ■В хим. реакциях нетепловая энергия (работа) получается за счет изменения объема:

 $A = p\Delta V$, где $\Delta V = V_2 - V_1$

Изменение внутренней энергии

■В изохорном процессе: △ U = Qv изменение внутр. энергии происходит в виде теплового эффекта, т. к.:

$$A = p\Delta V = 0$$

■В изобарном процессе ΔU = Qp - p∆V кроме теплового эффекта, совершается механическая работа р∆V взаимодействия системы с внешней средой

Энтальпия процесса

$$Qp = \Delta U + p \Delta V$$

 $Qp = (U2 + pV2) - (U1 + pV1)$
 $U + pV = H$

Н - энтальпия процесса:

$$Qp = H2 - H1 = \Delta H$$

■ △Н - это изменение внутренней энергии с учетом работы на которую способна система

Энтальпия процесса при низких температурах

Qp = Qv + p
$$\Delta$$
V T.K. pV = nRT
Qp = Qv + nRT
 Δ H = Qp = Qv = Δ U

т.к. при низких темп-рах величина nRT мала,

при высоких температурах величина nRT становится значимой

Абсолютное значение энергии (U, H) образования вещества не может быть измерено!!!

Энтальпия образования простого вещества

Изменение энтальпии образования всех простых веществ в их стандартном состоянии принимаются

Стандартное состояние:

P = 101,3кПа n = 1 моль для p-ров конц-я - 1 моль/л

Т- любая, при которой в-во может существовать Стандартные условия:

P = 101,3кПа T = 298,15К (25°C) n = 1 моль для p-ров конц-я - 1 моль/л Калориметрический метод определения ∆H_f°

Стандартные состояния сложных в-в соответствуют образованию их из простых веществ (даже если в-во не может быть получено таким путем)

Например:

K(тв)+1/2Cl2+3/2O2=KClO3(тв)

$$\Delta H_f^o = -39,1 кДж/моль$$

Термохимия

Термохимия - раздел термодинамики, изучающий выделение и поглощение тепла в химических реакциях

◆Термохимические уравнения реакций - уравнения, в которых указан тепловой эффект, условия реакций и агрегатные состояния веществ

$$C(\kappa p) + O_2(r) = CO_2(r)$$
, $\Delta H^\circ = -396$ кДж указывают:

 $Qp = \Delta H^{\circ}$ (при P и T const), или $Qv = \Delta U^{\circ}$ (при P и V const)

Закон Гесса

Г. И. Гесс в 1841г.

Тепловой эффект реакции является функцией состояния и не зависит от пути протекания процесса

Он определяется только начальным и конечным состояниями системы

Графическое и алгебраическое представление закона Гесса

- ■Образование СО2 из С и О2 можно представить так:
- 1. $C(граф)+O_2(газ)=CO_2(г); \Delta H_1=-396 кДж$
- 2. $C(граф)+1/2O_2(г) = CO(г); \Delta H_2 = X кДж$
- 3.CO(г)+1/2O₂(г) = CO₂(г); Δ H₃ = -285,5кДж

$$\begin{array}{c}
C & \Delta H_1 \\
\Delta H_2 & \Delta H_3
\end{array}$$

Из закона Гесса следует, что

$$p(2)+p(3) = p(1)$$

 $\Delta H_2^0 + \Delta H_3^0 = \Delta H_1^0$

Следовательно,

$$\Delta H_1^{o}$$
 - ΔH_3^{o} = ΔH_2^{o} - 396 - (-285,5) =-110,5 кДж/моль

Следствия из закона Гесса

1-е следствие

Изменение энтальпии (тепловой эффект) химического процесса равно сумме энтальпий образования продуктов реакции минус сумма энтальпий образования реагентов

$$\Delta H_{xp} = \Sigma n_{npod} \cdot \Delta H_{npod} - \Sigma n_{ucx} \cdot \Delta H_{ucx}$$
 $aA + bB = cC + dD$

Для изобарного процесса:

$$\Delta H_{xp} = [c\Delta H_{f}^{o}c + d\Delta H_{f}^{o}d] - [a\Delta H_{f}^{o}a + b\Delta H_{f}^{o}B]$$

Для изохорного процесса:

$$\Delta U_{xp} = [c\Delta U_f^o c + d\Delta U_f^o d] - [a\Delta U_f^o a + b\Delta U_f^o d]$$

2-е следствие (для органических веществ)

■Тепловой эффект орг-й реакции равен сумме теплот сгорания реагентов за вычетом теплот сгорания продуктов

 $\Delta H_{xp} = \Sigma n_{ucx} \cdot \Delta H_{ucx}^{cr} - \Sigma n_{πpod} \cdot \Delta H_{ucx}^{cr}$

Закон Лавуазье-Лапласа

Энтальпия разложения хим.соединения равна, но противоположна по знаку энтальпии его образования при одинаковых условиях

$$\Delta$$
Нобр = $-\Delta$ Нразл

Тест

- При взаимодействии 10 г кальция с кислородом выделилось 160 кДж тепла. Вычислите:
- стандартную энтальпию образования оксида кальция (кДж/моль)

ЭНТРОПИЯ

- Т/д рассматривает системы, состоящие из множества микрочастиц
- Микрочастицы находятся в постоянном движении
- Эти движения определяют все функции и параметры систем и называются т/д вероятностью системы (W)
- ■Т/д-я вероятность является мерой беспорядка в системе

■Больцманом введено понятие энтропии

S = R InW

моль•К

Энтропия - мера беспорядка

- S растет с ростом Т и при переходах Тв → Ж → Г
- S ум-ся при понижении Т,
 превращаясь в 0 при Т = 0 К для
 идеального кристалла (третий закон термодинамики)

Энтропия образования вещества

- ■Стандартная энтропия образования вещества (S) это энтропия при P = 101,3кПа, T = 298 К, конц-ции 1моль/л
- ■В отличие от других т/д функций энтропия может быть определена по абсолютной величине

Вычисление изменения энтропии реакции

Сграф + СО2(г) = 2СО(г)
$$S_{f MOЛь•K}^{o}$$
 6 214 198

$$\Delta S_p = \Sigma n_{прод} \cdot S_{прод}^{\circ} - \Sigma n_{исx} \cdot S_{исx}^{\circ}$$
 $\Delta S_p = 2.198 - 6.214 = 176$

Закономерности изменения энтропии

- Sг > Sж > Sтв
- S растет при раств-ии твердого или жидкого вещества и ум-ся при растворении газа
- S растет с увеличением массы

- S тем меньше, чем прочнее химические связи, чем больше твердость вещества
- S растет с усложнением состава структурных единиц вещества
- S простых в-в и однотипных соединений является периодическим свойством

2-й закон термодинамики

■ В изолированной системе самопроизвольно идут только те процессы, в которых энтропия ув-ся

ИЛИ

 Во Вселенной любые процессы сопровождаются ростом беспорядка в ней Самопроизвольные процессы, происходящие на макроуровне идут с потерей части энергии на бесполезное нагревание системы, т. е. на беспорядочное движение микрочастиц:

 $\Delta S > \Delta H/T$

Термодинамическое равновесие

■В обратимом процессе в бесполезное тепло переходит наименьшее количество энергии

$\Delta H = T\Delta S$

- А Н энтальпийный фактор (разрыв и образование хим. связей)
- Т∆S энтропийный фактор (потеря энергии, связанная с хаотическим движением частиц в равновесных условиях)

 $\Delta H - T\Delta S = 0$

Энергия Гиббса Свободная энергия Изобарно-изотермический потенциал

Изменение энергии Гиббса - критерий направленности процесса

 $\Delta G = \Delta H - T\Delta S$ или G = H - TS

 ΔG - это max полезная работа, которая может быть произведена системой в самопроизвольном процессе и хар-ет отклонение системы от равновесия

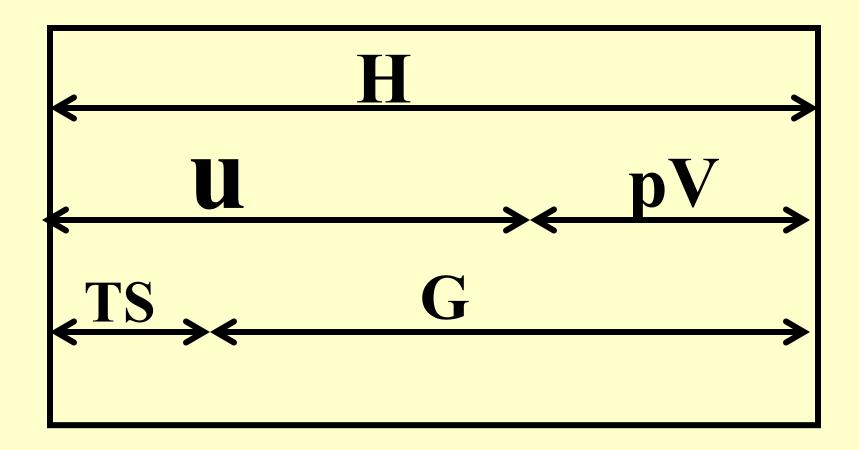
Критерий направленности процессов

Равновесие

$$\Delta G = 0$$
; $\Delta H = T\Delta S$

Самопроизвольный процесс

$$\Delta G < 0$$
; $\Delta H - T\Delta S < 0$


Несамопроизвольный процесс

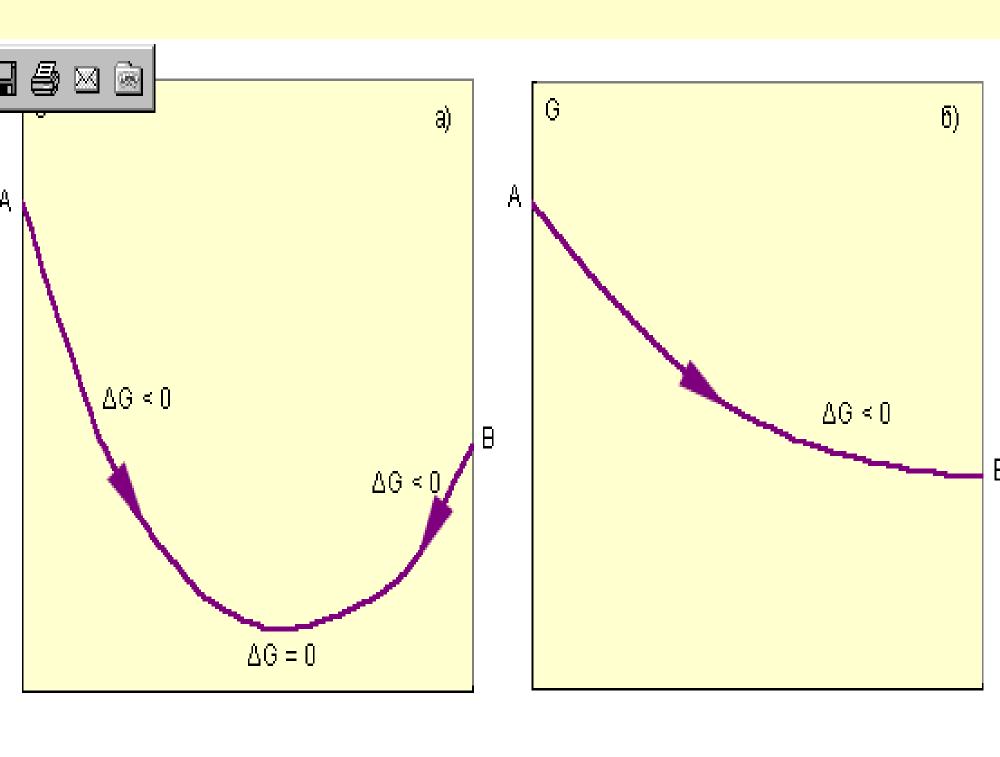
$$\Delta G > 0$$
; $\Delta H - T\Delta S > 0$

Влияние отдельных факторов на изменение энергии Гиббса

ΔΗ	ΔS	Δ G	Направление
<0	>0	<0	Возможна при любой t ^o
>0	<0	>0	Невозможна при любой t ^o
<0	<0	<0 и >0	Возможна при низкой t ⁰
>0	>0	>0 и <0	Возможна при высоких t ^o

Взаимосвязь между т/д функциями

Зависимость △G от концентрации (уравнение Вант-Гоффа)


$$\Delta G_T = \Delta G^o_T + RT \ln \frac{[C]^c \cdot [D]^d \dots}{[A]^a \cdot [B]^b \dots}$$

[С], [D]- конц-ии продуктов [A], [B]- конц-ии реагентов а, b, c, d -стех-е коэфф-ты

 $\Delta G = 0$, $\Delta G^0_T = -RTInK$

$$K = rac{\left[C\right]^c_{\mathrm{равн}} \cdot \left[D\right]^d_{\mathrm{равн}}}{\left[A\right]^a_{\mathrm{равн}} \cdot \left[B\right]^b_{\mathrm{равн}}}$$

- К константа равновесия
- **■**[A], [B], [C], [D] равновесные концентрации

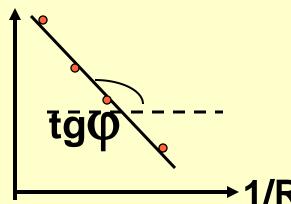
Взаимосвязь К с ДН0 и ДЅ0

$$\Delta G^0 = \Delta H^0 - T \Delta S^0$$

 $\Delta G^0_T = - RTInK$

$$K = \exp\left(-\frac{\Delta H^o}{RT}\right) \cdot \exp\left(\frac{\Delta S^o}{R}\right)$$

■ ΔH > 0 повышение температуры сдвигает равновесие вправо (увеличение К); это соответствует принципу Ле-Шателье


Определение **Δ**G

Зная равновесные концентрации реагентов и продуктов (т. е. К) при различных t^0 -рах, можно определить ΔG по уравнению:

$$\Delta G^{o} = -RT \ln K$$

или графически как тангенс угла наклона в координатах:

$$\ln K = -\frac{\Delta G^o}{RT}$$

Обратимые и необратимые реакции

- обратимые реакции $Na_2SO_4 + KCI = K_2SO_4 + NaCI$
- практически необратимые

совершенно необратимые

$$Pb(N_3)_2 = Pb+3N_2$$

Равновесие

- ■Система находится в состоянии равновесия, если скорости прямой и обратной реакции одинаковы
- ■Например, эквимолярная (одинаковые концентрации) смесь СО, Н2О, СО2 и Н2 находится в состоянии равновесия при 810°С

 $CO + H_2O <=> CO_2 + H_2$

Истинное равновесие характеризуется:

- 1) неизменностью во времени при отсутствии внешних воздействий
- 2) его характеристики меняются при внешних воздействиях, сколь малыми они не были бы
- 3) равновесие одинаково независимо от того, с какой стороны подходить к нему

Стационарное и кажущееся равновесие

- Стационарное равновесие поддерживается за счет внешнего воздействия
- Кажущееся равновесие отличается тем, что оно неизменно во времени
- ■Например, смесь Н₂ и О₂ практически бесконечно может находиться в неизменном, состоянии, т.к. это равновесие не истинное, раз начавшись процесс идет быстро и до конца

Константа равновесия

$$aA + bB = cC + dD$$

$$K = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

- Константа равновесия не зависит от концентрации веществ
- К зависит от темп-ры, ув-ся для эндотермических и ум-ся для экзотермических реакций

Принцип подвижного равновесия (принцип Ле-Шателье)

Если на систему, находящуюся в состоянии равновесия производится внешнее воздействие, то изменения, происходящие в системе, ослабляют это воздействие

Тест

По уравнению реакции и термодинамическим константам веществ

$$2NO(r) + O2(r) = 2NO2(r)$$

■ ∆H _f°, кДж/моль 91,3 0 34,2

■ S°, Дж/(моль·К) 210,6 205,0 240,0

определите для температуры 300 К

- энергию Гиббса (кДж);
- направление протекания реакции: (1 вправо, 2 влево, 3 состояние равновесия)